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ABSTRACT 

The rapid development of digital circuits with high density and frequency 
motivates power, in addition to area and speed, to become an important parameter 
in design constraints. Nowadays, the electronics design industry is confronted by 
increasingly costly package and cooling systems due to power dissipation. Battery-
powered portable devices, such as laptops, mobile phones etc., which provide 
higher computational capacity and support multi-media information transformation, 
greatly increase the previously rather small power budget. As synchronous digital 
design has, over the past few decades, become the industry standard, this new 
challenge means that asynchronous design techniques must now be reconsidered, 
as they possess the potential for a reduction in power dissipation. 

Finite state machine (FSM) partitioning proves effective for power 
optimization. In this thesis, a mixed synchronous/asynchronous state memory 
structure in the decomposed FSM is proposed, which results in implementations 
with low power dissipation and low area overhead. The state memory is composed 
of the synchronous local state memory and asynchronous global state memory, 
where the former is used to distinguish the states inside a sub-FSM, and the latter is 
responsible for controlling sub-FSM communication. Although asynchronous 
communication mechanism is introduced between sub-FSMs, the input/output 
behaviour of the decomposed FSM is still, cycle by cycle, equal to a complete 
synchronous one.  Power consumption can be further reduced by using a clock 
gating technique and low power state assignment.  

Based on this mixed synchronous/asynchronous structure an automatic 
synthesis tool was developed, which accepted state transition graph (STG) as input 
and outputted synthesizable VHDL code that can be directly used for logic 
synthesis. An FSM partitioning algorithm, power estimation functions and state 
encoding optimization aimed at this specific structure are also integrated into the 
tool to find  low power partitioning within a reasonable run time. The effectiveness 
of the whole procedure is verified through optimization of standard benchmarks 
where a power reduction of up to 70% has been demonstrated.
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1 INTRODUCTION 

1.1 MOTIVATION FOR LOW POWER 

Historically, digital integrated circuit design focused on the optimization of 
area and speed. Power consumption was often of secondary concern. In recent 
years, however, there has been a rapidly growing interest in low power design. 
Among the factors contributing to this trend, one most remarkable driving force 
stems from the portable consumer electronics applications.  

The portable consumer electronics market continues to develop at a rapid 
rate. Laptop computers, cellular phones, digital video cameras etc., all of these 
portable devices require powerful systems that run on lightweight battery packs. 
Reducing power consumption is obviously a primary concern here for prolonging 
the operational life of a particular battery technology.  

Besides portability, the more generic motivation for low power originates 
from the heat dissipation problem. Nowadays, high-end products, such as 
microprocessors, are designed with increasing circuit integration and faster clock 
frequencies. Subsequently, the magnitude of power per unit area is growing and a 
considerable amount of heat is generated. High temperature can affect the 
reliability and shorten the lifetime of such systems. To address this problem, either 
costly packaging technology or cooling devices should be introduced, or, the chip 
has to be divided into several chips, which thus directly limits the circuit 
integration capability. In [4], it was concluded that the constraint facing  
microprocessors with reference to the die size is introduced by the power 
dissipation and  not the fabrication ability. 

As a result, present day circuit designers must explore area, speed and power 
to find suitable solutions. The available choices are expanded and in the meantime 
the required complexity is also increased.   

    
1.2 SOURCES OF POWER DISSIPATION  

CMOS circuits (which combine PMOS and NMOS transistors) are the 
dominant technology for modern high-performance digital electronics. The average 
power consumption of a CMOS circuit can be modeled by the following equation:  

leakagecircuitshortswitcingavg PPPP ++= _                                                                  (1) 

The first term represents the switching power component. In a circuit, it can be 
expressed as: 

∑
=

=
N

i
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1 α                                                                                (2) 
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where ddV is the supply voltage, clkf is the clock frequency, iα is the average 
number of logic transitions of node i per clock cycle, and iC is the loading 
capacitance at node i.   When ddV  and clkf are settled, the power reduction stems 

from the reduction of ∑
=

N

i
iiC

1
α , denoted as the effective capacitance in the rest of 

the thesis. 
The second term is due to the direct-path arising when both the NMOS and 

PMOS transistors, in a static CMOS gate, are simultaneously conducting and a 
short-circuit current is going directly from the supply to the ground. 

The final term originates from various leakage currents that exist for idle 
CMOS gates. It should be noted that leakage power has become an important 
component for the whole power dissipation and will be comparable to the 
switching power as the feature size continues to decrease [1].  

Because switchingP   is still the dominant term in static CMOS gate circuits [2], 
in this thesis, only the switching power (or dynamic power) is considered. In the 
rest of the thesis, the word “power” means switching power if not specified. 
 

1.3 LOW POWER DESIGN METHODOLOGY  

Low power design can be performed at all levels of abstractions. Typical 
abstraction levels, in  descending order, are shown in Figure 1. They are system, 
architecture (or algorithm), register transfer (RT), gate, circuit and technology 
levels. The most commonly used power optimization techniques at each level are 
also shown.  

At the system level, since the system can be viewed as a hardware platform 
executing software program, a partitioning strategy, which decides whether a task 
should be implemented in the hardware or the software, can be exploited to 
minimize power dissipation [3]. Power management schemes can also be used to 
shut down the idle system (or the system’s various components) to reduce power 
[5]. In [9], power management is applied to a digital signal processor (DSP) design. 
As a result, the power consumption of the DSP in idle-mode was less than 1/10 of 
the original un-optimized one.   

It is apparent from Equation (2) that reducing the power supply voltage can 
decrease the power quadratically. However, when the supply voltage is reduced, 
the power-delay product of CMOS circuits also decreases and the delays increase 
monotonically. To compensate for the speed penalty introduced by voltage scaling, 
at the architecture level, transformations, such as pipelining and parallelism [12], 
are employed to increase the level of concurrency.  

At the RT level, a circuit can be considered to be the sequential logic, 
composed of the memory elements (registers) and functions responsible for 
determining not only the state but also the data computation. Power optimization at 
this level can be roughly categorized into two classes. One class is state assignment 
and the other is an extension of the dynamic power management from the system 
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level to the RT level [5]. More details with regard to the dynamic power 
management at the RT level will be given in the following chapters. 
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Figure 1. Design  abstraction level 

  
At the gate and circuit levels, logic optimization methods, such as transistor 

reordering, can be used to reduce switching activity and subsequently reduce   
power dissipation [10]. Design styles of global signals, such as bus architecture 
configuration, can result in low power implementations by reducing the physical 
capacitance [59].   

At the technology level, methods such as reducing both the threshold voltage 
and power supply voltage and  scaling transistor sizes [11] can be used for low 
power design.  

  
1.4  POWER-CONSCIOUS SYNTHESIS TOOL 

Computer aided design (CAD) plays an important role in the development of 
integrated circuits. When transistors can be counted in millions in contemporary 
circuits, it is impossible to synthesize manually without the assistance of CAD 
tools.  

A complete synthesis flow from the behavioural specification to the final 
fabrication is shown in Figure 2. Each synthesis step translates a description of the 
circuit to an optimized description at a lower level. At each level, estimation for 
area, timing (speed) and power can be incorporated into the synthesis process to 
verify whether or not the solution satisfies the design’s constraints.    

Because area and speed have, for a long time, been the major design 
concerns, a number of industrial standard synthesis tools are associated with these 
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areas. In contrast, power-conscious synthesis tools are a relatively new area and the 
focus has been primarily at lower levels. 

In general, when optimizations are introduced at the higher abstraction levels, 
larger power reductions can be expected [2] since the design space to be explored 
is larger. However, the accuracy of the power estimation is in inverse proportion to 
the design space. The lower the level, the more information is available regarding  
the implementation of the design (see Figure 1). Therefore, when the possibility of 
employing a global strategy to achieve significant power reduction at higher levels 
exists, the lack of detailed implementation information makes it difficult to 
evaluate the quality of the strategy. Based on the above, power-conscious tools at 
higher levels are more significant, but also more difficult. 

For power analysis (or estimation), mature commercial tools such as SPICE 
and PowerMill are available at the circuit and gate level and they provide accurate 
power values. However, the solutions at higher levels come mainly from academia 
[62]. 

As to power optimization, although considerable methodologies have been 
proposed [12], an industry standard framework for synthesizing low power circuits 
has not yet been developed. Synopsys can be used for synthesizing low power 
circuits at the gate level. However, the framework is designed to fulfil area and 
speed constraints, so necessary critical information for power estimation and 
optimization is not considered in the power-conscious procedure.   

