
C. Cao and B. Oelmann Page 1 3/16/2005

Manuscript for IEE Computers & Digital Techniques

Low-Power State-Encoding for Partitioned
FSMs with Mixed Synchronous/Asynchronous

State Memory

Cao Cao and Bengt Oelmann

Abstract: Partitioned Finite-State Machine (FSM) architectures in general enable low-

power implementations and it has been shown that for these architectures, state

memory based on both synchronous and asynchronous storage elements gives

lower power consumption compared to the fully synchronous ones. In this paper we

present state-encoding techniques for a partitioned FSM architecture based on mixed

synchronous/asynchronous state memory. The state memory here is composed of a

synchronous local state memory and a global asynchronous state memory. The local

state memory is shared by all sub-FSMs and uses synchronous storage elements.

The global state memory is operating asynchronously and is responsible for handling

the interaction between the different sub-FSMs. Even though the partitioned FSM

contains asynchronous mechanisms, its input/output behavior is cycle by cycle

equivalent to the original monolithic synchronous FSM. In this paper we study state

encoding for partitioned FSMs that have been partitioned according to their state-

transition probabilities. For the local state assignment we present a, what we call,

state-bundling procedure to enable states residing in different sub-FSMs to share the

same state codes. Two state-encoding techniques, one based on binary encoding

and one optimized for low-power consumption, are compared.

C. Cao and B. Oelmann Page 2 3/16/2005

Manuscript for IEE Computers & Digital Techniques

1 Introduction

Dynamic Power Management (DPM) is a commonly used approach for low-power

optimization on the Register-Transfer (RT) and architectural level [1]. The

objective for a DPM scheme is to shut-down the parts of the design that are

temporarily idle. By shutting down a part it is meant that the power dissipation is

reduced for that part. For reduction of dynamic power dissipation, clock-gating

and input-disabling is used. For reduction of leakage currents, such as

subthrehold and diod leakage, various approaches have been proposed in the

literature, e.g. [2]. Common for all these techniques is that mechanisms for

detecting idle conditions of the different units are added to the design. Also

means for shutting down the units are added. Implementation of these will result

in additional circuits that will add to the circuit area and power dissipation. Before

introducing shut-down circuits in the design, careful analysis must be made to

achieve a solution with as low power consumption as possible. The objective for a

power optimization procedure is to find the most beneficial idle conditions, taking

the overhead into account. Complex designs, composed of several functional

units, such as microprocessors that are composed of large functional units like

floating-point unit and cache memory can be temporarily shut-down when not

used. For a given architecture, this kind of coarse-grained DPM is possible to

implement manually by the designer thanks to the small number of places shut-

down circuits are introduced and to the fact that the different units are functionally

well separated and therefore easy to identify. When applying DPM to a single

functional unit, the unit has to be partitioned into two or more sub-units where

C. Cao and B. Oelmann Page 3 3/16/2005

Manuscript for IEE Computers & Digital Techniques

each of them can be individually shut-down. The unit is decomposed in such a

way that the lowest possible power consumption is achieved. This type of fine-

grained DPM requires an automated optimization procedure since the optimum

decomposition is not necessarily made according to the functionality it is therefore

not obvious to know how to make the decomposition. The most commonly used

approaches for power optimization procedures, takes a behavioral description of

the design and seeks the optimum, or near-optimum solution, for a pre-defined

architecture. For data path units (combinational logic) the precomputation-based

logic has been proposed [3]. The idea is to pre-compute a part of the function one

clock cycle ahead in order to gate the clock signal to the register holding the

inputs to the combinational logic and thereby reducing the average switching in

the logic. Different architectures have been proposed that block either all inputs or

a subset of the inputs [4]. This approach can also be used for synchronous FSMs.

