
Unary-prefixed encoding of lengths of
consecutive zeros in bit vector

S. Xue and B. Oelmann

The unary-prefixed encoding (UPE) algorithm in coding the lengths of

zeros in a bit vector is proposed. While the lengths of consecutive zeros

in a bit vector can be mapped to integer sources with geometrical

distribution (when the bits in the bit vector are independent from each

other), the actual case is more often that the distributions are exponential,

in a more real-world situation, with high peaks and heavier tails (when

the bits in a bit vector are correlated). For the geometric distribution, the

UPE code set can be proven to be optimal. For the integer sources with

high peaks and heavier tails, the UPE almost always provides better

compression compared to the existing suboptimal codes.

Introduction: Golomb [1] observed that the lengths of consecutive

zeros of an independent and identically distributed (i.i.d.) source is

geometrically distributed and can therefore be described using the

integer source with probability density function (pdf):

py
k ¼ ð1� yÞyk ; 0 < y < 1 ð1Þ

Such an integer source is of an infinite alphabet and cannot be coded

using the Huffman coding algorithm. Therefore optimal codes are

difficult to construct. For the pdf in (1), Golomb studied the case when

y is a power of 1=2 and introduced a class of optimal codes that is called

Golomb Rice (GR) code. Gallager and Van Voorhis [2] generalised

Golomb’s result by allowing to vary in the range 0 < y< 1 and proved that

the optimal code for the pdf in (1) can be obtained as follows.

Let l be the integer satisfying:

yl
þ yðlþ1Þ

� 1 � yðl�1Þ
þ yl

ð2Þ

and represent each non-negative integer k as k¼ ljþ r where j¼bk=jc,
and r¼ [k] mod l. Gallager and Van Voorhis encoded j by a unary code,

and encoded r by a Huffman of length blog2lc, for r < 2blog2 lcþ1
� l, and

length blog2 lcþ 1 otherwise. The resulting code is a concatenation of

the unary prefix for j and the Huffman suffix.

In practice, the bits in a bit vector are usually not generated from i.i.d.’s.

Therefore the geometric integer source is empirically unsatisfactory.

Exponential integer sources with heavier tails are more often found to be

suitable. Teuhola [3] introduced a class of codes under the name ‘exp-

Golomb’ (EG) codes. The EG codes are widely used in practice, which,

although suboptimal, have been found to be efficient for any particular

exponential distribution and have found applications in subband image

codings. With the parameter s, every codeword group with 2sþl�1 (l¼ 1, 2,

3, . . .) codewordsare encodedby assigninga commonunary prefix for land

fixed-length (sþ l� 1)-bit binary suffixes for each code within the group.

Kiely and Klimesh [4] designed a class of pdf’s that are well matched

to the EG codes and they also showed that these pdf’s are good

probability models for empirically observed integer sources. These

integer sources can be expressed using the pdf:

pa
k ¼

1

c0ðaÞ
ðaþ kÞ�2

ð3Þ

where a> 0, c0 is the first derivative of the digamma function

c(y)¼G0(y)=(G(y)), and G is the Euler gamma function.

The UPE we propose in this Letter focuses on the coding of the

integer sources with the distributions described in (3) since it provides a

good practical model. Actually it can be proven that, for geometric

distributions in (1), the codes constructed by the UPE are equivalent to

those described in [2] and are therefore optimal. For the probability

distribution in (3), the code sets resulting from the UPE are shown to

have better compression than the existing EG codes.

UPE algorithm: The basic idea of the UPE is to segment an infinite

integer source with probability distribution {pk}k¼0
1 into subsets

{p1}l¼1
1 , with Pl¼ {psl�1

, psl�1
þ 1, psl�1

þ 2, . . . , psl
�1} and

Sl¼Si�sl�1

sl
�1 pi, where the summations of the subsets {Sl}l¼1

1 are made

to be as close to {l=2l}l¼1
1 as possible. For the Nl¼ sl� sl�1 probability

values within each subset Pl, we assume them to be equal and then

perform Huffman coding to these Nl equal probability values. Binary

codes of length blog2Nlc or blog2Nlcþ 1 will then be assigned to the

probability values in the subset Pl. For each codeword within Pl, the

UPE code is then expressed as a concatenation of a unary prefix for l and

the binary suffix of length blog2Nlc or blog2Nlcþ 1.

The UPE algorithm can be fully described by the following steps:

1 Let s0¼ 0.

2 For l¼ 0 to 1, let:

S�l ¼
P1
i¼sl

pi ð4Þ

Performing normalisation to the probability set {psl
, psl
þ 1, psl

þ 2, . . . ,

pslþj
, . . . }, we have:

�Pl ¼
psl

S�l

;
pslþ1

S�l

;
pslþ2

S�l

; . . . ;
pslþj

S�l

; . . .

