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Abstract
Finite state machine (FSM) partitioning proves effec-

tive for power optimization. In this paper we propose a
design model based on mixed synchronous/asynchronous
state memory that results in implementations with low
power dissipation and low area overhead for partitioned
FSMs. The state memory here is composed of the synchro-
nous local state memory and asynchronous global state
memory, where the former is used to distinguish the states
inside a sub-FSM, and the latter is responsible for control-
ling sub-FSM communication. The input and output
behaviour of the decomposed FSM is cycle by cycle equiv-
alent to the undecomposed synchronous FSM. Together
with clock gating technique, substantial power reduction
can be demonstrated.

1. Introduction

The majority of low power optimization techniques on
architectural level focus on shutting down parts of the cir-
cuits that are idle, techniques that go under the name
dynamic power management [2]. For the contemporary
CMOS technology where the dynamic power dissipation
dominates over the static in digital circuits [1], minimizing
the switching capacitance is the objective of power mini-
mization. Here, shutting down means preventing idle cir-
cuits and nets from switching. Normally, systems are
designed to meet a certain peak performance that is only
required for a small portion of its entire operational time;
therefore, parts of the circuit are often temporarily idle.
There are also situations where operations, known in
advance, will never be executed at the same time, which
always lead to having idle units consequently. In these sit-
uations, dynamic power management may be successfully
used.

Dynamic power management techniques disable the
clock signal or prevent inputs from switching to the parts
not in use. In order to do so, mechanism for detecting idle
states of different units is needed, also methods for "shut-

ting down" the idle units must be added to the design. Cir-
cuits responsible for handling this will constitute a
functional overhead and will consequently contribute to
increased circuit area, additional power consumption, and
possibly reduced speed performance. Careful analysis
must be undertaken so that the introduction of circuits for
power management will lead to as large power reduction
as possible. An optimization procedure for dynamic power
management seeks the partitioned system that has the low-
est power consumption. The procedure partitions the
design after identifying the most beneficial idle conditions
taking the overhead of detecting and shutting down circuits
into account.

For low power FSM design, the most efficient way is to
divide the FSM into two or more sub-FSMs where only
one of them is active at a time [3]. The partitioned FSM is
constructed in such a way that each of the sub-FSMs will
constitute a smaller effective capacitance than the original
FSM and consequently power can be saved. Gating the
clock signal to shut down the FSM not active is an efficient
way and it has been practised in several works, e.g. in [4,
5]. There are two drawbacks in these approaches. First, in
minimum length state encoding the area overhead from the
increased number of bits in the state memory is substantial
for a partitioned FSM. Second, the power consumption for
activating and deactivating a sub-FSM is relatively high.
These problems have been addressed separately before in
e.g. [6] and [7]. In contrast to previous work, we propose a
design model that is able to handle both issues in an effi-
cient way.

In the design model for partitioned FSMs we are pro-
posing in this paper, both synchronous and asynchronous
state memories are used to implement FSMs with synchro-
nous input/output behaviour. This means that externally
the FSM will work as a synchronous FSM but internally
there is a mechanism operating asynchronously. This
model is the result of our search for finding ways to utilize
asynchronous logic in synchronous designs. The general
idea is to only use synchronous state memory for state bits
that have high probability of changing and asynchronous
state memory for those bits with low probability of chang-



ing.
The outline of rest of the paper is as follows. First a

presentation is given on approaches to low power FSM
design based on FSM partitioning and how the proposed
design model is related to them. After that the proposed
model is described, first through an example and then by a
formal description. This is followed by a description of
how to transform a finite state machine specification, in
the form of a state transition graph, to the form suitable for
implementing it as a partitioned FSM with mixed synchro-
nous/asynchronous state memory. An implementation
architecture is then proposed and the effectiveness is illus-
trated by optimizations through two-way partitioning of a
subset of the MCNC FSM benchmarks [8].