For low-power FSM design Benini et al. presented an approach called

computational kernels [5]. From the State Transition Graph (STG) of the FSM, a

sub-FSM is extracted that implements the function of the FSM for a subset of its

states whose steady-state occupation probability is high. When the FSM is in one

of these states a smaller and less power-consuming circuit is used (the kernel)

and otherwise the original function is used. Chow et al [6] propose an

implementation architecture that resembles of the one used for computational

kernels. They propose a decomposition model for multiple coupled sub-FSMs. A

shared state memory stores two sets of states, the original states and additional

states that are used for determining which one of the different sub-FSMs that is

active. For state-encoding they present a method that consider the crossing

C. Cao and B. Oelmann Page 4 3/16/2005

Manuscript for IEE Computers & Digital Techniques

transitions (transitions where the source and destination state do not reside in the

same sub-FSM) is used. In contrast to the shared state memory architecture, an

architecture with separate state memory, one for each sub-FSM, has been used

by for example [7,8]. For state encoding and other optimizations, each sub-FSM

can be separately optimized using standard methods. The disadvantage is that

the circuit area for the state memory becomes larger compared to using shared

state memory.

The approaches to low-power FSM design described above, all assume fully

synchronous implementations. For both architectures, based on shared and

separate state memory, fully synchronous implementations have disadvantages.

For the cycle when a crossing transition occurs, the two sub-FSMs involved, both

have to be clocked which is very power consuming. For partitioned FSMs with

separate state memory an asynchronous hand-over mechanism has been

proposed that removes the requirement of clocking two sub-FSMs at a crossing

transition and thereby the power-overhead introduced for managing the

interaction between the sub-FSMs can be reduced. In [9] it has been shown that

asynchronous control for sub-FSM interaction is 5.8 times more power efficient

when idle compared to synchronous control.

In [8] it was demonstrated that automated synthesis for low-power FSMs based

on a mixed synchronous/asynchronous architecture with separate state memory

achieved power reductions of 45% in average for a set of FSM benchmark

circuits. For a recently presented decomposition model [10] for FSMs with shared

C. Cao and B. Oelmann Page 5 3/16/2005

Manuscript for IEE Computers & Digital Techniques

state memory power, reductions of 56% in average. Here, state encoding

optimizations for low power was not considered.

In this paper, a novel low-power state encoding algorithm for coupled FSMs is

proposed and applied to partitioned FSMs based on mixed

synchronous/asynchronous state memory. The main contributions of this paper

are the following:

• A state assignment procedure: State bundling enables crossing transitions in

one single clock cycle (or in other words, only one sub-FSM has to be

clocked).

• Power-optimized state encoding: A computational efficient state-encoding

algorithm for coupled FSMs.

• Demonstration of efficiency: The algorithms presented have been

implemented in a tool for low-power synthesis of partitioned FSMs and it is

demonstrated that the state-encoding algorithm leads to power reductions of

6% in average for low-power partitioned FSMs originating from the MCNC

benchmark circuits. The total average power reduction that is the result from

both partitioning and state-encoding is 59%.

The outline for the rest of this paper is as follows: The next chapter introduces the

partitioned FSM implementation architecture with a focus on the organization and

operation of the mixed synchronous/asynchronous state memory. In chapter 3 the

basic binary state encoding procedure and our procedure that we propose for

power optimized state encoding are presented. In chapter 4 some experimental

C. Cao and B. Oelmann Page 6 3/16/2005

Manuscript for IEE Computers & Digital Techniques

results from automatic synthesis of a set of FSM benchmark circuits show the

possibility of reducing the power consumption in a partitioned FSM by using

power-optimized state encoding after partitioning. In chapter 5 we conclude the

paper by a discussion regarding the limitations of the two step approach with a

partitioning step followed by a state encoding step.

2 Partitioned FSM with Mixed Synchronous/Asynchronous State Memory

2.1 Implementation Architecture

The straight-forward way to implement a partitioned FSM is to have separate state

memory for each of the sub-FSMs, see Figure 1a. From state encoding point of

view, state-encoding is made separately for each of them and well-established

optimization algorithms can therefore be used. Since only one of the sub-FSM is

active at a time, the state memory can be shared by all the sub-FSMs. The main

advantage with shared state memory is the reduced area for the state memory,

see Figure 1b. There is, however, a need for a global state memory determining

which one of the sub-FSMs is for the moment active. For power-optimized state

encoding, state-transition probabilities of the crossing transistions must be

considered which is not the case for the separate state memory implementation.