As an effort to provide a comprehensive environment for low power design, 
in this thesis, an automatic synthesis tool at the RT level is presented incorporating 
power analysis and optimization.         
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Figure 2. Synthesis design flow from [57] 
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2 FSM LOW POWER DESIGN   

At the RT level, a design synthesized from a higher level can be viewed 
upon as an interacting system composed of two parts: controller and datapath. 
Given that the controller is always running, it may consume a great deal of power 
(about 40% of the total power is consumed in the controller [40]). Since the 
controller is often implemented as finite state machines (FSM), the power 
reduction problem reformulates to FSM power minimization. In this chapter, a 
background concerning FSM is presented  (section 2.1), followed by the two most 
important design aspects targeting FSM power optimization, that is, the application 
of dynamic power management at the RT level (section 2.2) and state assignment 
optimization (section 2.3). 
 
2.1 FSM FUNDAMENTALS 

The general structure of a design at RT level is shown in Figure 3. It consists 
of a datapath that is a network of ALUs (arithmetic logic units), multiplexers, 
registers and busses, responsible for data storage and manipulation. The controller 
is represented as the FSM that controls data transfers in the datapath.  
 

 
Figure 3. RT level design structure from [58] 

    
The name of finite state machine (FSM) comes from the fact that it consists 

of a finite number of states and its formal definition can be found in [18]. As 
shown in Figure 4a), state transition graph (STG) is widely used to describe the 
behaviour of an FSM, where every state is labeled as a node with a unique 
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symbolic name and the state transitions among them are represented as edges with 
input and output values. 
 

 
Figure 4. FSM representation 

 
From a circuit point of view, it is shown in Figure 4b) that FSM is normally 

implemented as a synchronous model composed of combinational logic and 
registers. In every clock cycle, the combinational logic is responsible for 
calculating the next state and output value while the registers store the updated 
state information.  
 
2.2 DYNAMIC POWER MANAGEMENT   

2.2.1  Introduction 
 

Benini et al. proposed the concept of dynamic power management [5] 
which is based on idleness exploitation. Normally, systems are designed to meet a 
certain peak performance that is only required for a small portion of its entire 
operational time. Therefore, parts of the circuit are often temporarily idle. There 
are also situations where operations, known in advance, will never be executed at 
the same time, which thus always leads idle units being available. In these 
situations, dynamic power management may be successfully used. Firstly, it highly 
accurately detects idleness; secondly it rapidly shuts down the idle resources and 
forces it to a state where power dissipation is as low as possible. Since a power 
management scheme is able to eliminate a fraction of the useless switching activity 
that consumes power without producing useful results, it proves to be effective at 
various levels of abstractions.  Its exploitation at the RT level is the main focus of 
the rest of this section. 
 
2.2.2 FSM idleness exploitation  
 

Many FSM low power methods can be collectively viewed upon as the 
exploitation of idleness, internal or external. When outputs of an FSM are 
observable to primary outputs but remain unchanged, internal idleness can be 
exploited. In [6], under the condition of self-loops where both state and primary 
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output values remain constant, the whole FSM can be shut down after adding state-
holding mechanism.    

When an FSM is decomposed into sub-systems, the output of a sub-network 
may change but not influence the primary output. In this case, external idleness can 
be exploited. As opposed to internal idleness, external idleness is induced by the 
environment, and depends on the entire output behaviour of the system. For 
example, in [19], after introducing pre-computation methodology, the original 
synchronous network is decomposed into two sub-networks. One of them is 
unconditionally clocked while the other can be conditionally shut down if the 
calculation performed is irrelevant to the network output, that is, externally idle. 

A more aggressive method of exploiting the external idleness of FSM is FSM 
decomposition. The original FSM is partitioned into two or more sub-FSMs where 
only one of them is active at a time and others can be deactivated without 
consuming power since their outputs are unobservable (or irrelevant) to the 
primary outputs [20]. The partitioned FSM is constructed in such a way that each 
of the sub-FSMs  constitutes a smaller effective capacitance than the original FSM 
and consequently power can be saved.  
 
2.2.3 Shut-down circuitry 
 

To prevent idle components from consuming switching power, dynamic 
power management techniques disable the clock signal or, make input values to the 
parts not in use remain constant. Mechanisms for detecting when the unit is idle 
then shutting it down must therefore be added to the design. Circuits responsible 
for handling this mechanism will constitute a functional overhead and will 
consequently contribute to the increased circuit area, additional power consumption, 
and possibly reduced performance. Careful analysis must be undertaken so that the 
introduction of circuits for power management will contribute to as little power 
consumption as possible.   
 
2.2.3.1 Clock gating 
 

As shown in Figure 5, the clock gating logic (CL) accepts the clock signal 
Clk and the control signal CNTRL as its inputs and generates the gated clock signal 
(Gclk) as its output to control the update of registers. When the gated clock is 
stopped by CNTRL, power consumption can be minimized in combinational logic 
because the flip-flops are not triggered on any rising clock edge, hence their 
outputs remain unchanged. The disadvantage of this method is that the presence of 
a gate in the clock line usually increases clock skew, which may cause problems in 
high performance design [6].  
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Figure 5. Gated clock for shutting down 

 
 

 
2.2.3.2 Input disabling 

In Figure 6, combinational logic can be selectively turned off by the input 
disabling logic (IL), which consists of transparent latches with an enable signal EN.  
When units are executing useful calculation, EN makes the latches transparent, 
thus permitting normal operations. If this does not occur, the latches retain their 
previous state and no transitions propagate through the inactive units. This method 
is called the guarded evaluation in [23] where both a theoretical framework and 
algorithms, which automatically decide when  the logic units performing useless 
calculations should be shut down, are provided. 

Compared with the clock gating technique, this method is less power 
effective because the power in the clock line is not saved. However, in the case 
where  two functions share the same register but never work simultaneously, the 
register should remain active and the clock gating methodology cannot be 
exploited. By disabling the input to each function, it is still possible to reduce the 
power. Also, an input disabling strategy is safer than clock gating when 
considering timing issues. Note that in either method it is impossible to avoid 
leakage power as it does not depend on signal transitions.  

 

 
Figure 6. Disabled input for shutting down 

 
2.3 STATE ENCODING   

State encoding，which strongly influences the final realization of an FSM, 
has been an active research area for decades. Until the early 1990’s, its main 
objective was towards area optimization for two-level or multilevel logic [24]. The 
requirement for low power, high computing portable systems determined the 
current focus on state assignment optimization for power. Generally, the search 
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area for state encoding is too large to explore, therefore, approximate methods, 
depending on pre-logic cost functions, are used to obtain  the optimal solution.  

 From Equation (2) it can be seen that dynamic power is related to both area 
(the total number of nodes) and switching activity, therefore,  state encoding for 
low power is, to some extent, more difficult than for area minimization. To 
simplify this problem, in [26], the cost function assumes that power consumption is 
proportional to the switching activity of state bit lines. The problem concerning 
power reduction is reformulated to reduce the Hamming distance of state 
transitions that have a high probability. Both minimum length [8] and non-
minimum encoding are subsequently developed [27]. In [29], two code lengths are 
used in the same state machine. After the introduction of the Huffman coding 
algorithm, states that are highly probable of being active are coded with less than 
⎡ ⎤Slog  state bits, where |S| is the number of states. Other states, which have less 

likelihood of  being active, are assigned state bits greater than ⎡ ⎤Slog .   
 Since reducing switching activity in state lines does not always lead to 

reduced power in the combinational logic, efforts are also being made to take area 
into account. Among them, Benini et al [8] adds the area constraint to the cost 
criteria and explores the trade-off between computation complexity and the quality 
by using different algorithms. Olson et al [31] use the linear combination of the 
switching activity and the number of literals as the cost function. Tsui et al [30] 
propose the power model, considering switching activity and capacitive loading 
simultaneously. All the above state encoding methods aim at monolithic FSM 
optimization. Low power state assignment in decomposed FSM will be further 
discussed in chapter 4. 
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3 MIXED SYNCHRONOUS/ASYNCHRONOUS STRUCTURE 

        In terms of operation mode, digital circuits can be classified into two 
categories: synchronous and asynchronous. In synchronous circuits, information 
storage or process is orchestrated by one global signal, called the clock signal. 
Conversely, asynchronous circuits remove the clock signal and locally generated 
timing signals are used to ensure proper control of the sequence of events. 
Nowadays, even though synchronous systems dominate the circuit design field due 
to their simple rules, asynchronous systems are being looked as an increasingly 
viable alternative to purely synchronous systems. In this chapter, the advantages 
and disadvantages of both classes  are discussed from various design perspectives 
(section 3.1), then the concept of mixed synchronous/asynchronous design as well 
as its implementation is presented (section 3.2).           
 
