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ABSTRACT

The rapid development of digital circuits with high density and frequency
motivates power, in addition to area and speed, to become an important parameter
in design constraints. Nowadays, the electronics design industry is confronted by
increasingly costly package and cooling systems due to power dissipation. Battery-
powered portable devices, such as laptops, mobile phones etc., which provide
higher computational capacity and support multi-media information transformation,
greatly increase the previously rather small power budget. As synchronous digital
design has, over the past few decades, become the industry standard, this new
challenge means that asynchronous design techniques must now be reconsidered,
as they possess the potential for a reduction in power dissipation.

Finite state machine (FSM) partitioning proves effective for power
optimization. In this thesis, a mixed synchronous/asynchronous state memory
structure in the decomposed FSM is proposed, which results in implementations
with low power dissipation and low area overhead. The state memory is composed
of the synchronous local state memory and asynchronous global state memory,
where the former is used to distinguish the states inside a sub-FSM, and the latter is
responsible for controlling sub-FSM communication. Although asynchronous
communication mechanism is introduced between sub-FSMs, the input/output
behaviour of the decomposed FSM is still, cycle by cycle, equal to a complete
synchronous one. Power consumption can be further reduced by using a clock
gating technique and low power state assignment.

Based on this mixed synchronous/asynchronous structure an automatic
synthesis tool was developed, which accepted state transition graph (STG) as input
and outputted synthesizable VHDL code that can be directly used for logic
synthesis. An FSM partitioning algorithm, power estimation functions and state
encoding optimization aimed at this specific structure are also integrated into the
tool to find low power partitioning within a reasonable run time. The effectiveness
of the whole procedure is verified through optimization of standard benchmarks
where a power reduction of up to 70% has been demonstrated.
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1 INTRODUCTION

1.1 MOTIVATION FOR LOW POWER

Historically, digital integrated circuit design focused on the optimization of
area and speed. Power consumption was often of secondary concern. In recent
years, however, there has been a rapidly growing interest in low power design.
Among the factors contributing to this trend, one most remarkable driving force
stems from the portable consumer electronics applications.

The portable consumer electronics market continues to develop at a rapid
rate. Laptop computers, cellular phones, digital video cameras etc., all of these
portable devices require powerful systems that run on lightweight battery packs.
Reducing power consumption is obviously a primary concern here for prolonging
the operational life of a particular battery technology.

Besides portability, the more generic motivation for low power originates
from the heat dissipation problem. Nowadays, high-end products, such as
microprocessors, are designed with increasing circuit integration and faster clock
frequencies. Subsequently, the magnitude of power per unit area is growing and a
considerable amount of heat is generated. High temperature can affect the
reliability and shorten the lifetime of such systems. To address this problem, either
costly packaging technology or cooling devices should be introduced, or, the chip
has to be divided into several chips, which thus directly limits the circuit
integration capability. In [4], it was concluded that the constraint facing
microprocessors with reference to the die size is introduced by the power
dissipation and not the fabrication ability.

As a result, present day circuit designers must explore area, speed and power
to find suitable solutions. The available choices are expanded and in the meantime
the required complexity is also increased.

1.2 SOURCES OF POWER DISSIPATION

CMOS circuits (which combine PMOS and NMOS transistors) are the
dominant technology for modern high-performance digital electronics. The average
power consumption of a CMOS circuit can be modeled by the following equation:

Py =P +P +PR

switcing short _ circuit leakage (1)

The first term represents the switching power component. In a circuit, it can be
expressed as:

1 N
Paithing = Evdd ’ fon z o;C, (2)
i=L

g:



whereV,, is the supply voltage, f, is the clock frequency, ¢; is the average
number of logic transitions of node i per clock cycle, and C, is the loading
capacitance at node i. When V, and f, are settled, the power reduction stems

N

from the reduction of ZaiCi , denoted as the effective capacitance in the rest of
i=1

the thesis.

The second term is due to the direct-path arising when both the NMOS and
PMOS transistors, in a static CMOS gate, are simultaneously conducting and a
short-circuit current is going directly from the supply to the ground.

The final term originates from various leakage currents that exist for idle
CMOS gates. It should be noted that leakage power has become an important
component for the whole power dissipation and will be comparable to the
switching power as the feature size continues to decrease [1].

Because P is still the dominant term in static CMOS gate circuits [2],

switching
in this thesis, only the switching power (or dynamic power) is considered. In the
rest of the thesis, the word “power” means switching power if not specified.

1.3 LOW POWER DESIGN METHODOLOGY

Low power design can be performed at all levels of abstractions. Typical
abstraction levels, in descending order, are shown in Figure 1. They are system,
architecture (or algorithm), register transfer (RT), gate, circuit and technology
levels. The most commonly used power optimization techniques at each level are
also shown.

At the system level, since the system can be viewed as a hardware platform
executing software program, a partitioning strategy, which decides whether a task
should be implemented in the hardware or the software, can be exploited to
minimize power dissipation [3]. Power management schemes can also be used to
shut down the idle system (or the system’s various components) to reduce power
[5]. In [9], power management is applied to a digital signal processor (DSP) design.
As a result, the power consumption of the DSP in idle-mode was less than 1/10 of
the original un-optimized one.

It is apparent from Equation (2) that reducing the power supply voltage can
decrease the power quadratically. However, when the supply voltage is reduced,
the power-delay product of CMOS circuits also decreases and the delays increase
monotonically. To compensate for the speed penalty introduced by voltage scaling,
at the architecture level, transformations, such as pipelining and parallelism [12],
are employed to increase the level of concurrency.

At the RT level, a circuit can be considered to be the sequential logic,
composed of the memory elements (registers) and functions responsible for
determining not only the state but also the data computation. Power optimization at
this level can be roughly categorized into two classes. One class is state assignment
and the other is an extension of the dynamic power management from the system
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level to the RT level [5]. More details with regard to the dynamic power
management at the RT level will be given in the following chapters.

>
>

Opportunity to Influence Power

I
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>

System
Paritioning,power management,etc

Achitecture
Parallelsim,pipelining,etc

RTL synthesis
Clock gating,state encoding,etc

Gate and circuit
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Aoeanooe uolnewnss Jamod

Technology

Low

Figure 1. Design abstraction level

At the gate and circuit levels, logic optimization methods, such as transistor
reordering, can be used to reduce switching activity and subsequently reduce
power dissipation [10]. Design styles of global signals, such as bus architecture
configuration, can result in low power implementations by reducing the physical
capacitance [59].

At the technology level, methods such as reducing both the threshold voltage
and power supply voltage and scaling transistor sizes [11] can be used for low
power design.

14 POWER-CONSCIOUS SYNTHESIS TOOL

Computer aided design (CAD) plays an important role in the development of
integrated circuits. When transistors can be counted in millions in contemporary
circuits, it is impossible to synthesize manually without the assistance of CAD
tools.