For a synchronous solution the global state memory needs to be clocked by the

system clock signal that cannot be gated and will therefore increase the power

consumption substantially, especially for a partitioned FSM composed of large

number sub-FSMs. The architecture considered in this paper is a mixed

synchronous/asynchronous architecture developed in [10] that has a shared local

C. Cao and B. Oelmann Page 7 3/16/2005

Manuscript for IEE Computers & Digital Techniques

state memory (LSM) with a global asynchronous state memory (GSM). The basic

idea is to have synchronous local state memory in the part always clocked and

asynchronous memory for the global state memory. The partitioned FSM is made

on the basis of the state transition probabilities which results in clustering of states

with high probabilities that will be implemented in the same sub-FSM. The state-

transition probabilities between the sub-FSMs will be of low probability and hence

the state-change probability is low for the global states which make an

asynchronous implementation power efficient [12].

2.2 STG decomposition

In this section the decomposition of the STG of the monolithic FSM for the

architecture described in the previous section is presented. To describe to basic

ideas of the design model for STG decomposition, the example in Figure 2 will

serve as an illustration.

The initial monolithic machine is decomposed into two separate sub-FSMs F1

and F2 as indicated in Figure 2a. We can see that there are two crossing

transitions, one from s2 in F1 and one from s5 in F2. For each crossing transition,

an additional g-state is introduced and the source state of the original crossing

transition will have that as destination state. In Figure 2b the destination states

of the crossing transitions from s2 are changed from s3 and s4 to g3 and g4

respectively. A crossing transition is completed by the following sequence of

events. When the machine enters a g-state this is detected and the global

state, denoted R, of the partitioned FSM will change. The global state is

C. Cao and B. Oelmann Page 8 3/16/2005

Manuscript for IEE Computers & Digital Techniques

pointing out which one of the sub-FSMs that is active. A change in the global

state will deactivate the sub-FSM containing the source state and activate the

sub-FSM containing the destination state. Consider the crossing transition from

s2 to s3 in the example. The transition from s2 will enter g3. This will cause the

global state R making a transition from r1 to r2. The global state will after

completion of the crossing transition point out F2 as the active sub-FSM and not

F1 as before. In a synchronous FSM the crossing transition, as all transitions,

must be completed within one clock cycle. From the example above it can be

seen that a crossing transition requires two state transitions which will take two

clock cycles to complete in a synchronous machine. To solve this, the transition

from the g-state to the entry state of the destination sub-FSM (e.g. g1 to s1) is

made asynchronously. By that it is meant that the transition is triggered by a

signal transition rather than by the active edge of the clock signal. A control

signal, decoded from the g-state, makes the global state to change. The states

originating from the initial FSM and the additional g-states are stored in a state

memory clocked by the common clock signal. We call this local state memory.

A global, asynchronous, state transition does not permit a local state change

which puts a restriction on the state encoding. The local states must be coded

in such a way that the code for a g-state and its associated entry state must be

identical. From the example in Figure 2b, the following pairs of states, that we

call coupled-states, must have identical codes: (s1,g1), (s3,g3), and (s4,g4). The

states s2 and s5 may share the same state code since they are located in

different sub-FSMs and distinguished be the global state.

C. Cao and B. Oelmann Page 9 3/16/2005

Manuscript for IEE Computers & Digital Techniques

A, what we call, a coupled-state table describes the behaviour of the

decomposed FSM including the sub-FSM interaction. To illustrate the

construction of the coupled-state table the example from Figure 2 is used. Its

coupled-state table is shown in Figure 3. Each row in the table holds all states

for one sub-FSM and each column represents a bundle of states that will have

the same local state code. A sequence of state transition 5321 ssss →→→

will result in the following sequence in the partitioned FSM

53321 ssgss →→→→ where the transition 33 sg → is asynchronous. In

the table, a local state transition is represented by a horizontal change and a

global state transition is represented by a vertical change.

The coupled-states will of course impose restrictions on the state encoding of

the local states because it contains information about how the different sub-

FSMs are related.

3 State Encoding for Local States

After the FSM partitioning, the state encoding is performed in two steps. First the

coupled-state table is build by locating the coupled-states together in bundles.