3.1 SYNCHRONOUS AND ASYNCHRONOUS DESIGN COMPARISON 

       With the rapid development of digital circuits, the limitations facing purely 
synchronous designs offer asynchronous designs the possibility to realize their 
potential. The understanding of the properties of both operational modes from 
various design aspects enables the design space to be explored more freely and 
reveals the reason behind mixed synchronous/asynchronous design.  
  

 Design efficiency 
    In a synchronous system, a designer can simply define the combinational 

logic necessary to compute the given functions, and surround it with latches (or 
registers). By setting the clock rate to a long enough period, all worries about 
hazards (undesired signal transitions) and the dynamic states of the circuit are 
removed. However with asynchronous systems, a great deal of attention must be 
paid to the dynamic state of the circuit. Hazards must also be explicitly removed  
from the circuit or, not introduced in the first place, to avoid incorrect results [32].  
The ordering of operations, which is fixed by the placement of latches in a 
synchronous system, requires careful execution through the asynchronous control 
logic. As reducing the design cycle is a necessity in the present intense industrial 
competition, the overwhelming design efficiency of the synchronous circuit means 
that it constitutes the bulk of commercial practices as well as CAD tools. 

     
 Clock skew problem 

Clock skew is the difference in arrival times of the clock signal in different 
parts of the circuit and it restricts the maximal frequency achievable by the clock.  
In  current high speed, highly complex circuits, it is very costly to limit the clock 
skew to an acceptable range and sometimes systems have to be slowed down to 
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accommodate the skew. This problem has already been noted in [33]. In the design 
of DEC Alpha CPU, keeping the clock skew within 300 picoseconds results in a 
clock driver circuit that occupies 10% of the circuit area and consumes over 40% 
of the power. For asynchronous circuits, which by definition have no globally 
distributed clock, this problem does not exist. As feature sizes decrease, the clock 
skew problem, which is inherent in the synchronous design, will become more 
serious in the future. 

 
 Area 

To provide glitch or hazard free outputs in the timing constraints, 
asynchronous design must introduce extra logic. Also, the control signals necessary 
for initializing an action or denoting the completion of the action [34] make the 
asynchronous system generally larger than its functionally equivalent synchronous 
counterpart. The generation of area overhead may cause performance degradation 
or, consumes considerable power.  
 

 power 
Standard synchronous circuits have to toggle clock lines, and possibly 

precharge and discharge signals, in portions of a circuit that remain idle in the 
current computation. Although power management can partially remove the 
wasteful power dissipation, it only works at a course granunarity and introduces 
area overhead. Asynchronous circuits, by their nature, only activate the units 
currently involved in useful calculation and therefore result in lower power 
solutions [35]. 

 
 Performance 

 Synchronous circuits must wait until all possible computations have been 
completed before latching the results, so the chosen fixed clock period must 
accommodate the worst-case timing condition. Average-case or best-case 
performance can not be explored. Many asynchronous systems, on the other hand, 
sense immediately when a computation is complete. This inherent adaptivity 
allows them to exhibit average-case performance. For circuits where the worst-case 
delay is significantly worse than the average-case delay, an asynchronous 
implementation can result in a better performance [36]. But it should also be noted 
that asynchronous circuits generally require extra time due to their signaling 
policies, hence cause an increase in the average-case delay. Whether this cost is 
greater or less than the benefit differs from case to case. 
  

 Technology migration potential   
During their lifetime, integrated circuits are often implemented in several 

different technologies. Early versions of systems may be implemented using gate 
arrays, while later products may migrate to semi-custom or custom ICs. Greater 
performance for synchronous systems can often only be achieved by migrating all 
system components to a new technology, since again the overall system 
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performance is decided by the longest path. In contrast, many asynchronous 
systems are able to migrate only the more critical system components in order to 
achieve higher performance, since performance is based on the currently active 
path. Furthermore, the adaptivity of asynchronous systems makes it possible for  
components with different delays to be combined into a larger asynchronous 
system without any special structural alteration, whereas careful analysis is 
required for synchrnous circuit. The modularity in asynchronous circuits is 
demonstrated in [37].  
  

 EMI and noise  
Without the clock, noise and electro magnetic interference (EMI) spectrums 

are significantly flatter across the entire frequency domain. According to McCardle 
et al. [38], there can be a 10-dB drop in noise in an asynchronous processor. Until 
recently, EMI and noise metrics were ignored when area, speed or power were 
being considered. But EMI and noise metrics are now attracting  more attention 
due to two emerging applications: mixed-signal design and smart cards. In the 
former, analog functions are particularly sensitive to clock-correlated, digital 
switching noise. Reducing noise and EMI will significantly boost both precision 
and performance.  In the latter, EMI has a significant impact on security.  Non-
invasive security attacks depend on monitoring a smart card’s power usage, or EMI 
signature, to extract key information on the card. Even distribution of circuit-
switching activities in the asynchronous system obviously improves security [39]. 

 
Even though asynchronous design is not the mainstay of commercial 

practice, its beneficial properties with regards to low power, low noise etc., 
suggests that instead of having completely synchronous systems the  introduction 
of  asynchronous methodology offers great potential for the future. This confidence 
has also acted as the inspiration for the research on mixed 
synchronous/asynchronous design, dealt with in greater detail in the next section. 
   
3.2 MIXED SYN/ASYN APPLICATION FOR LOW POWER 

 Industrial standard asynchronous CAD tools are far from mature and the 
temporal trends in mixed synchronous/asynchronous design thus involve the 
exploitation of some proven benefits of the asynchronous circuit in a largely 
synchronous environment. In this case, the widely accepted synchronous system 
design methodology can be utilized and the asynchronous design can be taken 
advantage of simultaneously. In this section, the mixed design concept at the 
system level is introduced. After the comparison between two different 
implementation models of the state memory is given, an RT level mixed 
synchronous/asynchronous design method is proposed.    
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3.2.1 System level mixed synchronous/asynchronous design 
          In a synchronous circuit, the clock signal connects every part, registers, 
latches and also the pre-charge and evaluation transistors of dynamic gates. These 
elements constitute a huge capacitance load on the clock line which is further 
added to by the capacitance of clock wire itself. The total capacitance in the clock 
line makes the clock net power dissipation in a high frequency circuit unacceptable. 
It has been demonstrated in an Alpha 200MHZ processor that 40% of the whole 
power originates from clock [33]. To tackle this problem, at the system level, 
asynchronous logic can be introduced as the interfacing circuit to synchronous 
modules and the requirement of a global clock is thus removed.    

The concept of globally asynchronous, locally synchronous (GALS) was 
founded by D. M. Chapiro [63] to avoid the costly global synchrony in large scale 
VLSI circuit. Its basic model is shown in Figure 7 where the main modules are 
synchronous but the data exchange between any two modules is handled by an 
asynchronous handshake protocol.  A prototype GALS system is built in [41] by 
using pausible clocking control to prevent synchronization failures. The effects of 
GALS approach is verified by Hemani et al. [42] with a power reduction of up to 
70% in the clock net and a 20% reduction in the overall dissipation compared to a 
conventional globally synchronous design.   

 

 
Figure 7. GALS basic model 

 
 
 
3.2.2 RT level mixed synchronous/asynchronous design 

Generally at the RT level, the finite state machine is implemented 
completely synchronously. Efforts made towards mixed synchronous/asynchronous 
design involve the introduction of asynchronous communication into the sub-FSM 
network after FSM decomposition. Meanwhile, the input and output behaviour is 
still cycle by cycle equivalent to a complete synchronous one.   
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In the decomposed FSM design, there are two ways of implementing state 
memory as shown in Figure 8.  