2.  Background

From the point of view of structural decomposition,
there are basically two approaches to partition FSMs. The
first one is based on separate state memory for each sub-
FSM and the second one has shared state memory for all
sub-FSMs. The two alternative structures are shown in the
figure below. In this section we first introduce the key
issues in the implementation of partitioned FSMs, and
from that motivate our approach based on mixed synchro-
nous/asynchronous technique.

2.1. FSM decomposition with separate state 
memory

As depicted in Figure 1a) above, each sub-FSM has its
own state memory. These state registers are local to the
sub-FSM and are referred to as local state memory. A state
transition with a destination state not residing in the same
sub-FSM as the source state we refer to as a crossing tran-
sition. No global state is needed and the interaction
between different sub-FSMs is handled by adding reset
states, one in each sub-FSM, to the local states and an
additional signal interface for activating and deactivating
different sub-FSMs. Assume a crossing transition from
sub-FSM M1 to sub-FSM M2, when exiting M1 it turns to
its reset state and causes the activation of M2 that goes

from its reset state to the correct destination state of the
crossing transition. M1 will reside in its reset state and shut
itself down through gating the clock and input signals.

Power reductions can be achieved through clock gating
and disabling the primary inputs to the sub-FSMs not
active.

Suppose the original, monolithic machine is partitioned
into n sub-FSMs with the state subsets S1, S2, …, Sn
respectively, the total number of bits for the local state will
be:

in the case minimum encoding is used. It will always be
more bits than what is required in the monolithic imple-
mentation. The disadvantage here is the area overhead.
The additional flip-flops often constitute a large portion of
a state machine. This approach has for example been used
in fully synchronous partitioned FSM by Benini et al. [2,
3]. In the events of crossing transitions between sub-FSMs
there are actually two state transitions taking place (from
the source state to the reset state in M1 and from the reset
state to the destination state in M2). This makes crossing
transitions more power consuming than local transitions.
The work by Oelmann et al. [10] introduces a mechanism
that makes the crossing transition asynchronously and
thereby removes the double-clocking requirement, which
leads to lower power consumption. This approach leads
however to large area overhead mainly due to complex
asynchronous logic and large overhead in the output logic.

2.2. FSM decomposition with shared state 
memory

To overcome the problem of the large area overhead,
the local state memory is shared by all the sub-FSMs [7] as
depicted in Figure 1b). Considering the previously
described approach, it can be realized that only the state
memory in the active sub-FSM is of importance when
computing the next state and the outputs, the rest of the
state memory is in that sense of no importance. By divid-
ing the states into two parts, global states and local states,
the bits for the local states can be shared by all sub-FSMs.
The global states decide which one of the sub-FSMs is
active. In this way identical state codes can be used for
states residing in different sub-FSMs and being distin-
guished by the global state. 

A monolithic FSM is partitioned into n partitions with
state subsets S1, S2, …, Sn respectively. The global state
needs  bits to distinguish between n sub-FSMs
and the local state needs 
bits to represent the sub-FSM with the largest number of
states. The total number of bits in the state memory will be
lower compared to the separate state memory approach.
However, from the power consumption point of view, the
disadvantage is that the extra flip-flops for the global state
memory and the identical number of flip-flops required for
each current active sub-FSM. The increased capacitive

Figure 1. Structural decomposition of FSMs
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load on the clock signal will be the major reason for
increased power dissipation.

In the design model for partitioned FSMs introduced in
this paper, a shared state memory approach is used where
the global state memory is asynchronous. The basic idea of
having asynchronous global state memory comes from the
fact that the crossing transitions, which lead to changes in
the global state, are of low probability and are therefore
idle most of the time. By not having the global state con-
tinuously clocked, power reduction is achieved. The local
state memory is kept synchronous and is conditionally
clocked based on the number of bits required for the sub-
FSM currently active. 

3.  FSM decomposition model 

The main objective of this work is to propose a new
FSM decomposition model based on mixed synchronous/
asynchronous state memory to achieve low power con-
sumption and low circuit overhead. At the same time, the
input/output behaviour of the decomposed FSM is identi-
cal to the original fully synchronous one. 