After that the total number of bits in the local state memory is minimised by the

“coupled-state merging” algorithm which also takes the state-transition

probabilities into account in order to reduce the power. In the second step state-

codes are assigned to each bundle. State encoding is made for one sub-FSM at

a time, starting with the most active sub-FSM.

C. Cao and B. Oelmann Page 10 3/16/2005

Manuscript for IEE Computers & Digital Techniques

3.1 Basic Definitions

The monolithic Mealy-type FSM is defined as a sextuple:),,,,,(0sYXSF λδ=

where S is the set of states, X is the set of binary inputs, Y is the set of binary

outputs, δ is the transition function, λ is the output function and s0 is the initial

state.

Let there be a partition on the set S: },,,{ 21 nSSS K=Π where Π is defined as a

collection of subsets such that SS m
n

m
=∪

=1
 and =∩ ji SS Ø for ji ≠ where

nji ≤≤ ,1 .

The monolithic FSM is decomposed into a set of sub-FSMs where every subset

Π∈iS defines a sub-FSM as:).,,,,,(0
mmmmmmm sYXSF λδ= We call states Sm

internal states of the sub-FSM. Xm is the set of input variables at all transitions

from the states in Sm, and Ym is the set of outputs variables on the sets Sm and

Xm.

We define a set of states, T(Sm), not included in Fm to which there are

transitions from the states of Fm : },,),(|{)(m
k

m
jjhkj

m SsSssXssST ∈∉== δ .

Q(Sm) is defined as the set of states in Fm where there are transitions from

other sub-FSMs as: },,),(|{)(m
k

m
jjhkj

m SsSssXssSQ ∉∈== δ .

For the above defined sets we will use the shorter notations Tm, Qm.

C. Cao and B. Oelmann Page 11 3/16/2005

Manuscript for IEE Computers & Digital Techniques

The set of g-states Gm, that reflects the set of destinations states of the crossing

transitions in Fm is defined as: }|{ m
ii

m TsgG ∈= .

Let the set of local states in the transformed network of Fm to be Um:

mmm GSU ∪= .

3.2 State Bundling

There are two reasons for state-bundling: 1) it enables state in different sub-FSMs

to share state codes and 2) it enables an efficient asynchronous global state

transition. In the state encoding step the state bundles are considered as states.

In this section the criteria and procedures for state bundling will be introduced.

First a basic procedure is introduced which will give good results for most

partitioned FSMs. Then a procedure for merging the coupled-states into the same

bundles is presented. This will for even exceptional cases give improved results.

3.2.1 Basic algorithm

We start with the following example of a partitioned FSM. Let there be a partition

},,,{ 4321 SSSS=Π which results in the following local sets of states:

},,,{ 4321
1 gsssU = , },,,{ 7654

2 gsssU = , },{ 17
3 gsU = , and

},,,,,,{ 5112111098
4 ggsssssU = . The duty time of each partition

mU , or the

probability of the corresponding sub-FSM to be active, is given by the sum of the

static state probability of states inside the partition, that is

m
ii

m SssprobUT ∑ ∈=),()(. In the rest of the paper, it is denoted as Tm.

C. Cao and B. Oelmann Page 12 3/16/2005

Manuscript for IEE Computers & Digital Techniques

State bundling starts from the coupled-states, the states that are the source and

destination states of an asynchronous transition. From previous discussion we

know that these have identical state codes. We construct a table of n rows for an

n-way partitioned FSM where each column represents a bundle of states that

after state encoding will have the same state code. The set of bundles B needed

is defined as },,{ ,21 pbbbB K= , where m
n

m
Qp

1=
∪= . In other words, the number of

bundles needed for the coupled-states are the sum of the entry-states of all sub-

FSMs. Two probabilities are defined that reflects the property of state bundles.