The first method is rather straightforward. After FSM partitioning, each of 
the sub-FSMs has its own state memory, see Figure 8a). These state memories are 
local to the sub-FSMs and named after local state memory. Global state is not 
required while reset states, one in each sub-FSM, are added to the local state 
subsets. An additional signal interface is introduced between sub-FSMs to  activate 
or deactivate them. This approach has, for example, been used in a fully 
synchronous partitioned FSM by Benini et al. [7]. Its disadvantage is the area 
overhead introduced by the additional flip-flops. In some sense, these local state 
memories are redundant because only the one in the current active sub-FSM is of 
importance for storing the state information. In the meantime those remaining in 
the deactivated sub-FSMs are not useful. 

 

 
Figure 8. State memory structure in decomposed FSM 

 
In contrast, Chow et al. [21] propose a  structure where the local state 

memory (LSM) is shared by all the sub-FSMs, as depicted in Figure 8b). By 
dividing the states into two parts, global states and local states, the local state bits 
can be shared among the sub-FSMs whereas the global states are used to determine 
the active sub-FSM. States residing in different sub-FSMs can therefore use 
identical local state codes and be distinguished by different global states. The total 
number of flip-flops required in the state memory will be lower in comparison to 
that for separate state memory implementation. However, from the power 
consumption point of view, the disadvantage concerns the flip-flops introduced for 
global state memory (GSM, the memory of global states). These flip-flops are 
always clocked and will add substantially to the power consumption.   

It has been proposed in [43] that an asynchronous communication protocol is 
more power efficient than its synchronous counterpart in the decomposed FSM. 
This idea of mixed synchronous/asynchronous design in FSM partitioning is 
implemented in an automatic synthesis tool in [56]. It uses separate synchronous 
local state memories for sub-FSMs but the disadvantage is the substantial area 
overhead. 
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Targeting an implementation with low power and low area overhead, the 
idea is now suggested  that a shared synchronous local state memory should be in 
the part always clocked  and an asynchronous global state memory should be used 
to  decide which sub-FSM is active. Global state memory has a low probability of 
being updated. It is idle most of the time and therefore adds very low power 
overhead. By using clock gating technique in the local state memory, power 
dissipation can be further reduced. The mixed synchronous/asynchronous state 
memory structure is shown in Figure 9, where the input/output behaviour is cycle 
by cycle equivalent to that of a non-decomposed synchronous one.   

 

 
Figure 9. Mixed synchrnous/asynchronous structure 

 
Based on this structure, an automatic synthesis tool for low power 

decomposed FSM implementation is also developed, which will be described in the 
next chapter. 
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4 AUTOMATIC SYNTHESIS TOOL   

With the increasing design complexity, designers have to resort to automatic 
tools to speed up the design process. At present there are many mature CAD 
synthesis tools which target area and performance optimization. However, low 
power design, particularly for higher levels, is still far more of an art than a 
standard industrial practice. In an effort to address this problem and normalize the 
design process for power optimization, an automatic synthesis tool at the RT level, 
which is based on mixed synchronous/asynchronous state memory, has been 
developed. In this chapter, an overview of the whole design flow of this tool 
(section 4.1) is followed by a detailed description of each step in the flow. Firstly, 
effective ways of collecting information from the input of the tool (section 4.2) are 
discussed. FSM partitioning algorithm is then considered (section 4.3). The 
required transformation steps for this mixed synchronous/asynchronous state 
memory implementation as well as the associated state assignment problem 
(section 4.4) are then presented. Following this, the power estimation model at the 
RT level is built (section 4.5).  Finally, the format of the tool output and the related 
technology information are described (section 4.6).    

 
4.1   DESIGN FLOW DESCRIPTION OF THE TOOL 

Starting from a single state transition graph (STG) description, a procedure 
is proposed for automatically synthesizing a monolithic FSM into a network of 
interacting sub-FSMs. A standard-cell based design flow (see Figure 10) is 
assumed, which means that there are no special library requirements beyond that 
normally provided. However, the tool does require some cell library dependent 
information to perform accurate power estimations and to define the gate level 
implementation of the asynchronous elements.  

In Figure 10, in addition to STG specification, the signal probabilities of the 
primary inputs are also given in order to  generate a long series of inputs to the 
STG simulator. The outputs of the simulator are probabilities related to the states 
and primary outputs of the FSM. According to the mutual state transition 
probabilities derived from the STG simulator, states are firstly clustered into a 
hierarchical tree. A novel algorithm is then adopted to group the clusters at each 
level and form a limited number of partitioning candidates. Each candidate is 
subsequently synthesized to an RT level description and its power dissipation is 
measured by the cost function. The candidate with the lowest power is considered 
to be the best, and its RT level VHDL description and synthesis scripts are finally 
generated. The VHDL file and the scripts can be used directly as the inputs to a 
standard synchronous tool for the optimization of the decomposed FSM at the gate 
level.   



 

  22 
  

  

 
Figure 10. Tool design flow 

 
   
4.2 STATISTICS COLLECTION 

Power dissipation is strongly dependent on the switching activity of the 
circuit, which in turn is related to the input pattern. For effective FSM partitioning 
and power estimation, the first step is to specify information about the primary 
inputs of the FSM. Other FSM statistics, such as state and primary output related 
probabilities, can be obtained subsequently. To obtain the above information, there 
are basically two ways depending on the knowledge available about primary inputs.   

 
4.2.1 FSM probabilistic model 

If the information of the inputs is provided by input probabilities, i.e., the 
probability of the value of the input to be one, the STG behaviour of an FSM can 
be modelled as a Markov chain [8]. A Markov chain represents a finite state 
Markov process, where the probability distribution at any time is decided only by 
the current state, regardless of how the process reaches that state. The Markov 
chain model for the STG can be described as a directed graph isomorphic to the 
STG with weighted edges.   

In Figure 11a), input configurations for state transitions are labelled on the 
edges of the STG. It is assumed that all input probabilities are 0.5, that is, 
Prob(i1)=Prob(i2) = 0.5. The corresponding Markov chain model of the STG is 
shown in Figure 11b). In the Markov chain model, edges are weighted using the 
conditional transition probability, that is, weight pi,j on the corresponding edge 
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represents the probability of a transition to state sj given that the machine is in state 
si. For instance, the transition from s2 to s1 occurs when the input is “11” and the 
corresponding conditional transition probability is p2,1 = Prob(i2)×Prob(i1) = 0.25, 
as shown in Figure 11b). Primary inputs are assumed to be independent of each 
other in this case. 
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a) a FSM                                                  b) Its Markov chain model  

Figure 11. A FSM example 

 
Conditional transition probability itself is not sufficient to represent the 

probabilistic property of an FSM. For example, if the conditional transition 
probability from si to sj is high but the FSM will never reside in si, the actual 
transition probability between the two states is still zero. Hence, the total transition 
probability is introduced, independently to the present state of the FSM. Total 
transition probability is the product of the conditional transition probability and 
the static state probability. The static state                                          
probability represents the probability of a state that the FSM will reside in when 
time increases to infinity.  The calculation of the total transition probability Pi,j can 
be expressed as: 

Pi,j = pi,jPi    i, j = 1, 2, …, |S|                                                                                (3) 

where pi,j is the conditional transition probability from si to sj, Pi is the static state 
probability of state si and |S| is the number of states. Under the assumption that 
input variables are mutually independent, pi,j can be calculated directly from the 
STG by multiplying the input probabilities. The remaining  problem  is to compute 
Pi.   

Given a STG with |S| states, let P represent the conditional transition 
probability matrix of size of |S|× |S|. The static state probability Pi of each state can 
be obtained by solving the following equations: 
qTP=qT                                                                                                                   (4) 

∑
=

=
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where q is the static state probability vector whose components are the static state 
probability Pi of the state si (i.e., q = [ ]TSPPP ||21 ,,, K ). The sufficient condition 
that the static state probability vector of states exists is that an STG has a reset 
state. For those STGs without a reset state, cases also exist for which the total 
transition probability [8] can  be obtained. 

It should be noted that the value of the total transition probability and the 
conditional transition probability between two states is generally different. More 
information about Markov analysis of FSM can be found in [60]. 
 
4.2.2 Monte-Carlo-based simulation 

A long specified input stream provides the most complete information 
about the inputs. In this case, collecting other FSM statistics becomes 
straightforward by simulating the state machine for a sufficient length of time. For 
example, it is possible to calculate the total transition probability as the number of 
state transitions during the whole simulation time divided by the number of time 
units (often the clock cycle). Formally, this method is described as Monte-Carlo-
based simulation [45]. Stopping criteria (or convergence criteria), based on 
statistical techniques, are used to decide when the simulation should stop. For 
sequential circuits, which have feedback of state bits, the stopping criteria can be 
obtained by determining whether the probabilities of the state bits are stable or not. 
The Monte-Carlo-Based simulation flow chart for FSM is shown in Figure 12. 