3.1.  Design model overview 

In our model, the partitioned sub-FSMs share the same
synchronous local state memory while asynchronous glo-
bal state memory controls which one of the sub-FSMs
should be active. In order to handle crossing transitions,
the STG is transformed to support an interaction scheme
for asynchronously activating and deactivating the sub-
FSMs.

After decomposition, the original state set is partitioned
into several subsets. State transitions having the source and
destination states belonging to the same state subset will be
copied without transformation. For every crossing transi-
tion, an extra g state is introduced.

A crossing transition is completed by the following
sequence of events: 
1.  A synchronous state transition from the source state of 

the crossing transition to the g state, which has the 
same index as the original destination state.

2.  An asynchronous state transition from the g state to the 
original destination state, both of which have the same 
index.
The first event is called synchronous because the local

state memory is updated to the g state at the active edge of
the clock signal. The second event is called asynchronous
because it takes place in the global state memory upon
detection of transitions in the g states. The global state is
then used to deactivate the currently active sub-FSM, acti-
vate the sub-FSM in which the destination state of the
crossing transition is. Thanks to the asynchronous global
state transition the entire crossing transition is completed
within one clock cycle.

Consider the STG in Figure 2 and assume a partition of

M1 and M2, with state subsets S1= {s1,s4,s6} in M1 and
S2={s2,s3,s5,s7} in M2.

 .     

Figure 3 shows the transformed STG after decomposi-
tion (Input/output is ignored here for clarity). After intro-
ducing g states, two new state subsets are formed as U1=
{s1,s4,s6,g2} in M1, U2={s2,s3,s5,s7,g1,g6} in M2.

Take the crossing transition  as an example.
After g2 is introduced in M1, the first event is the transition

, inside M1. Then at the second event, the detec-
tion of g2 makes the asynchronous state memory update its
state from r1 to r2 (labelled as r1-,r2+ on edge ).
The global states r1, r2 indicates the active sub-FSMs M1,
M2 respectively. After the completion of the asynchronous
transition, M1 is deactivated and M2 is activated.

The asynchronous transition  will not influence
the local state memory which only can be triggered by
clock signal; therefore, the source state g2 and the destina-
tion state s2 will have the same state code, whereas their
global states are different. A group of states with identical
local state codes and different global states is called a state
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Figure 2. FSM example dk27
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bundle in this paper. Specially, the state bundle including g
state is called a g state bundle. In Figure 3, there are three
g state bundles (g1,s1),(g2,s2),(g6,s6) indicated with circles
shaded gray.

3.2. Definitions

To study state transitions separately, a state machine is
defined as a triplet: , where S is the set of
states, I is the set of binary inputs, :  is the
transition function. 

Let there be a partition on the set S:
where π is defined as a collection of n

subsets, called blocks also, such that 

and  for  where . 
The monolithic FSM associated with S is then parti-

tioned into sub-FSMs M1, M2, ..., Mn. 
In state transitions, to reflect the property of states

entering or exiting a certain partition block , let us
define   

Both  and  are set of states outside block Si,
the former has state transitions to Si; the latter has state
transitions originating from Si.

Inside Si, let us define:

Both  and  are state subsets inside block Si,
the former has state transitions originating from another
partition block; the latter has state transitions to another
partition block.

These four state sets defined above are depicted in Fig-
ure 4. 

They will be denoted as Vi, Ti, Qi and Wi in short in the
rest of this paper.

3.3. Network transformation

According to the definition in section 3.2, the STG
transformation is made in the following steps:

3.3.1   Introduce g states

For a certain block Si, Gi is a collection of g states,
which are introduced based on the destination states of
crossing transitions exiting Si.

The state subset associated with sub-FSM Mi is then
modified from Si to Ui, where

In the transformed network, let us define

 as the collection of all g states and

 as the modified collection of all states. The

elements in U can be generally designated as uk, where k is
a subscript variable.