A complete synthesis flow from the behavioural specification to the final
fabrication is shown in Figure 2. Each synthesis step translates a description of the
circuit to an optimized description at a lower level. At each level, estimation for
area, timing (speed) and power can be incorporated into the synthesis process to
verify whether or not the solution satisfies the design’s constraints.

Because area and speed have, for a long time, been the major design
concerns, a number of industrial standard synthesis tools are associated with these



areas. In contrast, power-conscious synthesis tools are a relatively new area and the
focus has been primarily at lower levels.

In general, when optimizations are introduced at the higher abstraction levels,
larger power reductions can be expected [2] since the design space to be explored
is larger. However, the accuracy of the power estimation is in inverse proportion to
the design space. The lower the level, the more information is available regarding
the implementation of the design (see Figure 1). Therefore, when the possibility of
employing a global strategy to achieve significant power reduction at higher levels
exists, the lack of detailed implementation information makes it difficult to
evaluate the quality of the strategy. Based on the above, power-conscious tools at
higher levels are more significant, but also more difficult.

For power analysis (or estimation), mature commercial tools such as SPICE
and PowerMill are available at the circuit and gate level and they provide accurate
power values. However, the solutions at higher levels come mainly from academia
[62].

As to power optimization, although considerable methodologies have been
proposed [12], an industry standard framework for synthesizing low power circuits
has not yet been developed. Synopsys can be used for synthesizing low power
circuits at the gate level. However, the framework is designed to fulfil area and
speed constraints, so necessary critical information for power estimation and
optimization is not considered in the power-conscious procedure.

As an effort to provide a comprehensive environment for low power design,
in this thesis, an automatic synthesis tool at the RT level is presented incorporating
power analysis and optimization.
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2 FSM LOW POWER DESIGN

At the RT level, a design synthesized from a higher level can be viewed
upon as an interacting system composed of two parts: controller and datapath.
Given that the controller is always running, it may consume a great deal of power
(about 40% of the total power is consumed in the controller [40]). Since the
controller is often implemented as finite state machines (FSM), the power
reduction problem reformulates to FSM power minimization. In this chapter, a
background concerning FSM is presented (section 2.1), followed by the two most
important design aspects targeting FSM power optimization, that is, the application
of dynamic power management at the RT level (section 2.2) and state assignment
optimization (section 2.3).

2.1 FSM FUNDAMENTALS

The general structure of a design at RT level is shown in Figure 3. It consists
of a datapath that is a network of ALUs (arithmetic logic units), multiplexers,
registers and busses, responsible for data storage and manipulation. The controller
is represented as the FSM that controls data transfers in the datapath.

Controller E Datapath

FsM F 12|

Figure 3. RT level design structure from [58]

The name of finite state machine (FSM) comes from the fact that it consists
of a finite number of states and its formal definition can be found in [18]. As
shown in Figure 4a), state transition graph (STG) is widely used to describe the
behaviour of an FSM, where every state is labeled as a node with a unique



symbolic name and the state transitions among them are represented as edges with
input and output values.

In N Combingtiona] O.Ut
Logic
Registers

Clk ‘}

Figure 4. FSM representation

From a circuit point of view, it is shown in Figure 4b) that FSM is normally
implemented as a synchronous model composed of combinational logic and
registers. In every clock cycle, the combinational logic is responsible for
calculating the next state and output value while the registers store the updated
state information.

2.2 DYNAMIC POWER MANAGEMENT
2.2.1 Introduction

Benini et al. proposed the concept of dynamic power management [5]
which is based on idleness exploitation. Normally, systems are designed to meet a
certain peak performance that is only required for a small portion of its entire
operational time. Therefore, parts of the circuit are often temporarily idle. There
are also situations where operations, known in advance, will never be executed at
the same time, which thus always leads idle units being available. In these
situations, dynamic power management may be successfully used. Firstly, it highly
accurately detects idleness; secondly it rapidly shuts down the idle resources and
forces it to a state where power dissipation is as low as possible. Since a power
management scheme is able to eliminate a fraction of the useless switching activity
that consumes power without producing useful results, it proves to be effective at
various levels of abstractions. Its exploitation at the RT level is the main focus of
the rest of this section.

2.2.2 FSM idleness exploitation

Many FSM low power methods can be collectively viewed upon as the
exploitation of idleness, internal or external. When outputs of an FSM are
observable to primary outputs but remain unchanged, internal idleness can be
exploited. In [6], under the condition of self-loops where both state and primary
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output values remain constant, the whole FSM can be shut down after adding state-
holding mechanism.

When an FSM is decomposed into sub-systems, the output of a sub-network
may change but not influence the primary output. In this case, external idleness can
be exploited. As opposed to internal idleness, external idleness is induced by the
environment, and depends on the entire output behaviour of the system. For
example, in [19], after introducing pre-computation methodology, the original
synchronous network is decomposed into two sub-networks. One of them is
unconditionally clocked while the other can be conditionally shut down if the
calculation performed is irrelevant to the network output, that is, externally idle.

A more aggressive method of exploiting the external idleness of FSM is FSM
decomposition. The original FSM is partitioned into two or more sub-FSMs where
only one of them is active at a time and others can be deactivated without
consuming power since their outputs are unobservable (or irrelevant) to the
primary outputs [20]. The partitioned FSM is constructed in such a way that each
of the sub-FSMs constitutes a smaller effective capacitance than the original FSM
and consequently power can be saved.

2.2.3  Shut-down circuitry

To prevent idle components from consuming switching power, dynamic
power management techniques disable the clock signal or, make input values to the
parts not in use remain constant. Mechanisms for detecting when the unit is idle
then shutting it down must therefore be added to the design. Circuits responsible
for handling this mechanism will constitute a functional overhead and will
consequently contribute to the increased circuit area, additional power consumption,
and possibly reduced performance. Careful analysis must be undertaken so that the
introduction of circuits for power management will contribute to as little power
consumption as possible.

2.2.3.1 Clock gating

As shown in Figure 5, the clock gating logic (CL) accepts the clock signal
Clk and the control signal CNTRL as its inputs and generates the gated clock signal
(Gclk) as its output to control the update of registers. When the gated clock is
stopped by CNTRL, power consumption can be minimized in combinational logic
because the flip-flops are not triggered on any rising clock edge, hence their
outputs remain unchanged. The disadvantage of this method is that the presence of
a gate in the clock line usually increases clock skew, which may cause problems in
high performance design [6].

11



CNTRL— L | Gelk | Registers
Clk

Figure 5. Gated clock for shutting down

2.2.3.2 Input disabling

In Figure 6, combinational logic can be selectively turned off by the input
disabling logic (IL), which consists of transparent latches with an enable signal EN.
When units are executing useful calculation, EN makes the latches transparent,
thus permitting normal operations. If this does not occur, the latches retain their
previous state and no transitions propagate through the inactive units. This method
is called the guarded evaluation in [23] where both a theoretical framework and
algorithms, which automatically decide when the logic units performing useless
calculations should be shut down, are provided.