 
Figure 12. Monte-Carlo-based simulation flow chart for FSM 
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In this tool, a randomly generated input stream is used in the simulator. 
The probabilistic distribution of inputs can be specifed by the user and the default 
value is set to 0.5. It is assumed that the static state probability of each state 
becomes a constant as time increases to infinity, and after a warm-up period of 
clock cycles, the state probability of every state is sampled. A simplified 
convergence criterion is used, i.e., only when the maximum difference value 
between the probabilities of each state sampled in two consecutive time units (or 
clock cycles) is less than ɛ, a user specified constant, does the simulation stop. The 
default value of ɛ is set to 610− . For all the standard benchmarks [46] tested, their 
simulations converged in a reasonable time.  

From the simulator, FSM information such as the static state probability, 
total transition probability, signal probabilities of primary outputs etc. are collected 
for further use. 

 
4.3 FSM PARTITIONING 

In VLSI design, the initial interest in partitioning arises from min-cut 
placement [47]. As the complexity of circuits increases and  the desired number of 
transistors is above that which a chip or module can accommodate, the circuit must 
then be divided into components. Because the load of driving an external net in 
another component is significantly bigger than that of driving an internal net, 
partitioning techniques are needed to reduce the interconnection between 
components. By dividing a complex system into smaller, more manageable 
components, partitioning proves effective in reducing the design complexity and 
emerges in many phases of circuit design. Although here the focus is only on FSM 
partitioning, the proposed partitioning algorithm may also be useful for addressing 
the general partitioning problem.   
       As mentioned in section 2.2.2, at the RT level, FSM partitioning is an 
important technique for dynamic power management. After partitioning, the 
original FSM is decomposed into several smaller sub-FSMs. Apart from the case 
involving a state transition between two sub-FSMs, only one sub-FSM is active 
and thus all others are idle and can be deactivated without consuming power. 
Because each sub-FSM is smaller than the original one, sub-FSMs as a whole 
contribute to a lower average power. Depending on the quality of partitioning 
algorithms, this FSM power reduction can be significantly different.   

An efficient FSM partitioning algorithm can select a “good” partition within 
a reasonable running time. The measure of “good” is performed by the cost 
function and states having high total transition probability between them are 
placed in the same sub-FSM in a “good” partition. Because the number of possible 
partitioning solutions is generally too large to explore, heuristic partitioning 
algorithms are used for reducing the complexity. Two main categories of 
partitioning algorithms are discussed here, namely, the iterative-based algorithm 
and the clustering algorithm. The partitioning algorithm proposed in this thesis is 
then discussed.   
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From an initial feasible solution, iterative-based algorithms iteratively move 
to a better solution according to the cost metric. Among these algorithms, one of 
the best known is the Kernighan-Lin algorithm (K-L) [48]. Its partitioning process 
is illustrated in Figure 13.  

   
Figure 13.  Interchange of subsets in KL algorithm 

  
It is assumed that there are 2n nodes, and two initial equal partitions, each 

with n nodes, are formed. These are referred to as A0, B0. Then in each iterative 
step, pairs of nodes are chosen to swap between the two partitions to reduce the 
interconnection. For instance, in the iterative step m, subsets mX  from partition 
Am-1 and  Ym from partition Bm-1 will swap their positions to achieve a minimal cut 
cost.  

This algorithm can produce good results for small amounts of CPU time. It 
can also be used as the basis for solving general n-way partitioning problems. Its 
employment in the FSM partitioning for low power can refer to [20], where two-
way unbalanced K-L partitioning is used to minimize the total transition 
probabilities between two state sub-sets.   

Another widely applied iterative-based partitioning algorithm is the genetic 
algorithm [49]. The motivation behind its use is Darwin’s theory of natural 
selection in evolution where “superior” groups of a species produce more offspring 
in successive generation than “inferior” members. Its successful utilization in FSM 
low power partitioning can be found in [7]. However, the algorithm sometimes 
faces the problem of long running time. 

Hierarchical clustering algorithms [50] consider sets of objects and they 
group them according to given measures of closeness. For a specific problem, 
closeness is defined by the corresponding cost function, representing the possibility 
of clustering objects. For example, in the FSM partitioning problem for low power, 
the total transition probability between states is used as the closeness criterion. 
Two states having mutually high transition probability are called “close” and they 
are more likely to belong to the same sub-FSM. Algorithms for hierarchical 
clustering can be further divided into two classes, both of which are shown in the 
clustering tree of Figure 14, using arrows to represent different directions. 

Xm Ym

Am-1 Bm-1

Ym Xm 

Am Bm 
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Figure 14. Hierachical clustering tree 

  
The first class of clustering is in an agglomerative way (bottom-up). In the 

initial clustering solution, each object is itself taken as a single cluster. The 
algorithm continues by grouping two objects (single object or the object merged 
from single objects) and stops when all the objects are included in a single cluster. 
The second class of clustering is in a divisive way (top-down). It can be thought 
of as the reverse process of the agglomerative way. All objects are in a single 
cluster at the beginning and objects with the worst closeness are split in the 
subsequent steps.   

Actually, clustering itself is rarely the goal. However, hierarchical trees 
provide a means of organizing objects at different levels of granularity. If the tree 
is cut at a particular level, clusters with corresponding granularity can be extracted. 
A cut-line closer to the leaves of the tree generates more clusters and the states in 
each cluster are closer. A cut-line closer to the root generates fewer clusters and the 
states in each cluster are more distant. Iterative-based algorithms, meanwhile, are 
more effective for a smaller solution space with greater density [51]. Hence, if  the 
clustering algorithm is used initially followed by the iterative-based algorithm on 
the clusters obtained, better partitioning solutions can be expected, compared to 
those where only iterative-based algorithms are used. On this basis, in the FSM 
partitioning algorithm proposed here, a hierarchical tree integrating an iterative-
based algorithm is built firstly for further algorithm optimization. 

 The partitioning criterion in this case is to obtain a small cluster of states 
which are active most of the time. Meanwhile, the probability of the state 
transitions within a cluster should be high and the probability of the state 
transitions between two clusters (two sub-FSMs) should be low. A two-phase 
partitioning algorithm is employed. In the first phase, by recursively applying the 
K-L two-way partitioning, a hierarchical binary tree is built as shown in Figure 15. 
Depending on their state transition probabilities, states are divided into groups in 
order to minimize the inter-transitions between two groups. The complexity of this 
algorithm is O(n2logn). For the benefit of the second phase, the tree is built in such 
a way that the states in the left hand cluster are more likely to be active. The left-
most cluster for each level therefore has the highest probability of being active. In 
the second phase, an efficient algorithm is proposed that groups the clusters on 

Agglomerative Divisive 
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every level of the binary tree and generates a limited number of partitioning 
candidates. For n states, this algorithm finds the candidates ranging from 1-way to 
n-way partitioning with a complexity of only O(nlog3n). Further explanation about 
the algorithm can be found in [52]. 

 
Figure 15.  Bi-Partitiong hirarchical tree 

 
 
4.4 FSM SYNTHESIZER 

     In this stage, every partitioning candidate obtained from the partitioning 
algorithm is synthesized into a network of sub-FSMs. In the first instance, the 
original STG is partitioned and transformed to support the interaction between sub-
FSMs. Then state codes for low power are assigned to each state. Finally, the 
structure of the sub-FSM network is determined. The gate level implementation of 
the combinational logic for each sub-FSM is still unknown. But, for the 
asynchronous logic, its gate level implementation is decided in the synthesizer to 
prevent  glitches from the synchronous part of the decomposed FSM resulting in 
hazards to the asynchronous part.   
 
4.4.1 STG Transformation 

To illustrate the procedure of STG transformation, the FSM in Figure 16a) is 
divided into two sub-FSMs F1 and F2, with state subsets S1

 = {s1} in F1 and S2= {s2, 
s3} in F2. There are two crossing transitions between F1 and F2. A crossing 
transition is the state transition whose source state and destination state reside in 
different sub-FSMs. In order to be able to detect a crossing transition, an extra g-
state is introduced. A g-state is inside the sub-FSM which contains the source state 
of a crossing transition, but it has the same index as that of the destination state. 
After the STG transformation, two new state subsets are formed which are U1 = {s1, 
g2} in F1 and U2 = {s2, s3, g1} in F2. The transformed STG is shown in Figure 16b). 