State bundle probability is defined as: ∑ ∈= miim bssprobbprob),()(. Bundle

transition probability is defined as: ∑ ∈∈= kjmijikm bsbsssprobbbprob ,),()(

describes the probability for a state transition between states in the bundles bm

and bk. The states are aligned in columns in such a way that all states coupled to

each other reside in the same column. In Figure 4, showing the state table for our

example, the entries for the coupled-states are shaded grey. We can see that for

example s4 in F2 is in the same column as g4 in F1, i.e. s4 and g4 are coupled-

states. The state bundling procedure first adds the bundles containing coupled-

states and thereafter states not coupled may be freely positioned in any bundle as

long as all states residing in the same sub-FSM have unique state codes. The

pseudo-code for the bundling algorithm is shown in Figure 5.

C. Cao and B. Oelmann Page 13 3/16/2005

Manuscript for IEE Computers & Digital Techniques

The efficiency of this procedure is dependent on the ratio of the number of

coupled-states to the number of free states given by:
mm

n

m

m
n

m

QS

Q
c

\
1

1

=

=

∪

∪
= .

For most partitioned FSMs, partitioned according the state transition probabilities,

have small numbers of crossing transitions and will therefore have small c. For

that reason this basic state bundling procedure works well in most cases.

3.2.2 Merged coupled-state algorithm

Using the basic bundling algorithm for FSM partitions with large c will result in

large local state memory. However, the number of clocked state memory bits for

each sub-FSM will not necessarily be all state bits. The objective of merging

coupled-states is to reduce the total number of state bits. To illustrate the merged

coupled-state algorithm we use the example in Figure 6 that have a 2/5=c .

The initial coupled-state table, before merging the coupled-states, is shown in

Figure 7a, where the five g-states reside in five different bundles. Fixed state

codes for the state bundles are assumed were the bundle index indicate the

binary value of the code (b0 has the code “000”, b1 “001” and so on). The

merging procedure is performed in the following steps.

 1) The objective of the Sort() function is to introduce prioritization among the

sub-FSMs. It sorts the sub-FSMs according to the descending order of their duty

time Tm. Since the sub-FSMs with high duty time generally contribute more to the

final power dissipation, they are given higher priority in the coupled-state merging

C. Cao and B. Oelmann Page 14 3/16/2005

Manuscript for IEE Computers & Digital Techniques

step. The sorted coupled-state table is shown in Figure 7b. After that, the

coupled-state with the highest state bundle probability is moved to the b0 bundle

that will always be assigned the state code “zero” after state encoding. The

objective is to minimize the switching activity in the next-state bit-lines for

crossing transitions. The reason for this is that a deactivated sub-FSM’s next-

state is always encoded to “zero” in order to enable efficient implementation of

merging the next-state variables of the different sub-FSMs [10] by using OR

gates.

2) In order to reduce the number of bits in the local state memory, the algorithm

merges two or more coupled-states into the same bundles when possible. The

algorithm first tries to merge the coupled-states in bundles to the right of the

leftmost bundle (b0) in the sorted coupled-state table. In the cases where only

one of two or more coupled-states can be merged, the one in the bundle with

highest state bundle probability is chosen. After a merging has been completed,

the table is sorted again as described in step 1. When no more coupled-states

can be merged into b0 it is locked. Now the same procedure is done for b1 and

continues until the last column has been reached. In the example given in Figure

7, it is shown that both b2 and b3 can be merged into b0. Because the state

bundle probability of b3 is 0.3 ()()()(Pr 4
43 Tprobsprobbob ==), higher than that of

b2 (2.0)()()()()(Pr 3
2332 ==+≤= Tprobsprobsprobsprobbob), b3 is chosen to be

merged into b0. The updated coupled-state table after merging is shown in Figure

7c), where the total number of state bundles is reduced from 5 to 4.

C. Cao and B. Oelmann Page 15 3/16/2005

Manuscript for IEE Computers & Digital Techniques

3.3 Basic State Encoding Algorithm

The basic state encoding algorithm is a straight-forward technique that does not

consider power optimizations at all. It takes the initial coupled-state table

without merging and put free states (Sm) into the bundles starting from bundle

b0. The whole state bundling algorithm is given in Figure X. Each bundle is

assigned the binary code that corresponds to its index. Binary-encoding makes

sure the number of clocked local state bits in each sub-FSM is minimal.

3.4 Power Optimized State Encoding

Since we consider the state code assigned to the bundles to be fixed, the task of

state encoding optimization is to move states to suitable bundles in order to

reduce the switching activity in the state bit lines.