Compared with the clock gating technique, this method is less power
effective because the power in the clock line is not saved. However, in the case
where two functions share the same register but never work simultaneously, the
register should remain active and the clock gating methodology cannot be
exploited. By disabling the input to each function, it is still possible to reduce the
power. Also, an input disabling strategy is safer than clock gating when
considering timing issues. Note that in either method it is impossible to avoid
leakage power as it does not depend on signal transitions.

Combinational Out

[n L .
logic

EN

Figure 6. Disabled input for shutting down

2.3 STATE ENCODING

State encoding, which strongly influences the final realization of an FSM,
has been an active research area for decades. Until the early 1990’s, its main
objective was towards area optimization for two-level or multilevel logic [24]. The
requirement for low power, high computing portable systems determined the
current focus on state assignment optimization for power. Generally, the search
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area for state encoding is too large to explore, therefore, approximate methods,
depending on pre-logic cost functions, are used to obtain the optimal solution.
From Equation (2) it can be seen that dynamic power is related to both area
(the total number of nodes) and switching activity, therefore, state encoding for
low power is, to some extent, more difficult than for area minimization. To
simplify this problem, in [26], the cost function assumes that power consumption is
proportional to the switching activity of state bit lines. The problem concerning
power reduction is reformulated to reduce the Hamming distance of state
transitions that have a high probability. Both minimum length [8] and non-
minimum encoding are subsequently developed [27]. In [29], two code lengths are
used in the same state machine. After the introduction of the Huffman coding
algorithm, states that are highly probable of being active are coded with less than

ﬂog|S|—‘ state bits, where |S]| is the number of states. Other states, which have less

likelihood of being active, are assigned state bits greater than [Iog|S|—‘.

Since reducing switching activity in state lines does not always lead to
reduced power in the combinational logic, efforts are also being made to take area
into account. Among them, Benini et al [8] adds the area constraint to the cost
criteria and explores the trade-off between computation complexity and the quality
by using different algorithms. Olson et al [31] use the linear combination of the
switching activity and the number of literals as the cost function. Tsui et al [30]
propose the power model, considering switching activity and capacitive loading
simultaneously. All the above state encoding methods aim at monolithic FSM
optimization. Low power state assignment in decomposed FSM will be further
discussed in chapter 4.
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3  MIXED SYNCHRONOUS/ASYNCHRONOUS STRUCTURE

In terms of operation mode, digital circuits can be classified into two
categories: synchronous and asynchronous. In synchronous circuits, information
storage or process is orchestrated by one global signal, called the clock signal.
Conversely, asynchronous circuits remove the clock signal and locally generated
timing signals are used to ensure proper control of the sequence of events.
Nowadays, even though synchronous systems dominate the circuit design field due
to their simple rules, asynchronous systems are being looked as an increasingly
viable alternative to purely synchronous systems. In this chapter, the advantages
and disadvantages of both classes are discussed from various design perspectives
(section 3.1), then the concept of mixed synchronous/asynchronous design as well
as its implementation is presented (section 3.2).

3.1 SYNCHRONOUS AND ASYNCHRONOUS DESIGN COMPARISON

With the rapid development of digital circuits, the limitations facing purely
synchronous designs offer asynchronous designs the possibility to realize their
potential. The understanding of the properties of both operational modes from
various design aspects enables the design space to be explored more freely and
reveals the reason behind mixed synchronous/asynchronous design.

= Design efficiency

In a synchronous system, a designer can simply define the combinational
logic necessary to compute the given functions, and surround it with latches (or
registers). By setting the clock rate to a long enough period, all worries about
hazards (undesired signal transitions) and the dynamic states of the circuit are
removed. However with asynchronous systems, a great deal of attention must be
paid to the dynamic state of the circuit. Hazards must also be explicitly removed
from the circuit or, not introduced in the first place, to avoid incorrect results [32].
The ordering of operations, which is fixed by the placement of latches in a
synchronous system, requires careful execution through the asynchronous control
logic. As reducing the design cycle is a necessity in the present intense industrial
competition, the overwhelming design efficiency of the synchronous circuit means
that it constitutes the bulk of commercial practices as well as CAD tools.

= Clock skew problem

Clock skew is the difference in arrival times of the clock signal in different
parts of the circuit and it restricts the maximal frequency achievable by the clock.
In current high speed, highly complex circuits, it is very costly to limit the clock
skew to an acceptable range and sometimes systems have to be slowed down to
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accommodate the skew. This problem has already been noted in [33]. In the design
of DEC Alpha CPU, keeping the clock skew within 300 picoseconds results in a
clock driver circuit that occupies 10% of the circuit area and consumes over 40%
of the power. For asynchronous circuits, which by definition have no globally
distributed clock, this problem does not exist. As feature sizes decrease, the clock
skew problem, which is inherent in the synchronous design, will become more
serious in the future.

= Area

To provide glitch or hazard free outputs in the timing constraints,
asynchronous design must introduce extra logic. Also, the control signals necessary
for initializing an action or denoting the completion of the action [34] make the
asynchronous system generally larger than its functionally equivalent synchronous
counterpart. The generation of area overhead may cause performance degradation
or, consumes considerable power.

= power

Standard synchronous circuits have to toggle clock lines, and possibly
precharge and discharge signals, in portions of a circuit that remain idle in the
current computation. Although power management can partially remove the
wasteful power dissipation, it only works at a course granunarity and introduces
area overhead. Asynchronous circuits, by their nature, only activate the units
currently involved in useful calculation and therefore result in lower power
solutions [35].

=  Performance

Synchronous circuits must wait until all possible computations have been
completed before latching the results, so the chosen fixed clock period must
accommodate the worst-case timing condition. Average-case or best-case
performance can not be explored. Many asynchronous systems, on the other hand,
sense immediately when a computation is complete. This inherent adaptivity
allows them to exhibit average-case performance. For circuits where the worst-case
delay is significantly worse than the average-case delay, an asynchronous
implementation can result in a better performance [36]. But it should also be noted
that asynchronous circuits generally require extra time due to their signaling
policies, hence cause an increase in the average-case delay. Whether this cost is
greater or less than the benefit differs from case to case.

= Technology migration potential

During their lifetime, integrated circuits are often implemented in several
different technologies. Early versions of systems may be implemented using gate
arrays, while later products may migrate to semi-custom or custom ICs. Greater
performance for synchronous systems can often only be achieved by migrating all
system components to a new technology, since again the overall system
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performance is decided by the longest path. In contrast, many asynchronous
systems are able to migrate only the more critical system components in order to
achieve higher performance, since performance is based on the currently active
path. Furthermore, the adaptivity of asynchronous systems makes it possible for
components with different delays to be combined into a larger asynchronous
system without any special structural alteration, whereas careful analysis is
required for synchrnous circuit. The modularity in asynchronous circuits is
demonstrated in [37].