Divisive 
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a) STG before transformation               b) STG after transformation 

Figure 16. STG before and after transformation 

 
The behaviour of a crossing transition  changes after the introduction of a g-

state.  The crossing transition s3 in F2 to s1 in F1 can be taken as an example. After 
introducing g1 in F2, the original transition is transformed via the following 
sequence of events: 

1) A synchronous state transition in the local state memory, from the source 
state of the crossing transition to the g-state, denoted as  s3→g1. 

2) An asynchronous state transition in the global state memory, from the g-
state to the original destination state, denoted as g1 → s1. Both these transition 
states have the same index. 

The entire crossing transition is completed within one clock cycle. The first 
event is synchronous because the local state memory is updated to the g-state at the 
active edge of the clock signal. s3 and g1 should be distinguished from the local 
state code when sharing the same global state.  

The second event is asynchronous because the global state memory is 
updated immediately upon detection of the transition in the g-state. The local state 
memory is only triggered by the clock signal and therefore remains unchanged. In 
this example, g1 and s1 share the same local state code whereas their global states 
are different. The global state is then used to deactivate the currently active sub-
FSM F2 and activate the sub-FSM F1 as the destination state of the crossing 
transition s1 , is to be found here. 

 Coupled states are used to indicate the g-state and its corresponding state 
which both share the same local state code. In Figure 16b), two coupled states (s1, 
g1) and (s2, g2) are then obtained. A formalized description concerning STG 
transformation can be found in [53]. 
 
4.4.2 State assignment for decomposed FSM 
      When synthesizing a network of sub-FSMs, state encoding is strongly related to 
the structure in which  the sub-FSMs are implemented. In other words, whether or 
not the sub-FSMs share the same state memory will greatly influence the state 
assignment strategy.  
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In [7], after partitioning, each sub-FSM has its own local state memory. 
Because there is no direct crossing transition  connecting the states in two different 
sub-FSMs in the sub-FSM network, it is possible to synthesize each sub-FSM  
separately. This state assignment problem  can be considered to be the same as for 
the  monolithic FSM. 

In contrast to the separate state memory method, Chow et al. [21] propose a 
decomposition model with shared local state memory. Additional state bits are 
added to decide which one of the sub-FSMs is active. For state encoding, they 
present a method that considers crossing transitions by introducing pseudo-outputs. 
A pseudo-output bit  represents a fanout-oriented relation imposed by the crossing 
transitions. For example, if there are crossing transitions that have the source states 
in the same sub-FSM and toward the same destination state, these source states 
should be assigned “close” state codes (in terms of Hamming distance). Transitions 
(rows in the state transition table) whose current states are these source states 
should have  a pseudo-output of “1”  added when all other transitions are given a 
pseudo code of “0”. Subsequently, all crossing transitions are deleted and Jedi [54] 
is used to perform low power state assignment for each individual sub-FSM.   

Both approaches described above assume fully synchronous 
implementations. Based on the decomposed FSM structure with mixed 
synchronous/asynchronous state memory, a state assignment procedure called 
state-bundling is proposed to address the low power state encoding problem.   

As mentioned in section 4.4.1, after the STG transformation, a group of 
coupled states is formed. The proposed state assignment begins from these coupled 
states because they are related to crossing transitions and should be assigned the 
same local state code. The whole procedure can be described in the following steps 
through the example in Figure 17. 

1) A state bundle table is built (see Table 1). Each row represents the states 
inside the same sub-FSM. Each column, named after a state bundle, includes states 
residing in different sub-FSMs with the same local state code. Binary encoding in 
incremental order is assigned to columns from left to right. The state bundle 
including g-states can be further referred to as the g state bundle. 

2) The coupled states are put into the table, as shown in Table 1.   
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Figure 17. STG example 

   
3) Rows in the table are sorted according to the duty time of their 

corresponding sub-FSMs (see Table 2). The duty time Ti represents the probability 
of the sub-FSM Fi  being active. Its value is decided by the sum of the static state 
probability of states in the sub-FSM, that is, 

i
iii SssprobT ∑ ∈= ),( where Si is 

the state subset of Fi
. The duty time of the sub-FSMs top down is in descending 

order after rearrangement. 

 
  

 4)  The coupled states are merged and two or more of them may possibly 
reside in the same column (see Table 3). The reason for merging is to reduce local 
state bits, which often results in lower power in the final implementation. The 
proposed algorithm ensures that the sum of the state probabilities of states in the 
first column is a maximum.   

B: b0 
000 

b1 
001 

b2 
010 

b3 
011

b4 
100

F1 s0 g1 - - - 
F4 - g1 g3 s4 g5 
F3 - - s3 g4 - 
F2 - s1 g3 - - 
F5 g0 -  - s5 
 

B: b0 
000

b1 
001

b2 
010

b3 
011 

b4 
100 

F1 s0 g1 - -  
F4 s4 g1 g3 g5  
F3 g4 - s3 -  
F2 - s1 g3 -  
F5 g0 - - s5  
 

Table 2. Sorted state bundle table  Table 3. After merging coupled states 

S0

S6 

S5 

S4 

S1 

F1 

F5 
F2     

S2 

S1 

F3 
F4

Duty time: T1>T4>T3>T2>T5 

Table 1. Initial state bundle table 
B: b0 

000
b1 
001

b2 
010

b3 
011 

b4 
100 

F1 s0 g1 - - - 
F2 - s1 g3 - - 
F3 - - s3 g4 - 
F4 - g1 g3 s4 g5 
F5 g0 - - - s5 
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5) Each coupled states is taken as a whole and its position is optimized by a 

greedy algorithm. If the states in two different coupled states have a high mutual 
state transition possibility, they are assigned the state codes for the least Hamming 
distance (see Table 4).     

6) Other states, not included in the coupled states, are finally put into the 
table in a greedy way. The Hamming distance of states with high transition 
probability is minimized (see Table 5).   

More details about the computational efficient state-encoding algorithm for 
low power can be found in Paper III. 

 
4.4.3 FSM decomposition structure 

Suppose the monolithic FSM has I as its input, O as its output and is 
partitioned into sub-FSMs F1, F2, ..., Fn. The original state subsets S1, S2, ..., Sn, in 
combination with the introduced g-states, form the new state subsets U1, U2, ...,Un 
in F1, F2, ..., Fn, respectively. All sub-FSMs share the same local state memory but 
have their own combinational logic. The general structure of the proposed 
decomposed FSM model is shown in Figure 18. 

The G state bundle Detection Logic (referred to as GDL) decodes the state 
bits in the Local State Memory (referred to as LSM). If a g state bundle is detected, 
a signal is sent to the Global State Memory (referred to as GSM). 

The GSM decides which is the current active sub-FSM. It is implemented as 
an asynchronous finite state machine. A Muller-C element [61] is used as the basic 
asynchronous element. A state transition in the GSM only takes place at the event 
of a crossing transition, in which case, a g-state will be detected. In a “well-
partitioned” FSM, the probability of crossing transitions is very low. Therefore, the 
GSM will be idle for most of the time and dissipate no dynamic power due to the 
inherent property of an asynchronous circuit. The state information in the GSM is 
directly used as the control signals to both the LSM and the combinational part 
(implementing the next state and primary output function) of the sub-FSMs 
(labeled F1, F2, ..., Fn in Figure 18). The state bits in the LSM can be selectively 
turned off via the clock gating logic controlled by the GSM.  

B: b0 
000 

b1 
001 

b3 
010 

b2 
011

F1 s0 g1 - - 
F4 s4 g1 g5 g3 
F3 g4 - - s3 
F2 - s1 - g3 
F5 g0 - s5 - 
 

B: b0 
000

b1 
001

b3 
010

b2 
011 

F1 s0 g1 - - 
F4 s4 g1 g5 g3 
F3 g4 s2 - s3 
F2 - s1 - g3 
F5 g0 s6 s5 - 
 

Table 4. g state bundle optimization  Table 5. Final state bundle table 
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At any given time, apart from crossing transition events, only one sub-FSM 
is active. The active sub-FSM is responsible for determining the primary output 
and the next local state. When deactivated, the inputs to the sub-FSM are disabled 
by AND gates and no dynamic power will be dissipated. The outputs of a 
deactivated sub-FSM are all blocked to zero. By using OR gates, the correct 
primary outputs and next state outputs can be obtained by collecting output 
information from all sub-FSMs. 