3.3.2   Transition function transformation

The original transition function  is transformed into
and , representing the state transition inside the local

state memory and global state memory, separately.

1.   Form the local transition function .
Let us define as

Transitions from a certain set Wi to Ti are replaced with
transitions from Wi to the additional introduced set Gi. 

2.  Form the global transition function .
The global state set is defined as 
There are as many states in R as the number of sub-

FSMs in the partitioned FSM. The global state identical to
ri  indicates sub-FSM Mi as the active sub-FSM.

Let us define  as 

   Where ri-,rm+ representing the asynchronous state transi-
tion. Since , we assume it represents the g state gk.
A crossing transition is thus implied and its destination
state is sk. Thereby, ri-,rm+ indicates sub-FSM Mi is deacti-
vated and Mm satisfying  is activated.    
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3.4. State bundling 

In section 3.1, we proposed the g state bundle and state
bundle concept through an example. The reasons for state
bundling are: 1) It enables states to share the same local
state code. 2) It enables an efficient asynchronous hand-
over mechanism. 3) The g state bundle enables an efficient
clock gating implementation. 

After the network transformation, a bundled state table
is built. Every column of the table represents a state bun-
dle. A state bundle is a set of states with same local state
code but different global state code. Every row of the table
represents the states in a sub-FSM which have the same
global state code. The number of rows is the same as the
number of sub-FSMs.

It is known that the g state in G and its corresponding
state in S with the same index must be put into the same g
state bundle, so we build the table beginning with g state
bundles.

To be specific, let us examine the example in Figure 3
again. Its bundled state table is built with two rows, repre-
senting M1 and M2, and max(|U1|,|U2|)=6 columns, repre-
senting the larger number of states in a single sub-FSM (g
state is also included). Firstly, three g state bundles are put
into the table cells shaded gray.

Table 1. Bundled state table 

 
Other states in each sub-FSM are then put into the table

ordinally from the leftmost empty cell. We finally get six
bundles and every sub-FSM has the same number of bun-
dles as the number of states inside it. After building the
bundled state table, the state transition inside a sub-FSM
can be viewed upon as the state bundle transition.

Let us observe the crossing transition from s6 to s2
again. From Table 1, this transition can be explained in the
following sequence: 1) local state transition from state
bundle b2 to b3 inside M1. 2) global state transition from
M1 to M2, when local state memory still resides in b3.

3.5. State encoding

In the global state memory, one hot encoding is used for
state encoding. Every global state ri is encoded with only
one bit to be one and all other bits to be zero. The rest of
this section explains how to encode the states in the local
state memory and the influence of the state assignment to
the final gated clock implementation. 

State encoding in the local state memory has the same
meaning as state bundle encoding. The requirement on the
state bundle encoding is that minimum number of bits in

the state code are changeable for a certain sub-FSM. This
will enable efficient clock gating and minimize the size of
the combinational logic and often the switching activity of
this logic. Binary encoding, which satisfies the require-
ment, will be used in the rest of the paper. It gives the
binary code of zero to the leftmost column of the bundled
state table. Codes are then increased by one for the col-
umns from left to right.

As mentioned in section 3.4, the number of local state
bits is decided by the sub-FSM with the largest number of
state bundles, that is, .

Due to the property of binary encoding, for state transi-
tions inside a sub-FSM Mi, only  bits can be
changed. These bits are called the changeable bit field of
Mi. Other bits which are always zero can be called don’t
care bits of Mi. Thereby, when Mi is active, only the
changeable bit field needs to be triggered by the clock sig-
nal and taken as inputs to the combinational logic of Mi.
One thing that needs to be pointed out is each changeable
bit field related with a certain sub-FSM is decided by the
global state; therefore, it only changes after the global state
asynchronous transition, that is, the next clock cycle after
the crossing transition. The problem left is how we can get
the correct code in local state memory when there is a
crossing transition between two sub-FSMs with different
changeable bit fields. This problem is solved by the intro-
duction of g state bundles which give extra restrictions to
the state encoding. The g state which is in the same sub-
FSM as the source state of the crossing transition, working
as a transition state, makes the source and destination state
of a crossing transition have their local state codes within
the same changeable bit field of the current active sub-
FSM. Accordingly, the current sub-FSM’s don’t care bits
which keep zero after the completion of the crossing tran-
sition will not influence the correct code of the crossing
transition destination state.