=  EMI and noise

Without the clock, noise and electro magnetic interference (EMI) spectrums
are significantly flatter across the entire frequency domain. According to McCardle
et al. [38], there can be a 10-dB drop in noise in an asynchronous processor. Until
recently, EMI and noise metrics were ignored when area, speed or power were
being considered. But EMI and noise metrics are now attracting more attention
due to two emerging applications: mixed-signal design and smart cards. In the
former, analog functions are particularly sensitive to clock-correlated, digital
switching noise. Reducing noise and EMI will significantly boost both precision
and performance. In the latter, EMI has a significant impact on security. Non-
invasive security attacks depend on monitoring a smart card’s power usage, or EMI
signature, to extract key information on the card. Even distribution of circuit-
switching activities in the asynchronous system obviously improves security [39].

Even though asynchronous design is not the mainstay of commercial
practice, its beneficial properties with regards to low power, low noise etc.,
suggests that instead of having completely synchronous systems the introduction
of asynchronous methodology offers great potential for the future. This confidence
has also acted as the inspiration for the research on mixed
synchronous/asynchronous design, dealt with in greater detail in the next section.

3.2 MIXED SYN/ASYN APPLICATION FOR LOW POWER

Industrial standard asynchronous CAD tools are far from mature and the
temporal trends in mixed synchronous/asynchronous design thus involve the
exploitation of some proven benefits of the asynchronous circuit in a largely
synchronous environment. In this case, the widely accepted synchronous system
design methodology can be utilized and the asynchronous design can be taken
advantage of simultaneously. In this section, the mixed design concept at the
system level is introduced. After the comparison between two different
implementation models of the state memory is given, an RT level mixed
synchronous/asynchronous design method is proposed.
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3.2.1  System level mixed synchronous/asynchronous design

In a synchronous circuit, the clock signal connects every part, registers,
latches and also the pre-charge and evaluation transistors of dynamic gates. These
elements constitute a huge capacitance load on the clock line which is further
added to by the capacitance of clock wire itself. The total capacitance in the clock
line makes the clock net power dissipation in a high frequency circuit unacceptable.
It has been demonstrated in an Alpha 200MHZ processor that 40% of the whole
power originates from clock [33]. To tackle this problem, at the system level,
asynchronous logic can be introduced as the interfacing circuit to synchronous
modules and the requirement of a global clock is thus removed.

The concept of globally asynchronous, locally synchronous (GALS) was
founded by D. M. Chapiro [63] to avoid the costly global synchrony in large scale
VLSI circuit. Its basic model is shown in Figure 7 where the main modules are
synchronous but the data exchange between any two modules is handled by an
asynchronous handshake protocol. A prototype GALS system is built in [41] by
using pausible clocking control to prevent synchronization failures. The effects of
GALS approach is verified by Hemani et al. [42] with a power reduction of up to
70% in the clock net and a 20% reduction in the overall dissipation compared to a
conventional globally synchronous design.

Synchronous
unit

Synchronous Asynchronous Synchronous

unit interconnect unit
! .
Synchronous Asynchronous
unit control signal

Figure 7. GALS basic model

3.2.2 RT level mixed synchronous/asynchronous design

Generally at the RT level, the finite state machine is implemented
completely synchronously. Efforts made towards mixed synchronous/asynchronous
design involve the introduction of asynchronous communication into the sub-FSM
network after FSM decomposition. Meanwhile, the input and output behaviour is
still cycle by cycle equivalent to a complete synchronous one.
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In the decomposed FSM design, there are two ways of implementing state
memory as shown in Figure 8.

The first method is rather straightforward. After FSM partitioning, each of
the sub-FSMs has its own state memory, see Figure 8a). These state memories are
local to the sub-FSMs and named after local state memory. Global state is not
required while reset states, one in each sub-FSM, are added to the local state
subsets. An additional signal interface is introduced between sub-FSMs to activate
or deactivate them. This approach has, for example, been used in a fully
synchronous partitioned FSM by Benini et al. [7]. Its disadvantage is the area
overhead introduced by the additional flip-flops. In some sense, these local state
memories are redundant because only the one in the current active sub-FSM is of
importance for storing the state information. In the meantime those remaining in
the deactivated sub-FSMs are not useful.

M, M, M;, M,

| 1 |
vi ||+ |ed

8 8 > [ 9

v v v
> > LSM [>

|l b el -
a) Separate state memory b) Shared state memory

Figure 8. State memory structure in decomposed FSM

In contrast, Chow et al. [21] propose a structure where the local state
memory (LSM) is shared by all the sub-FSMs, as depicted in Figure 8b). By
dividing the states into two parts, global states and local states, the local state bits
can be shared among the sub-FSMs whereas the global states are used to determine
the active sub-FSM. States residing in different sub-FSMs can therefore use
identical local state codes and be distinguished by different global states. The total
number of flip-flops required in the state memory will be lower in comparison to
that for separate state memory implementation. However, from the power
consumption point of view, the disadvantage concerns the flip-flops introduced for
global state memory (GSM, the memory of global states). These flip-flops are
always clocked and will add substantially to the power consumption.

It has been proposed in [43] that an asynchronous communication protocol is
more power efficient than its synchronous counterpart in the decomposed FSM.
This idea of mixed synchronous/asynchronous design in FSM partitioning is
implemented in an automatic synthesis tool in [56]. It uses separate synchronous
local state memories for sub-FSMs but the disadvantage is the substantial area
overhead.

19



Targeting an implementation with low power and low area overhead, the
idea is now suggested that a shared synchronous local state memory should be in
the part always clocked and an asynchronous global state memory should be used
to decide which sub-FSM is active. Global state memory has a low probability of
being updated. It is idle most of the time and therefore adds very low power
overhead. By using clock gating technique in the local state memory, power
dissipation can be further reduced. The mixed synchronous/asynchronous state
memory structure is shown in Figure 9, where the input/output behaviour is cycle
by cycle equivalent to that of a non-decomposed synchronous one.

Asynchronous

GSM

In — Synchronous
+—— Out

Clk —» LSM

Figure 9. Mixed synchrnous/asynchronous structure

Based on this structure, an automatic synthesis tool for low power
decomposed FSM implementation is also developed, which will be described in the
next chapter.
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4 AUTOMATIC SYNTHESIS TOOL

With the increasing design complexity, designers have to resort to automatic
tools to speed up the design process. At present there are many mature CAD
synthesis tools which target area and performance optimization. However, low
power design, particularly for higher levels, is still far more of an art than a
standard industrial practice. In an effort to address this problem and normalize the
design process for power optimization, an automatic synthesis tool at the RT level,
which is based on mixed synchronous/asynchronous state memory, has been
developed. In this chapter, an overview of the whole design flow of this tool
(section 4.1) is followed by a detailed description of each step in the flow. Firstly,
effective ways of collecting information from the input of the tool (section 4.2) are
discussed. FSM partitioning algorithm is then considered (section 4.3). The
required transformation steps for this mixed synchronous/asynchronous state
memory implementation as well as the associated state assignment problem
(section 4.4) are then presented. Following this, the power estimation model at the
RT level is built (section 4.5). Finally, the format of the tool output and the related
technology information are described (section 4.6).