The structural information will be used in the power estimation function in 
the next section. 

 
 

Figure 18. Decomposed FSM structure with mixed synchronous/asynchronous  state 
memory 

 
 
4.5 POWER ESTIMATION 

      Power estimation is an indispensable component in the design process. In the 
early design steps, power estimation can help to avoid power violation of the 
design constraints. In synthesis practices for each level, power estimation can be 
combined into cost metrics to explore the design space between power, area and  
speed and assist in  choosing the design methodology most suitable for a given 
circuit.  
      The tradeoff in power estimation is between accuracy and running-time. At 
lower levels, more information can be obtained and more accurate power 
estimation can be made. However their corresponding computational costs are  
higher. SPICE, the circuit level simulator for power estimation, provides accurate 
power information. However, it cannot be used for a circuit that includes more than 
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thousands of transistors due to the computational expense. Therefore, the 
utilization of SPICE is limited to power analysis of the basic cell module. 

At the gate level, when the design layout has been determined, power 
analysis is based on the signal model to calculate the switching activity of internal 
nodes of the circuit. Both probabilistic and statistical techniques can be exploited 
[12].  

 At higher levels, the final hardware implementation is uncertain and precise 
information is absent, so it is more difficult to estimate the power. Only the RT 
level power estimation is focussed on in the rest of this section. 

At the RT level, [55] used the statistical modelling method for DSP circuits, 
where the basic models can be built as adders, comparators, registers etc. Power 
estimation is performed by combining the power coefficients of each model with 
the statistics of the circuit activity. The former are stored in the library database 
and the latter are derived from the simulation of specified input patterns. 

Another more general power estimation method is based on information 
theory, using entropy as a measure of circuit average switching activity [13]. It is 
known that the average power dissipation is proportional to the effective 
capacitance (see equation (2)), which can further be expressed as the average 
switching activity multiplied by the whole circuit capacitance. Nemani et al. [13], 
after reasonable approximation, concluded that:  

∝avgP HA×                                                                                                        (6) 
where A is an estimate of the circuit area,  representative of the whole capacitance 
of the circuit. H is the average value of entropy H(i) over all nodes i in the circuit 
and  represents the node average switching activity. After a series of deduction, H 
can be finally expressed as:  

)2(3
2

oi HH
mn

H +
+

≈                                                                                        (7) 

where Hi is the sum of node entropy of the inputs to the combinational logic. Ho is 
the sum of node entropy of the outputs to the combinational logic. n is the total 
number of inputs and m is the number of outputs.  

 To calculate the value of A, an area estimation model is proposed in [14]. 
Firstly a multi-output Boolean function is transformed to an equivalent single 
output function and then the associated complexity measure is computed. 

In the proposed tool, the power estimation function including structural 
information (see power estimator in Figure 10) is employed to every synthesized 
partitioning candidate. The best candidate with the lowest power will be chosen as 
the input for the code generator. The purpose is to find a candidate with the actual 
lowest power and which is also  the candidate with the lowest estimated power.  
Therefore, the absolute difference between the actual power and the estimated 
power is not important.  
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In this decomposed FSM model, the power of the combinational logic of 
each sub-FSM is estimated using this entropy-based method. The area A associated 
with each  sub-FSM is computed directly from the state transition table for the sake 
of simplicity. As for the other parts, their power estimations are straightforward 
since their gate level implementations are known.   
Power estimation for combinational logic: 

As mentioned, the power estimation of the combinational logic is made via 
the state transition table, together with entropy. It can be represented as: 

itechi

n

i
icomb TkRowHP ×××=∑

=1
                                                                        (8) 

where Hi is the entropy of the combinational logic implementing sub-FSM Fi. Rowi 
is the number of rows in the state transition table with source states in Fi. ktech is an 
empirically determined constant to adjust to the cell library used. Ti is the duty 
period of Fi . 
 
Power for global state memory: 

For the global state memory, an empirical model is used based on the 
structure of the memory. Even though the gate-level implementation is known, it 
proved more accurate to use the macro model shown below  consisting of two parts 
representing the power of a) the logic that detects and initiates the transition from 
one sub-FSM to another and b) the asynchronous state memory element: 

|)|( _ gkpkpkP gGGBLSMBGSM ×+×+×=           a) 

               i

n

i
C TP ×+∑

=1
                                                b)                                        (9) 

The expression inside the parenthesis estimates the power in the global state 
transition function which is a function of the local state and the global state. The 
first term represents the contribution from the local state memory where pLSM_B is 
the toggle probability of local state bits. The second term represents the 
contribution from the global memory where pG is the sum of toggle probabilities of 
the g states. A g state is a local state that initiates a global state transition. The third 
term represents the complexity of global state transition logic where |g| is the 
number of g states.  

The sum b) represents the contribution from the global state memory devices, 
implemented as muller-C elements where Ti is the probability of global state 
transition, i.e., the probability of a crossing transition between different sub-FSMs. 
The number of sub-FSMs is denoted by n. The constants are determined 
empirically based on a single FSM partitioning run.  

  
Power for D type flip flop: 

The local state memory consists of a set of D flip-flops and its power is 
estimated by: 
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∑
=

×=
m

i
iDffLSM TPP

i
1

                                                                                               (10) 

where Ti is the duty time of the flip-flop, m is the number of local state memory 
bits. 
 
Power for clock net energy: 

The power dissipation in the clock net is estimated by: 

wirebufferddclkinclock kkVfCFFP ×××××= 2||                                                       (11) 

where |FF| is the average number of flip flops clocked, Cclkin is the capacitance of 
the clock input, Vdd is the power supply voltage, f is the clock frequency, kbuffer is 
the clock buffer capacitance coefficient, and kwire is the wire capacitance coefficient. 
 
Power for overhead: 

gatedDffgatedComoverhead PPP +=                                                                                 (12) 

where PgatedCom includes the power of AND gates to activate and deactivate the 
combinational logic, as well as the power of OR gates for merging the outputs. 
PgatedDff is the power to activate and deactivate the local state bits and basically 
originates from NAND gates. 
 

The power dissipation for the whole partitioned FSM is simply a sum of the 
above: 

overheadclockLSMGSMcombwhole PPPPPP ++++=                                                    (13) 

The verification of the cost function can be found in [52]. 
 

4.6 RT LEVEL CODE GENERATOR 

For the best partitioning candidate with the estimated lowest power, the 
proposed automatic synthesis tool outputs RT level VHDL code and synthesis 
scripts, both of which can be used directly as inputs for a standard logic synthesis 
tool for gate level optimization .    

The automatically generated VHDL file includes the detailed 
implementation information of the decomposed FSM. For the state memory and 
overhead circuit, the gate level implementation is defined in the file based on cell 
library dependent information. In the main it is the combinational logic of sub-
FSMs which can be further optimised at gate level. The synthesis scripts provide 
the constraints and instruction for the logic optimization.  

Both the gate level area and power estimation are performed using  Power 
Compiler (Synopsys), assuming a supply voltage of 1.8V and  a clock frequency of 
20MHz. The area estimation is based on the cell area and the target technoglogy is 
0.18µm CMOS circuit. The overall power dissipation at gate level is obtained by 
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dividing the decomposed FSM into several parts, synthesizing each part separately 
and then adding their power dissipations together. The combinational logic of each 
sub-FSM, for example, is synthesized separately and has its own power dissipation 
report. Because the logic syntheis tool only supports the synchronous design, for 
the asynchronous element (muller-C in this case), its gate level power estimation is 
assumed to be the same as the value computed by the cost function b) in equation 
(9).  

 The effectiveness of this tool is verified via a series of benchmarks. For all 
of them, the power consumption in the decomposed FSM is significantly reduced 
by an average of 56% compared to the original unpartitioned FSM. 
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5 SUMMARY OF PUBLICATIONS 

The three papers included in the thesis can be categorized in two groups: 
1. Initial concept and mathematical formulation. 
2. Developed automatic synthesis tool refinement. 
Section 5.1 and 5.2 outlines the content of every paper and Section 5.3 presents the 
contribution of each author to the papers. 
5.1 INITIAL CONCEPT AND MATHEMATICAL FORMULATION 

5.1.1 Paper  I 
In this paper a design model based on mixed synchronous/asynchronous 

state memory is proposed that results in implementations with low power 
dissipation and low area overhead for partitioned FSMs. The state memory here is 
composed of the synchronous local state memory and asynchronous global state 
memory, where the former is used to distinguish the states inside a sub-FSM, and 
the latter is responsible for controlling sub-FSM communication.   
  