To be specific, we examine the example in Figure 3
again and binary encoding is assigned in the bundled state
table.

From Table 2, we can see the number of local state bits
is three. In M1, only bit0 and bit1 are changeable and
belong to the changeable bit field. The bit2 which is
always zero is regarded as don’t care bit of M1. In M2, all
three state bits are in its changeable bit field.

Table 2. State encoding for bundled state table

   
Suppose there is a crossing transition from s5 in M2 to

s1 in M1. After the synchronous transition from b5 to b1,
the local state memory is changed to “000”. Bit2 becomes
zero and will be disabled in the next clock cycle after the

 B b1 b2 b3 b4 b5 b6

M1 s1 s6 g2 s4

M2 g1 g6 s2 s3 s5 s7

 B
b1
000

b2
001

b3
010

b4
011

b5
100

b6
101

M1 s1 s6 g2 s4 2
M2 g1 g6 s2 s3 s5 s7 3

max U1 … Un2
log, ,
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asynchronous transition from M2 to M1. If there is a cross-
ing transition from s6 in M1 to s2 in M2 reversely, after the
synchronous transition from b2 to b3, the local state mem-
ory will be changed to “010”. The g state bundle b3 makes
the highest bit of s2 zero only, which is restricted by g2.
Without this encoding restriction, a crossing transition
from M1 to M2 may require the local code to change from
“001” to “110”, for example, then the disabled bit2 is still
zero and the result will be “010” instead. In other words, g
state bundles ensure a correct state code in the local state
memory after the completion of the crossing transition.

4. Implementation structure

In this section we first propose a general structure for
our decomposed FSM model. Then we give a detailed
description of the implementation. For clarity we limit our-
selves to describing the two-way partitioned FSM.

4.1. N-way partitioning structure

Suppose the monolithic machine has I as input, O as
output and is partitioned into sub-FSMs M1, M2, ..., Mn.
The original state subsets S1, S2, ..., Sn, combining the
introduced g states, form the new state subsets U1, U2, ...,
Un for M1, M2, ..., Mn, respectively. All sub-FSMs share
the same local state memory but have their own combina-
tional logic. Our decomposed FSM structural model is
shown in Figure 5.

The G state bundle Detection Logic (referred to as
GDL) decodes the state bits in the Local State Memory
(referred to as LSM). If a g state bundle is detected, a sig-
nal is sent to the Global State Memory (referred to as
GSM).   

GSM decides the current active sub-FSM. It is imple-
mented as an asynchronous finite state machine. A state
transition in the GSM only takes place at the event of a
crossing transition, that is, when a g state has been
detected. In a “well-partitioned” FSM, where the probabil-
ity of a crossing transition is low, the GSM will be idle
most of the time and will therefore dissipate no dynamic
power. The state information in the GSM is directly used
as control signals to both the LSM and the combinational
part (implementing the next state and primary output func-
tion) of the sub-FSMs (labeled M1 …, M n in Figure 5).

As pointed out in section 3.5, the number of local state
bits to the combinational part of Mi is . For an
active Mi, only the changeable bit field of the LSM is
clocked when the other bits are disabled by clock gating.
The global state controls the clock gating.

At any given time, except for the events of crossing
transitions, only one sub-FSM is active. The active sub-
FSM is responsible for determining the primary output and
the next local state. When inactive, all its inputs are disa-
bled by AND gates and no dynamic power will be dissi-
pated. All outputs of an inactive sub-FSM are set to zero.
By using OR gates, the correct primary outputs and next

state outputs can be obtained by collecting corresponding
outputs from all sub-FSMs. 