4.1 DESIGN FLOW DESCRIPTION OF THE TOOL

Starting from a single state transition graph (STG) description, a procedure
is proposed for automatically synthesizing a monolithic FSM into a network of
interacting sub-FSMs. A standard-cell based design flow (see Figure 10) is
assumed, which means that there are no special library requirements beyond that
normally provided. However, the tool does require some cell library dependent
information to perform accurate power estimations and to define the gate level
implementation of the asynchronous elements.

In Figure 10, in addition to STG specification, the signal probabilities of the
primary inputs are also given in order to generate a long series of inputs to the
STG simulator. The outputs of the simulator are probabilities related to the states
and primary outputs of the FSM. According to the mutual state transition
probabilities derived from the STG simulator, states are firstly clustered into a
hierarchical tree. A novel algorithm is then adopted to group the clusters at each
level and form a limited number of partitioning candidates. Each candidate is
subsequently synthesized to an RT level description and its power dissipation is
measured by the cost function. The candidate with the lowest power is considered
to be the best, and its RT level VHDL description and synthesis scripts are finally
generated. The VHDL file and the scripts can be used directly as the inputs to a
standard synchronous tool for the optimization of the decomposed FSM at the gate
level.
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Figure 10. Tool design flow

4.2 STATISTICS COLLECTION

Power dissipation is strongly dependent on the switching activity of the
circuit, which in turn is related to the input pattern. For effective FSM partitioning
and power estimation, the first step is to specify information about the primary
inputs of the FSM. Other FSM statistics, such as state and primary output related
probabilities, can be obtained subsequently. To obtain the above information, there
are basically two ways depending on the knowledge available about primary inputs.

4.2.1 FSM probabilistic model

If the information of the inputs is provided by input probabilities, i.e., the
probability of the value of the input to be one, the STG behaviour of an FSM can
be modelled as a Markov chain [8]. A Markov chain represents a finite state
Markov process, where the probability distribution at any time is decided only by
the current state, regardless of how the process reaches that state. The Markov
chain model for the STG can be described as a directed graph isomorphic to the
STG with weighted edges.

In Figure 11a), input configurations for state transitions are labelled on the
edges of the STG. It is assumed that all input probabilities are 0.5, that is,
Prob(i;)=Prob(i;) = 0.5. The corresponding Markov chain model of the STG is
shown in Figure 11b). In the Markov chain model, edges are weighted using the
conditional transition probability, that is, weight p;; on the corresponding edge
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represents the probability of a transition to state s; given that the machine is in state
si. For instance, the transition from s, to s; occurs when the input is “11” and the
corresponding conditional transition probability is p,; = Prob(i;) x Prob(i;) = 0.25,
as shown in Figure 11b). Primary inputs are assumed to be independent of each
other in this case.

a) a FSM b) Its Markov chain model
Figure 11. A FSM example

Conditional transition probability itself is not sufficient to represent the
probabilistic property of an FSM. For example, if the conditional transition
probability from s; to s; is high but the FSM will never reside in s;, the actual
transition probability between the two states is still zero. Hence, the total transition
probability is introduced, independently to the present state of the FSM. Total
transition probability is the product of the conditional transition probability and
the static state probability. The static state
probability represents the probability of a state that the FSM will reside in when
time increases to infinity. The calculation of the total transition probability P;; can
be expressed as:

Pij=piPi 1,j=1,2,...,[9 ©

where p;; is the conditional transition probability from s; to s;, P; is the static state
probability of state s; and |S| is the number of states. Under the assumption that
input variables are mutually independent, p;; can be calculated directly from the
STG by multiplying the input probabilities. The remaining problem is to compute
Pi.

Given a STG with |S| states, let P represent the conditional transition
probability matrix of size of |S|x|S|. The static state probability P; of each state can
be obtained by solving the following equations:
q'P=q’ 4)
S|

2P=1 5)

i=1
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where q is the static state probability vector whose components are the static state
probability P; of the state s; (i.e., q = [Pl, P,,..., P|S|]T). The sufficient condition

that the static state probability vector of states exists is that an STG has a reset
state. For those STGs without a reset state, cases also exist for which the total
transition probability [8] can be obtained.

It should be noted that the value of the total transition probability and the
conditional transition probability between two states is generally different. More
information about Markov analysis of FSM can be found in [60].

4.2.2 Monte-Carlo-based simulation

A long specified input stream provides the most complete information
about the inputs. In this case, collecting other FSM statistics becomes
straightforward by simulating the state machine for a sufficient length of time. For
example, it is possible to calculate the total transition probability as the number of
state transitions during the whole simulation time divided by the number of time
units (often the clock cycle). Formally, this method is described as Monte-Carlo-
based simulation [45]. Stopping criteria (or convergence criteria), based on
statistical techniques, are used to decide when the simulation should stop. For
sequential circuits, which have feedback of state bits, the stopping criteria can be
obtained by determining whether the probabilities of the state bits are stable or not.
The Monte-Carlo-Based simulation flow chart for FSM is shown in Figure 12.

Generate a random state

v

Run simulation for a warmup period

A

A\ 4
Generate inputs(a,P) and sample

Yes

Figure 12. Monte-Carlo-based simulation flow chart for FSM
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In this tool, a randomly generated input stream is used in the simulator.
The probabilistic distribution of inputs can be specifed by the user and the default
value is set to 0.5. It is assumed that the static state probability of each state
becomes a constant as time increases to infinity, and after a warm-up period of
clock cycles, the state probability of every state is sampled. A simplified
convergence criterion is used, i.e., only when the maximum difference value
between the probabilities of each state sampled in two consecutive time units (or
clock cycles) is less than €, a user specified constant, does the simulation stop. The

default value of ¢ is set to 10°. For all the standard benchmarks [46] tested, their
simulations converged in a reasonable time.

From the simulator, FSM information such as the static state probability,
total transition probability, signal probabilities of primary outputs etc. are collected
for further use.

4.3 FSM PARTITIONING

In VLSI design, the initial interest in partitioning arises from min-cut
placement [47]. As the complexity of circuits increases and the desired number of
transistors is above that which a chip or module can accommodate, the circuit must
then be divided into components. Because the load of driving an external net in
another component is significantly bigger than that of driving an internal net,
partitioning techniques are needed to reduce the interconnection between
components. By dividing a complex system into smaller, more manageable
components, partitioning proves effective in reducing the design complexity and
emerges in many phases of circuit design. Although here the focus is only on FSM
partitioning, the proposed partitioning algorithm may also be useful for addressing
the general partitioning problem.

As mentioned in section 2.2.2, at the RT level, FSM partitioning is an
important technique for dynamic power management. After partitioning, the
original FSM is decomposed into several smaller sub-FSMs. Apart from the case
involving a state transition between two sub-FSMs, only one sub-FSM is active
and thus all others are idle and can be deactivated without consuming power.
Because each sub-FSM is smaller than the original one, sub-FSMs as a whole
contribute to a lower average power. Depending on the quality of partitioning
algorithms, this FSM power reduction can be significantly different.