5.2 DEVELOPED AUTOMATIC SYNTHESIS TOOL REFINEMENT 

Two papers cover issues related to procedural refinement inside the 
developed CAD tool for synthesis of low-power partitioned FSMs. They focus on 
FSM partitioning method and state encoding optimization individually. 

 
5.2.1  Paper II 

This paper presents FSM partitioning algorithms and RT-level power 
estimation functions that are the key issues in the tool. The proposed n-way 
partitioning algorithm with low complexity may also be used for general 
synchronous partitioning method. The accuracy of the power estimation functions 
is verified by standard benchmarks.  
 
5.2.2 Paper III 

This paper presents state encoding techniques for a partitioned FSM 
structure based on mixed synchronous/asynchronous state memory. The state 
memory is composed of synchronous local state memory and asynchronous global 
state memory. One hot encoding is used inside asynchronous global state memory 
for low complexity and low power. For the local state assignment, a procedure 
named as state-bundling is presented to enable states residing in different sub-
FSMs to share the same state codes. Two state-encoding techniques, one based on 
binary encoding and one optimized for low-power consumption, are compared. 
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5.3 AUTHOR’S CONTRIBUTIONS 

The contribution of the author is essential to all the papers presented in the thesis. 
The exact contribution of each author is specified in Table 6.  

Table 6. Author’s contribution  (M = main contributor, C = co-author). 

Paper  
# 

CC1 MO2 BO3 Contributions 

I M  C CC : Implemented the automatic synthesis 
tool of FSM decomposition model 
BO: Outlined the concept of mixed 
synchronous/asynchronous state memory 
and Supervisor 

II M C C CC:  Developed the tool and specified the 
power estimation function 
MO: proposed the “candidate generation”  
algorithm 
BO:  Supervisor 

III M   C CC: Proposed the state encoding 
optimization method 
BO: Supervisor 

1. Cao Cao 
2. Mattias O’Nils 
3. Bengt Oelmann 
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6 THESIS SUMMARY 

This thesis proposed the concept and implementation structure of FSM 
decomposition based on mixed synchronous/asynchronous state memory. Key 
issues in the design of the CAD tools for the synthesis of low power decomposed- 
FSMs are also discussed.  

A general introduction to the research area, the motivation, and the specific 
problem description of the thesis, are given in Section 1. Section 2 gives an 
introduction to the related research work. Section 3 introduced the special mixed 
synchronous/asynchronous design architecture. Section 4 presented the tool 
developed for automatic synthesis.  Section 5 summarizes the three papers covered 
by the thesis and identifies the original contribution for each paper. 

In this chapter, section 6.1 summarizes the conclusions reached during the 
research work on this thesis. Suggestions for future work are presented at Section 
6.2. 
 
6.1 CONCLUSIONS 

6.1.1 Design model of mixed synchronous/asynchronous state memory 
A novel design model for partitioned FSMs based on mixed 

synchronous/asynchronous state memory is proposed. The basic idea is to have 
synchronous memory in the part always clocked, i.e. the local state memory; and 
asynchronous memory for the global state memory, which has a low probability of 
being updated. In this way, the global state memory adds very low power-overhead. 
In spite of the internal asynchronous operation, the input/output behaviour of the 
decomposed FSM is equivalent to the original synchronous one.   
 
6.1.2 Design flow of the automatic synthesis tool  

The developed CAD tool fits into a standard-cell based design flow. It takes 
an STG as input, transforms it and generates synthesizable RT-level VHDL code 
that is fed to a standard logic synthesis tool. The effectiveness of the tool was 
demonstrated by benchmarks [Paper II] with an average power reduction of 56%. 
The best result was a power reduction in excess of 70%. 
 
6.1.3 FSM partitioning algorithm and RT level power estimation function 

A novel multi-way partitioning algorithm for partitioned FSM synthesis is 
proposed in the developed CAD tool. It was applied to a mixed 
synchronous/asynchronous architecture but can also be used for fully synchronous 
implementations. The proposed algorithms are of low complexity which is 
important when it comes to the practical usage of the tool.  Among the partitioning 
candidates obtained from the algorithm, RT-level power estimation functions are 
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proposed with efficient accuracy for selecting the candidate with the lowest power 
consumption. 
 
6.1.4 State encoding optimization 

 A state encoding algorithm for the partitioned FSM composed of inter-
connected sub-FSMs with shared state memory was proposed. The algorithm takes 
the properties of partitioned FSMs and the constraints imposed by the 
implementation architecture into account. Further power reductions can be 
achieved for certain benchmarks after state assignment optimization. However, it is 
not possible to benefit much from the state encoding optimization compared to the 
method of FSM partitioning. Asynchronous state memory, idle condition detection 
logic, and the shut-down logic have already been established before state encoding 
and their power can not be reduced.  The sub-FSM with the high possibility of 
being active often has few state bits, which is also unlikely to be optimized.  
 
6.2 FUTURE WORK 

To further explore the concept of finite-state machines based on mixed 
synchronous/asynchronous state memory, more detailed studies on the techniques 
presented in thesis have to be conducted as well as expanding the studies to issues 
not covered in this thesis. The following issues are to be addressed in future work: 

• Formalized description of the asynchronous state memory 
In [Paper I] the asynchronous state memory bit for two-way partitioned 
FSMs is proposed and is actually an SR-latch. In [Paper II] the 
asynchronous state memory bit for an N-way partitioned FSM is a Muller-
C element. Even though it has been demonstrated that these asynchronous 
state memory bits work very well in simulations, it has proven necessary to 
provide a formal description of their behaviour in order to allow synthesis 
for  applications other than the type of FSMs discussed in this thesis. One 
such application could be locally clocked FSMs with datapath (FSMDs) 
using asynchronous interaction. 
 

• Timing analysis of the asynchronous memory 
The delay penalty for the partitioned FSMs has not been addressed in this 
thesis. A partitioned FSM composed of two or more sub-FSMs has a 
critical timing path that in most cases is smaller in  comparison to the 
monolithic FSM. However, the delay in the asynchronous state-memory is 
added to the delay in the next-state function of the sub-FSMs for the 
crossing transitions. How the partitioning affects the critical timing path is  
not known at present and requires  further investigation. 
 

• Power-area tradeoffs 
For all synthesis results reported in this thesis, the optimizations are not 
constrained by area. It might prove possible to achieve power reductions 
close to those  reported but with much lower area-overhead. Due to the 
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large difference in the complexity of the asynchronous state memory 
between a two-way partitioned FSM and an FSM with more than two 
partitions, large savings in area and possibly faster circuits can be obtained 
by two-way partitioning. 
 

• Benchmarking of power in FSMs 
Evaluating RT-level synthesis tools is quite difficult since the optimization 
results are highly dependent on the benchmark circuits used. For the 
evaluation of the power optimizations, the input data probabilities are of 
great importance. Even though  standard MCNC benchmark circuits were 
used for all the developing tools for FSM optimizations,  sufficient results 
to ensure  fair comparisons to others reported in the literature were not 
found. For these benchmarks, no “typical” input patterns or input 
probabilities are specified which makes it almost impossible to compare 
results from two different tools. It is also difficult to make any general 
conclusion for an optimization tool. For example, it is not possible to say 
that this given  tool gives good results for FSMs with certain characteristics 
but cannot handle FSMs with other characteristics. This is a common 
problem for all developing tools for power optimizations of FSMs and is 
not specific to this work. A first attempt to address this problem was 
presented in [64] by having an FSM benchmark generator tool. This tool 
could generate synthetic FSMs with characteristics specified by the user. 
Unfortunately this tool does not allow specification of state transition 
probabilities, which makes it of no interest for researchers developing 
power optimization tools. The belief is  that a similar benchmark generator 
including specification of the characteristics for the state transition 
probabilities would be of great interest for those developing FSM power 
optimization tools. 
 

• Formal verification of FSM transformations 
The functional equivalence of a transformed FSM and the original FSM 
description has been verified through extensive simulations. A formal 
verification would provide a more rigorous proof of functional equivalence.  
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