It is known that the number of state bits into the combi-
national logic of a sub-FSM is important to its implemen-
tation size and is also related to the power dissipation. This
partitioning of a FSM results in a less number of state bits
needed for sub-FSMs. Reduction in both area and power
can thus be achieved. Large power reductions is obtained
when a good partitioning is found where a small sub-FSM
active most of the time. 

4.2. Two-way partitioning implementation

For the sake of clarity, we limit ourselves to present the
detailed implementation architecture for two-way parti-
tioning, but it can easily be extended to FSMs with more
partitions. In addition, according to our experiments, two-
way partitioning can result in large power savings.

To be specific, we examine the example in Figure 2
again. The original STG is transformed in Figure 3 and
bundled state table is set up in Table 1. Local state codes
are given in Table 2. The global state set is defined as
R={r1,r2} and the state codes of r1 or r2 are indicated as
(n1,n0), where (n1,n0)=01 represents that sub-FSM M1 is
active, (n1,n0)=10 represents that sub-FSM M2 is active.
By one-hot encoding of the global state, it is possible to
decode the active sub-FSM directly from the state bits.

Figure 6 shows the block diagram for the overall reali-
zation. The G state bundle Detection Logic (GDL) detects
the local states. The g state bundle b1, b2, and b3 (in Table
1) corresponds to the output signal a (a0-a2), which are
sent to the Global State Memory (GSM).

The clock gating logic for glitch-free operation is com-

Ui2
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 Figure 5. Structural model based on mixed
synchronous/asynchronous state memory 
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posed of a NAND gate and an inverter here. Three bits are
needed for the local state since M2 has six states, but only
two bits are needed for M1. The bundled state encoding
restriction results in that the lower two bits FF1, FF0 in the
Local State Memory (LSM) are always active and are
therefore directly controlled by the global clock. State bit
FF2 is not used in M1 and is therefore conditionally
clocked. The global state bit n1 controls the clock gating of
FF2. The highest bit FF2 is always zero when M1 is active,
in which case it is disabled. When M2 is active the global
state bit n1 equals one and enable the clock signal of FF2. 

.

Besides clock gating, disabling of the inputs to the com-
binational logic is used to reduce the power dissipation. In
our example, the input disabling logic is implemented by
three AND gates in front of M1 and four AND gates in
front of M2. Depending on the global bits, these AND
gates can block the state bits and primary input signals
from propagating through M1 or M2.

Both the primary outputs and the next state values are
computed by both sub-FSMs but separated in time. The
signals from M1 and M2 have to be merged. There are four
OR gates. Two of them are used to decide the correct pri-
mary output; the other two are used for FF0 and FF1. Note
that FF2 is don’t care bit to the combinational part of M1
and it is only updated by the next state signal from the
combinational part of M2.

For two-way partitioning, it is shown by Figure 7 that
GSM is composed of two asynchronous memory elements
AS0 and AS1 with output n1, n0 respectively. AS0 is reset
by AS1 and set by the signal which is a collection of g
state in sub-FSM M2 (see g1 and g6 in Table 1). AS1 is
reset by AS0 and set by a collection of g state in sub-FSM
M1 (see g2 in Table 1). 

Suppose there is a crossing transition from s6 in M1 to
s2 in M2. At the beginning, global state bits (n1,n0)=01. In
the first step, the local state memory is updated by the g
state bundle b3. In the second step, after detecting b3, GDL
will set the output a2 to be one and send this signal to
GSM. In GSM, together with its own feedback signal
n0=1, g2 is detected, which set AS1 immediately. AS1 will
then reset AS0. Now (n1,n0)=10 and the crossing transi-
tion from M1 to M2 is completed. The completion of g2
signal can be depicted by the signal sequence: g2+, n1+,

n0-, g2-, where “+” represents a monotonical change from
0 to 1, “-” represents a monotonical change from 1 to 0. 