� �
ð5Þ

3 Find slþ1 such that:

1

2
�

Pslþ1�1

i¼s1

pi

S�1

�����
����� ð6Þ

is minimised.

4 Let:

Plþ1 ¼ fpsl
; pslþ1

; . . . ; pslþ1�1g ð6Þ

Slþ1 ¼ ps1
þ ps1þ1

þ � � � þ ps1þ1�1 ð7Þ

For probability set Plþ1, there are slþ1� sl probability values. We assume

these Nlþ1¼ slþ1� sl probabilities to be equal to each other and then

perform Huffman coding. The resulting codes will be binary codes either

of length blog2Nlþ1c or blog2Nlþ1cþ 1. We assign a common unary

prefix 111. . . 10 (with l ones in a row) or equivalently 000. . . 01 (with l

zeros) to each of these binary codes and thus we get the UPE codes.

5 Let l¼ lþ 1 and repeat from step 2.

Let us look at a simple example. Suppose we have an infinite probability

distribution: {pk¼ 1=3 � 2bk=3cþ1}k¼0
1 , which looks like: {1=6, 1=6, 1=6,

1=12, 1=12, 1=12, 1=24, 1=24, 1=24, . . . }. By performing the UPE

algorithm, we will get {Pl¼ {1=3 � 2l, 1=3 � 2l, 1=3 � 2l}}l¼1
1 , Nl¼ 3 and

{Sl¼ 1=2l}l¼1
1 . The three probability values in each subset Pl are already

equal to each other, so the Huffman codes would be {1,00,01} or

{0,11,10}. The UPE is then a concatenation of the common unary

prefix 111. . . 10 (with l ones in a row) or equivalently 000. . . 01 (with

l zeros) and one of the Huffman codes accordingly.

Performance of UPE codes: For the UPE codes, the codes within

each probability subset Pl are assigned a common l-bit unary prefix.

The EG codes also have a common l-bit unary prefixes for every

2sþl�1 codewords, with 2sþl�1 probability values associated with

them. Within the subset of codewords sharing the same prefix, it

can be shown that, in the EG codes, as well as in the UPE codes,

Huffman coding is applied to generate the suffixes by assuming the

2sþl�1 probability values (for EG) or the probability values in Pl (for

UPE) to be equal. It can be proven that the UPE algorithm is able to

segment the probability sequence into subsets whose summations are

optimally coded using unary codes; therefore the prefixes of the UPE

codes are optimal. As the coding strategy of the EG and the UPE are

the same for the suffixes, the UPE codes in general perform better

than the EG codes in terms of compression.

Fig. 1 Comparison of redundancies of EG and UPE codes

ELECTRONICS LETTERS 17th March 2005 Vol. 41 No. 6

Fig. 1 shows a comparison of the redundancies of the UPE codes and

the EG codes with different s in coding the pdf’s in (3) under a wide

range of different a values. The group of pdf’s in (3), as mentioned

earlier, has been shown to be good models for the distributions of

lengths of zeros in many practical cases such as in coding the quantised

subband of wavelet-transformed images [4]. From the Figure, it is

obvious that the UPE codes are better in compression compared to the

EG codes. Moreover, since the UPE algorithm works adaptively

according to different pdf’s with different parameters, we do not need

to make selections of s to get a better performance, which is the case for

the EG codes.

Conclusions: A UPE algorithm in coding the lengths of zeros in a bit

vector is proposed. Compared to the existing codes, the UPE algo-

rithm works adaptively according to the source, and provides good

matches to the source pdf’s. The UPE codes achieve optimality for

geometric distributions and for more empirical sources, they are able

to outperform the EG codes, which are widely used in practice, in

terms of coding redundancy.

Acknowledgment: The authors would like to thank N. Gu, at the

department of Mathematics, Purdue University, for discussions and

proof reading.

IEE 2005 22 October 2004

Electronics Letters online no: 20057325

doi: 10.1049/el:20057325

S. Xue and B. Oelmann (Department of Information Technology and

Media, Mid Sweden University, Sundsvall SE-851 70, Sweden)

E-mail: xue.shang@mh.se

References

1 Golomb, S.W.: ‘Run-length encodings’, IEEE Trans. Inf. Theory, 1966,
7, (12), pp. 399–401

2 Gallager, R.G., and Van Voorhis, D.C.: ‘Optimal source codes for
geometrically distributed integer alphabets’, IEEE Trans. Inf. Theory,
1975, 3, (21), pp. 228–230

3 Teuhola, J.: ‘A compression method for clustered bit-vectors’, Inf.
Process. Lett., 1978, 10, (7), pp. 308–311

4 Kiely, A., and Klimesh, M.: ‘Generalized Golomb codes and adaptive
coding of wavelet-transformed image sub-bands’, (IPN PR 42-154)
April–June 2003, pp. 1–14

ELECTRONICS LETTERS 17th March 2005 Vol. 41 No. 6

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