We first consider coupled-states in the table (Figure 7d). Since every bundle is

given a unique state code and can be viewed upon as a state, the algorithm tries

to reduce the switching activity in the transitions between these bundles. At the

same time, the algorithm tries to keep the sub-FSMs with higher duty time to

minimum-length encoding. The merging algorithm, described in the previous

section, has sorted rows in descending order of the duty period. Therefore,

encoding starts from the top row. For each row, the position of state bundles will

be optimized first and then locked, which will not be changed afterwards. A

greedy algorithm is used to minimize the hamming distance for the bundle

transition probability. The algorithm is shown in Figure X. We illustrate the

procedure through an example. In Figure X, the initial coupled-state bundles

C. Cao and B. Oelmann Page 16 3/16/2005

Manuscript for IEE Computers & Digital Techniques

have been built including b0, b1, b2, b3. As mentioned before, b0 is the state

bundle with highest state bundle probability and its position is locked initially. We

start the state bundle optimization from b1 because it is the only bundle besides

b0 that has a valid state in the top row representing sub-FSM F1. To make

coupled-state bundles in F1 use the minimum length codes, b1 can only be

assigned the code “01” and thereby the coupled-state bundle in F1 only use one

state bit. Since the position of b0 and b1 is locked after the assignment of F1, only

b2 and b3 coupled-state bundle are left. In F4 the number of minimum local state

bits needed for the state bundles is 2 (obtained from minimumCodeLength()

function in Figure 10). Since the codes “00” and “01” already has been assigned

for b2 and b3, the only possible codes are “10” or “11”. We compare the bundle

transition probability of b2 and b3 with already assigned state bundles b0 and b1. If

the transition probability between b3 and b0 is assumed to be the highest, we

assign b3 to the position “10” which has the hamming distance of 1 to b0; b2 is

subsequently assigned the code “11”. Since all state bundles have been

assigned, state encoding for the coupled-state bundles is completet. The result of

the coupled-state encoding optimization is shown in Figure 11a) where the

position of b3 and b2 has been swapped.

 The next step is to encode the free states, i.e. states not coupled to any other

sub-FSM. Since these are internal states in a sub-FSM, each sub-FSM can be

separately optimized in an arbitrarily order. In each sub-FSM, one single free

state is considered at a time. That is the one having the highest state transition

probability to a certain state in this sub-FSM or to a state in another sub-FSM.

C. Cao and B. Oelmann Page 17 3/16/2005

Manuscript for IEE Computers & Digital Techniques

Constrained by minimum-length encoding, the algorithm minimises the hamming

distance for local state transitions with high state transition probabilities. For

example, in sub-FSM F3, s2 is a free state. We first determine the minimum state

code bits for F3 that is 2. (obtained from minimumLengthCode() function in Figure

12). Since s2 only has the state transition to s3, we put s2 in the state bundle of

b1, which has the smallest hamming distance to b2, which is 1, (where state s3 is

in). It can be noticed that s2 also can be put in b3, which has the same hamming

distance from b2. In sub-FSM F5, s6 is a free state. It has the state transitions to

s5 and s0, where the former transition occurs in sub-FSM F5 and the latter

transition is between sub-FSM F5 and F1. Assume that the state transition

probability between s6 and s5 is higher than that between s6 and s0, we put s6 in

the bundle b2 with code “11”, which has only one bit hamming distance from b3

with code “10”. Bundle b1 is not chosen for s6 is because there are two bits

hamming distance between b1 and b3.

The final state table including merging coupled-state and state encoding

procedure is shown in Figure 11b) whereas the initial state bundle table without

optimization shown in Figure 11c).

4 Experimental Results

In this section we present results showing how the state bundling and state

encoding algorithms, given in section 3, influences the power consumption of

partitioned FSMs. We have implemented the algorithms in an automatic

synthesis tool that is based on our previous work [12]. Seven of the MCNC [13]

C. Cao and B. Oelmann Page 18 3/16/2005

Manuscript for IEE Computers & Digital Techniques

standard benchmarks were used in the experiments. The number of states in

these benchmarks range from 19 to 118. To determine the state transition

probabilities of the FSMs, average input probability and switching probability are

inputs to the tool. In our experiments, both are set to 0.5. The power and area

figures presented in graphs and tables come from gate-level estimations in

Power Compiler and logic synthesis is done by Design Compiler, both these tools

from Synopsys [14]. We use a 0.18µm CMOS standard cell library [15] and we

assume power supply voltage Vdd of 1.8V and a clock frequency of 20 MHz.