Through this example, the whole procedure for two-
way FSM decomposition is explained, also the potential is
shown that a good partition with unbalanced size of sub-
FSMs can efficiently reduce the area size in the combina-
tional logic. The structure inside asynchronous global state
memory (in Figure 7) is similar for all two-way partition-
ing and used in the experiments of the next section.

5. Experimental results

By two-way decomposition, our solution of mixed syn-
chronous/asynchronous state memory was applied on cir-
cuits from the standard benchmark set. The number of
states in the benchmarks range from 19 to 121 states.

For state partitioning, we use Kernighan-Lin algorithm
to find a small cluster of states composing the first sub-
FSM and all other states composing the second one [9].
The cost function is based on transition probability and the
smaller sub-FSM should has high probability of state tran-
sitions inside itself, and low probability of crossing transi-
tions to the other sub-FSM.

The power dissipation was obtained from gate level
power estimation by Power Compiler (Synopsys), assum-
ing a supply voltage of 1.8V, a clock frequency of 20MHz.
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Figure 6. Circuit of a decomposed FSM(dk27)
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The area estimation was based on the cell area and the tar-
get technology is a 0.25µm CMOS standard cell technol-
ogy.

The primary input probability was set to 0.5 and its
switching activity was set to 0.5 also. The stationary state
probabilities are computed based on random-walk simula-
tions.

In Table 3, characteristics of the original finite state
machine are shown. The circuit name, input, output and
number of states are given in the first four columns. The
area and power statistics is given in the last two columns.

Table 3.  Finite state machine statistics

  * power: uW    area: #gate eq

Table 4. Results after decomposition

  * power: uW    area: #gate eq

In Table 4, The column labeled “|S1|/|S2|” shows the
state subsets for respective partition in the decomposed
FSM. The column labeled “|U1/|U2|” shows the modified
state subsets after introducing g states. The following two
columns show the area, power of the decomposed FSM.
The percentage area increase, power reductions of the
decomposed FSMs are shown in the last two columns. An
average power reduction of 46.0% is achieved with an area
increase of 9.5%. For benchmarks such as s1488, power
reduction can be up to 70%.

6.  Conclusions

In this paper we propose a novel design model for parti-
tioned FSMs that is based on mixed synchronous/asyn-
chronous state memory. In spite of the internal

asynchronous operation, the input/output behaviour of the
decomposed FSM is equivalent to the synchronous one.
By applying this model to a number of standard FSM
benchmark circuits using two-way partitioning, we have
demonstrated that large power reductions (up to 70%) can
be achieved with low or no area overhead.

The partitioning and STG transformations are made
automatically in our prototype tool, which takes an STG as
input, generates synthesizable RT-level VHDL code that is
fed to a standard logic synthesis tool. A standard CMOS
cell-library can be used without the need of any special
cells.

In this work we have not paid any special attention to
the optimization of state clustering and state encoding. We
believe that there is room for further power reductions
when these issues are addressed.

We also believe the mixed synchronous/asynchronous
state memory concept deserves further investigation. By
applying it to n-way partitioning, more power reductions
can be expected, especially for large FSMs.
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Circuit #PI #PO #states area power

s1488 8 19     48 924.7 155.9

s820 18 19    25 443.9 71.1

s1494 8 19    48 899.5 136.7

styr 9 10    30 427.9 54.3

keyb 7 2    19 271.2 68.0

s832 18 19    25 466.5 75.9

scf 27 56   121 786.1 76.3

Circuit |S1|/
|S2|

|U1|/
|U2| area power %A %P

s1488 4/44 6/48 821.7 51.4 -11.1% 67.0%

s820 5/20 7/23 505.5 40.2 +13.9% 43.5%

s1494 4/44 6/48 841.0 50.5 -6.5% 63.1%

styr 4/26 6/29 534.8 43.0 +25.0% 20.8%

keyb 4/15 7/16 330.9 39.9 +22.0%  41.3%

s832 3/22 4/24 506.5 39.7 +8.6% 47.7%

scf 6/112 8/114  963.7  46.8 +14.3% 38.7%
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