An efficient FSM partitioning algorithm can select a “good” partition within
a reasonable running time. The measure of “good” is performed by the cost
function and states having high total transition probability between them are
placed in the same sub-FSM in a “good” partition. Because the humber of possible
partitioning solutions is generally too large to explore, heuristic partitioning
algorithms are used for reducing the complexity. Two main categories of
partitioning algorithms are discussed here, namely, the iterative-based algorithm
and the clustering algorithm. The partitioning algorithm proposed in this thesis is
then discussed.
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From an initial feasible solution, iterative-based algorithms iteratively move
to a better solution according to the cost metric. Among these algorithms, one of
the best known is the Kernighan-Lin algorithm (K-L) [48]. Its partitioning process
is illustrated in Figure 13.

M

X

Am-l Bm-l

Figure 13. Interchange of subsets in KL algorithm

It is assumed that there are 2n nodes, and two initial equal partitions, each
with n nodes, are formed. These are referred to as A%, B®. Then in each iterative
step, pairs of nodes are chosen to swap between the two partitions to reduce the

interconnection. For instance, in the iterative step m, subsets X™ from partition
A™! and Y™ from partition B™* will swap their positions to achieve a minimal cut
cost.

This algorithm can produce good results for small amounts of CPU time. It
can also be used as the basis for solving general n-way partitioning problems. Its
employment in the FSM partitioning for low power can refer to [20], where two-
way unbalanced K-L partitioning is used to minimize the total transition
probabilities between two state sub-sets.

Another widely applied iterative-based partitioning algorithm is the genetic
algorithm [49]. The motivation behind its use is Darwin’s theory of natural
selection in evolution where “superior” groups of a species produce more offspring
in successive generation than “inferior” members. Its successful utilization in FSM
low power partitioning can be found in [7]. However, the algorithm sometimes
faces the problem of long running time.

Hierarchical clustering algorithms [50] consider sets of objects and they
group them according to given measures of closeness. For a specific problem,
closeness is defined by the corresponding cost function, representing the possibility
of clustering objects. For example, in the FSM partitioning problem for low power,
the total transition probability between states is used as the closeness criterion.
Two states having mutually high transition probability are called “close” and they
are more likely to belong to the same sub-FSM. Algorithms for hierarchical
clustering can be further divided into two classes, both of which are shown in the
clustering tree of Figure 14, using arrows to represent different directions.
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Agglomerative Divisive

Figure 14. Hierachical clustering tree

The first class of clustering is in an agglomerative way (bottom-up). In the
initial clustering solution, each object is itself taken as a single cluster. The
algorithm continues by grouping two objects (single object or the object merged
from single objects) and stops when all the objects are included in a single cluster.
The second class of clustering is in a divisive way (top-down). It can be thought
of as the reverse process of the agglomerative way. All objects are in a single
cluster at the beginning and objects with the worst closeness are split in the
subsequent steps.

Actually, clustering itself is rarely the goal. However, hierarchical trees
provide a means of organizing objects at different levels of granularity. If the tree
is cut at a particular level, clusters with corresponding granularity can be extracted.
A cut-line closer to the leaves of the tree generates more clusters and the states in
each cluster are closer. A cut-line closer to the root generates fewer clusters and the
states in each cluster are more distant. Iterative-based algorithms, meanwhile, are
more effective for a smaller solution space with greater density [51]. Hence, if the
clustering algorithm is used initially followed by the iterative-based algorithm on
the clusters obtained, better partitioning solutions can be expected, compared to
those where only iterative-based algorithms are used. On this basis, in the FSM
partitioning algorithm proposed here, a hierarchical tree integrating an iterative-
based algorithm is built firstly for further algorithm optimization.

The partitioning criterion in this case is to obtain a small cluster of states
which are active most of the time. Meanwhile, the probability of the state
transitions within a cluster should be high and the probability of the state
transitions between two clusters (two sub-FSMs) should be low. A two-phase
partitioning algorithm is employed. In the first phase, by recursively applying the
K-L two-way partitioning, a hierarchical binary tree is built as shown in Figure 15.
Depending on their state transition probabilities, states are divided into groups in
order to minimize the inter-transitions between two groups. The complexity of this
algorithm is O(n’logn). For the benefit of the second phase, the tree is built in such
a way that the states in the left hand cluster are more likely to be active. The left-
most cluster for each level therefore has the highest probability of being active. In
the second phase, an efficient algorithm is proposed that groups the clusters on
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every level of the binary tree and generates a limited number of partitioning
candidates. For n states, this algorithm finds the candidates ranging from 1-way to
n-way partitioning with a complexity of only O(nlog®n). Further explanation about
the algorithm can be found in [52].

Divisive

Figure 15. Bi-Partitiong hirarchical tree

4.4 FSM SYNTHESIZER

In this stage, every partitioning candidate obtained from the partitioning
algorithm is synthesized into a network of sub-FSMs. In the first instance, the
original STG is partitioned and transformed to support the interaction between sub-
FSMs. Then state codes for low power are assigned to each state. Finally, the
structure of the sub-FSM network is determined. The gate level implementation of
the combinational logic for each sub-FSM is still unknown. But, for the
asynchronous logic, its gate level implementation is decided in the synthesizer to
prevent glitches from the synchronous part of the decomposed FSM resulting in
hazards to the asynchronous part.

441 STG Transformation

To illustrate the procedure of STG transformation, the FSM in Figure 16a) is
divided into two sub-FSMs F! and F?, with state subsets S*= {s;} in F* and S*= {s,,
ss} in F% There are two crossing transitions between F* and F2 A crossing
transition is the state transition whose source state and destination state reside in
different sub-FSMs. In order to be able to detect a crossing transition, an extra g-
state is introduced. A g-state is inside the sub-FSM which contains the source state
of a crossing transition, but it has the same index as that of the destination state.
After the STG transformation, two new state subsets are formed which are U'= {s1,
g2} in Ftand U? = {s,, s3, g} in F2 The transformed STG is shown in Figure 16b).
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a) STG before transformation b) STG after transformation

Figure 16. STG before and after transformation

The behaviour of a crossing transition changes after the introduction of a g-
state. The crossing transition szin F2to s, in F! can be taken as an example. After
introducing g; in F? the original transition is transformed via the following
sequence of events:

1) A synchronous state transition in the local state memory, from the source
state of the crossing transition to the g-state, denoted as S3 — 0.

2) An asynchronous state transition in the global state memory, from the g-
state to the original destination state, denoted as g; — s;. Both these transition
states have the same index.

The entire crossing transition is completed within one clock cycle. The first
event is synchronous because the local state memory is updated to the g-state at the
active edge of the clock signal. s;and g; should be distinguished from the local
state code when sharing the same global state.

The second event is asynchronous because the global state memory is
updated immediately upon detection of the transition in the g-state. The local state
memory is only triggered by the clock signal and therefore remains unchanged. In
this example, g; and s; share the same local state code whereas their global states
are different. The global state is then used to deactivate the currently active sub-
FSM F? and activate the sub-FSM F' as the destination state of the crossing
transition s; is to be found here.