The total average power of a monolithic FSM is outnsregclkmonotot PPPPP +++=, .

Where clkP is the clock net power, regP is the power in the state registers, nsP is

the power in the next-state function, and outP is the power in the output function.

The total power of the partitioned FSM is ohoutnsregclkparttot PPPPPP ++++=, .

Where the ohP is the power-overhead which is the sum of the power dissipated in

the global state memory, circuits for idle condition detection, and shut-down

circuits.

FSM partitioning is alone an efficient method for achieving power reductions. As

shown in Figure 11, significant reductions have been obtained for the mixed

synchronous/asynchronous architecture without optimized state encoding.

In the partitioned FSM a significant part of the power is dissipated in the global

state memory and the circuits for idle condition detection and shut-down circuits

(ohP). This part is not affected by state encoding procedures presented in this

C. Cao and B. Oelmann Page 19 3/16/2005

Manuscript for IEE Computers & Digital Techniques

paper. To look in detail on how the proposed procedures affect the power

consumption, we first consider only power dissipation in the sub-FSMs

(ohparttotFSMsubtot PPP −=− ,,). In Figure 12, it is shown how coupled-state merging

and optimized state encoding affects power dissipation in comparison to the

basic procedures. Merging of coupled-states has very little to say for the power

consumption and for three of the benchmarks (s832, s820, and scf) coupled-

state merging has not affect at all. This is what could be expected since the

objective here is to minimize the number of state bits and not the power. The

state-encoding gives in average a reduction of 13%.

As shown in Figure 11, the sub-FSM power (FSMsubtotP −,) is only a portion the total

(parttotP ,) which is in average 40%. For the total power, the reductions are shown

in Figure 12 with an average reduction of 6%.

It Table 1 can be seen that the partitioning algorithm result in small sub-FSMs

with high duty probability Ti and the large sub-FSMs have low duty period. From

In Figure 13 it can be seen that sub-FSMs with large number of bits in the local

state memory, the power optimization procedure is efficient but for the ones with

few bits only small reductions can be obtained.

5 Conclusions

In this paper we have presented a state encoding algorithm for partitioned FSM

composed of coupled sub-FSM with shared state memory. The algorithm takes

the properties of partitioned FSMs and the constraints imposed by the

C. Cao and B. Oelmann Page 20 3/16/2005

Manuscript for IEE Computers & Digital Techniques

implementation architecture in to account. The relation between the coupled sub-

FSMs is given by the state bundling. State encoding is carried out sequentially,

one sub-FSM at a time where high priority is given to sub-FSMs with high duty

time. The power reductions we achieved for the sub-FSMs are promising. The

reductions for the partitioned FSMs as a whole are obviously lower since state

encoding cannot reduce the power in the asynchronous state memory, idle

condition detection logic, and the shut-down logic that are already established

before state encoding. This limitation comes from the fact that we first have the

partitioning procedure followed by the state-encoding. An algorithm for

simultaneous partitioning and state encoding, as the one presented in [Fel!

Hittar inte referenskälla.], removes this limitation. But the complexity of the

problem increases dramatically and so do the run-times for the algorithms. The

average power reduction achieved in [Fel! Hittar inte referenskälla.] is very

close to ours. It is however difficult to compare our results to theirs since there is

no information on the statistics given of the input signals to the FSM benchmarks.

A direction for future work is to develop an algorithm for simultaneous partitioning

and state encoding for the mixed synchronous/asynchronous architecture in

order to find out if the more complex algorithms will pay off in reduced power.