Coupled states are used to indicate the g-state and its corresponding state
which both share the same local state code. In Figure 16b), two coupled states (s,
01) and (s, ¢.) are then obtained. A formalized description concerning STG
transformation can be found in [53].

4.4.2 State assignment for decomposed FSM

When synthesizing a network of sub-FSMs, state encoding is strongly related to
the structure in which the sub-FSMs are implemented. In other words, whether or
not the sub-FSMs share the same state memory will greatly influence the state
assignment strategy.

29



In [7], after partitioning, each sub-FSM has its own local state memory.
Because there is no direct crossing transition connecting the states in two different
sub-FSMs in the sub-FSM network, it is possible to synthesize each sub-FSM
separately. This state assignment problem can be considered to be the same as for
the monolithic FSM.

In contrast to the separate state memory method, Chow et al. [21] propose a
decomposition model with shared local state memory. Additional state bits are
added to decide which one of the sub-FSMs is active. For state encoding, they
present a method that considers crossing transitions by introducing pseudo-outputs.
A pseudo-output bit represents a fanout-oriented relation imposed by the crossing
transitions. For example, if there are crossing transitions that have the source states
in the same sub-FSM and toward the same destination state, these source states
should be assigned “close” state codes (in terms of Hamming distance). Transitions
(rows in the state transition table) whose current states are these source states
should have a pseudo-output of “1” added when all other transitions are given a
pseudo code of “0”. Subsequently, all crossing transitions are deleted and Jedi [54]
is used to perform low power state assignment for each individual sub-FSM.

Both  approaches described above assume fully  synchronous
implementations. Based on the decomposed FSM structure with mixed
synchronous/asynchronous state memory, a state assignment procedure called
state-bundling is proposed to address the low power state encoding problem.

As mentioned in section 4.4.1, after the STG transformation, a group of
coupled states is formed. The proposed state assignment begins from these coupled
states because they are related to crossing transitions and should be assigned the
same local state code. The whole procedure can be described in the following steps
through the example in Figure 17.

1) A state bundle table is built (see Table 1). Each row represents the states
inside the same sub-FSM. Each column, named after a state bundle, includes states
residing in different sub-FSMs with the same local state code. Binary encoding in
incremental order is assigned to columns from left to right. The state bundle
including g-states can be further referred to as the g state bundle.

2) The coupled states are put into the table, as shown in Table 1.
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Table 1. Initial state bundle table

B: | b0 [bl (b2 |b3 |b4
000 | 001 | 010 | 011 | 100
F'olso [0 |- N -
- Is los [- |-
Fo- - S3 94 |-
- 01 |93 |S4 |G
P o [- |- - s

Figure 17. STG example

3) Rows in the table are sorted according to the duty time of their
corresponding sub-FSMs (see Table 2). The duty time T; represents the probability
of the sub-FSM F' being active. Its value is decided by the sum of the static state
probability of states in the sub-FSM, that is, T, = Y. prob(s,),s; € S’ where ' is

the state subset of F' The duty time of the sub-FSMs top down is in descending
order after rearrangement.

Table 2. Sorted state bundle table Table 3. After merging coupled states
B: (b0 |{bl |b2 [b3 |b4 B: |b0 bl [b2 | b3 | b4
000 | 001 |1 010 | 011 | 100 000 | 001 | 010 | 011 | 100

F |so 91 |- - - F' 1 so 01 |- -

|- O1 |93 |S4a |GQs F* s |91 |95 |9

Fol- - S3 | Q4 |- F |gs |- S3 |-

Fl- St [0 |- . F |- St |09 |-

F 1o |[- - Ss P lg |- - Ss

4) The coupled states are merged and two or more of them may possibly
reside in the same column (see Table 3). The reason for merging is to reduce local
state bits, which often results in lower power in the final implementation. The
proposed algorithm ensures that the sum of the state probabilities of states in the
first column is a maximum.
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Table 4. g state bundle optimization Table 5. Final state bundle table

B: |b0 | bl [b3 |Db2 B: [bO [ bl | b3 |b2
000 [ 001 | 010 | 011 000 [ 001 | 010 | 011

Fl So 01 - - Fl So 01 - -

F* Sy g1 Js Js F* Sy g1 Js Js

F g, |- - S3 F oo, |s |- S3

F |- S |- s F]- St |- s

P g |- Ss - FP g [ss |ss -

5) Each coupled states is taken as a whole and its position is optimized by a
greedy algorithm. If the states in two different coupled states have a high mutual
state transition possibility, they are assigned the state codes for the least Hamming
distance (see Table 4).

6) Other states, not included in the coupled states, are finally put into the
table in a greedy way. The Hamming distance of states with high transition
probability is minimized (see Table 5).

More details about the computational efficient state-encoding algorithm for
low power can be found in Paper III.

4.43 FSM decomposition structure

Suppose the monolithic FSM has | as its input, O as its output and is
partitioned into sub-FSMs F*, F?, ..., F". The original state subsets S*, S ..., S", in
combination with the introduced g-states, form the new state subsets U*, U?, ...,U"
in L F? . B, respectively. All sub-FSMs share the same local state memory but
have their own combinational logic. The general structure of the proposed
decomposed FSM model is shown in Figure 18.

The G state bundle Detection Logic (referred to as GDL) decodes the state
bits in the Local State Memory (referred to as LSM). If a g state bundle is detected,
a signal is sent to the Global State Memory (referred to as GSM).

The GSM decides which is the current active sub-FSM. It is implemented as
an asynchronous finite state machine. A Muller-C element [61] is used as the basic
asynchronous element. A state transition in the GSM only takes place at the event
of a crossing transition, in which case, a g-state will be detected. In a “well-
partitioned” FSM, the probability of crossing transitions is very low. Therefore, the
GSM will be idle for most of the time and dissipate no dynamic power due to the
inherent property of an asynchronous circuit. The state information in the GSM is
directly used as the control signals to both the LSM and the combinational part
(implementing the next state and primary output function) of the sub-FSMs
(labeled F*, F?, ..., F" in Figure 18). The state bits in the LSM can be selectively
turned off via the clock gating logic controlled by the GSM.
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At any given time, apart from crossing transition events, only one sub-FSM
is active. The active sub-FSM is responsible for determining the primary output
and the next local state. When deactivated, the inputs to the sub-FSM are disabled
by AND gates and no dynamic power will be dissipated. The outputs of a
deactivated sub-FSM are all blocked to zero. By using OR gates, the correct
primary outputs and next state outputs can be obtained by collecting output
information from all sub-FSMs.

The structural information will be used in the power estimation function in
the next section.

GDL GSM

LSM ™

vO

VAN )

clk J P

Figure 18. Decomposed FSM structure with mixed synchronous/asynchronous state
memory

45 POWER ESTIMATION

Power estimation is an indispensable component in the design process. In the
early design steps, power estimation can help to avoid power violation of the
design constraints. In synthesis practices for each level, power estimation can be
combined into cost metrics to explore the design space between power, area and
speed and assist in choosing the design methodology most suitable for a given
circuit.