6 References

1. L. BENINI, G DE MICHELI: ‘Dynamic power managment : Design techniques and
CAD tools’ (Kluwer Academic Publishers, 1998)

2. A. ABDOLLAHI, F. FALLAH, M. PEDRAM: ’ Leakage Current Reduction in CMOS
VLSI Circuits by Input Vector Control’, IEEE Tans. On VLSI, 2004, 12, pp. 140-
154

C. Cao and B. Oelmann Page 21 3/16/2005

Manuscript for IEE Computers & Digital Techniques

3. M. ALADINA, J. MONTEIRO, S. DEVADAS, A. GOSH : ‘Precomputational-based
sequential logic optimization for low power’, IEEE Trans. on VLSI, 1994, 2, pp.
426-436

4. J. MONTEIRO, S. DEVADAS, A. GHOSH : ‘Sequential logic optimization for low
power using input-disabling precomputation architectures’, IEEE Trans. on CAD,
1998, 17, pp. 279-284

5. L. BENINI, G. DE MICHELI, A. LIOY, E. MACII, G. ODASSO, M. PONCINO :
‘Synthesis of power-managed components based on computational kernal
extraction’, IEEE Trans. On CAD, 2001, 20, pp. 1118-1131

6. S-H. CHOW, Y-C. HO, T. HWANG: ‘Low-power realization of finite-state
machines – a decomposition approach’, ACM Trans. on design automation of
electronics systems, 1996, 1, pp. 315-340

7. L. BENINI, P. SIEGEL, G. DE MICHELI: ‘Automatic synthesis of low-power gated-
clock finite-state machines’, 1996, 6, IEEE Trans. on CAD, pp. 630-643

8. B. OELMANN, K. TAMMEMÄE, M. KRUUS, M. O’NILS: ’Automatic FSM
synthesis for low-power mixed synchronous/asyncrhonous implementation’,
Journal of VLSI Design - Special issue on low-power design, 2001, 12, pp. 167-
186

9. B. OELMANN, M. O’NILS: ‘Asynchronous control of low-power gated-clock finite-
state machines’, Proceedings of IEEE International conference on electronics,
circuits, and systems, 1999, pp. 915-918

10. C. CAO, B. OELMANN: ‘Mixed synchronous/asynchronous state memory for low
power FSM design’, Proceedings of the EUROMICRO symposium on digital
system design, 2004, pp. ???

11. C. CAO, M. O’NILS, B. OELMANN: ‘A tool for low-power synthesis of FSMs with
mixed synchronous/asynchronous state memory’, 2004, IEEE Proceedings of the
Norchip Conference, pp. ???

12. B. OELMANN, M. O’NILS: ‘A low power hand-over mechanism for gated-clock
FSMs’, Proceedings of the European conference on circuit theory and design,
1999, pp. 118-121

13. S. YANG: ‘Logic synthesis of optimization benchmarks – user guide version 3.0’,
MCNC Technical report

14. Synopsys inc.: ‘http://www.synopsys.com’, company homepage.

C. Cao and B. Oelmann Page 22 3/16/2005

Manuscript for IEE Computers & Digital Techniques

15. United Microelectronics Corp: ‘http;//www.umc.com.tw’, company homepage

16. G. VENKATARAMAN, S. M. REDDY, I. POMERANZ: ‘GALLOP: Genetic
Algorithm based Low Power FSM Synthesis by Simultaneous Partitioning and
State’ Assignment’, The Sixteenth International Conference on
VLSI Design, 2003, pp. 533-538

Figure captions:

Figure 1. Structural decomposition of FSM

Figure 2. Example, a) Monolithic FSM with state partition indicated, b) coupled-states

introduced

Figure 3. Example, Coupled-state table

Figure 4. State table

Figure 5. Pseudo code for bundling of the coupled and the free states

Figure 6. Example of a partition FSM with high c

Figure 7. Optimized coupled-state table

Figure 8. Pseudo code for g-state merging

Figure 9. State encoding in re-ordered state table

Figure 10. Pseudo code for optimized state encoding

Figure 11. Power reductions for partitioned FSMs

Figure 12. Power reductions in the sub-FSMs

C. Cao and B. Oelmann Page 23 3/16/2005

Manuscript for IEE Computers & Digital Techniques

Figure 13. Power reductions versus number of state memory bits

Table 1.Structural information from the decompositions