The tradeoff in power estimation is between accuracy and running-time. At
lower levels, more information can be obtained and more accurate power
estimation can be made. However their corresponding computational costs are
higher. SPICE, the circuit level simulator for power estimation, provides accurate
power information. However, it cannot be used for a circuit that includes more than
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thousands of transistors due to the computational expense. Therefore, the
utilization of SPICE is limited to power analysis of the basic cell module.

At the gate level, when the design layout has been determined, power
analysis is based on the signal model to calculate the switching activity of internal
nodes of the circuit. Both probabilistic and statistical techniques can be exploited
[12].

At higher levels, the final hardware implementation is uncertain and precise
information is absent, so it is more difficult to estimate the power. Only the RT
level power estimation is focussed on in the rest of this section.

At the RT level, [55] used the statistical modelling method for DSP circuits,
where the basic models can be built as adders, comparators, registers etc. Power
estimation is performed by combining the power coefficients of each model with
the statistics of the circuit activity. The former are stored in the library database
and the latter are derived from the simulation of specified input patterns.

Another more general power estimation method is based on information
theory, using entropy as a measure of circuit average switching activity [13]. It is
known that the average power dissipation is proportional to the effective
capacitance (see equation (2)), which can further be expressed as the average
switching activity multiplied by the whole circuit capacitance. Nemani et al. [13],
after reasonable approximation, concluded that:

Pavg oc AxH (6)

where A is an estimate of the circuit area, representative of the whole capacitance
of the circuit. H is the average value of entropy H(i) over all nodes i in the circuit
and represents the node average switching activity. After a series of deduction, H
can be finally expressed as:

%

H~—Z3_(H, +2H,) %
n+m

where H; is the sum of node entropy of the inputs to the combinational logic. H, is

the sum of node entropy of the outputs to the combinational logic. n is the total

number of inputs and m is the number of outputs.

To calculate the value of A, an area estimation model is proposed in [14].
Firstly a multi-output Boolean function is transformed to an equivalent single
output function and then the associated complexity measure is computed.

In the proposed tool, the power estimation function including structural
information (see power estimator in Figure 10) is employed to every synthesized
partitioning candidate. The best candidate with the lowest power will be chosen as
the input for the code generator. The purpose is to find a candidate with the actual
lowest power and which is also the candidate with the lowest estimated power.
Therefore, the absolute difference between the actual power and the estimated
power is not important.
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In this decomposed FSM model, the power of the combinational logic of
each sub-FSM is estimated using this entropy-based method. The area A associated
with each sub-FSM is computed directly from the state transition table for the sake
of simplicity. As for the other parts, their power estimations are straightforward
since their gate level implementations are known.

Power estimation for combinational logic:
As mentioned, the power estimation of the combinational logic is made via
the state transition table, together with entropy. It can be represented as:

Rmb:EZHimeMkahxﬂ (8)

i=1

where H; is the entropy of the combinational logic implementing sub-FSM F'. Row;
is the number of rows in the state transition table with source states in F'. Kecn is an
empirically determined constant to adjust to the cell library used. T; is the duty
period of F' .

Power for global state memory:

For the global state memory, an empirical model is used based on the
structure of the memory. Even though the gate-level implementation is known, it
proved more accurate to use the macro model shown below consisting of two parts
representing the power of a) the logic that detects and initiates the transition from
one sub-FSM to another and b) the asynchronous state memory element:

Posu = (Kg X Pusw s +Kg X P +Kgx[g1) a)

+i&xﬂ b) )

The expression inside the parenthesis estimates the power in the global state
transition function which is a function of the local state and the global state. The
first term represents the contribution from the local state memory where pisu g IS
the toggle probability of local state bits. The second term represents the
contribution from the global memory where pg is the sum of toggle probabilities of
the g states. A g state is a local state that initiates a global state transition. The third
term represents the complexity of global state transition logic where |g| is the
number of g states.

The sum b) represents the contribution from the global state memory devices,
implemented as muller-C elements where T; is the probability of global state
transition, i.e., the probability of a crossing transition between different sub-FSMs.
The number of sub-FSMs is denoted by n. The constants are determined
empirically based on a single FSM partitioning run.

Power for D type flip flop:
The local state memory consists of a set of D flip-flops and its power is
estimated by:
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Psu = z F)foi xT, (10)
i1

where T; is the duty time of the flip-flop, m is the number of local state memory
bits.

Power for clock net energy:
The power dissipation in the clock net is estimated by:

I:’clock :l FF |XC

x 3V, * x Ky X K (11)

clkin wire

where |FF| is the average number of flip flops clocked, C.n is the capacitance of
the clock input, Vg4 is the power supply voltage, f is the clock frequency, Kpufer iS
the clock buffer capacitance coefficient, and kyre is the wire capacitance coefficient.

Power for overhead:
P =P

overhead gatedCom + Pgatedef (12)

where Pgaedcom includes the power of AND gates to activate and deactivate_the
combinational logic, as well as the power of OR gates for merging the outputs.
Pgaedprr 1S the power to activate and deactivate the local state bits and basically
originates from NAND gates.

The power dissipation for the whole partitioned FSM is simply a sum of the
above:

P Poms T Posu + Pisw +P.

whole — ' com clock

+P

overhead

(13)

The verification of the cost function can be found in [52].

46 RT LEVEL CODE GENERATOR

For the best partitioning candidate with the estimated lowest power, the
proposed automatic synthesis tool outputs RT level VHDL code and synthesis
scripts, both of which can be used directly as inputs for a standard logic synthesis
tool for gate level optimization .

The automatically generated VHDL file includes the detailed
implementation information of the decomposed FSM. For the state memory and
overhead circuit, the gate level implementation is defined in the file based on cell
library dependent information. In the main it is the combinational logic of sub-
FSMs which can be further optimised at gate level. The synthesis scripts provide
the constraints and instruction for the logic optimization.

Both the gate level area and power estimation are performed using Power
Compiler (Synopsys), assuming a supply voltage of 1.8V and a clock frequency of
20MHz. The area estimation is based on the cell area and the target technoglogy is
0.18um CMOS circuit. The overall power dissipation at gate level is obtained by
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dividing the decomposed FSM into several parts, synthesizing each part separately
and then adding their power dissipations together. The combinational logic of each
sub-FSM, for example, is synthesized separately and has its own power dissipation
report. Because the logic syntheis tool only supports the synchronous design, for
the asynchronous element (muller-C in this case), its gate level power estimation is
assumed to be the same as the value computed by the cost function b) in equation

9).
The effectiveness of this tool is verified via a series of benchmarks. For all

of them, the power consumption in the decomposed FSM is significantly reduced
by an average of 56% compared to the original unpartitioned FSM.
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5 SUMMARY OF PUBLICATIONS

The three papers included in the thesis can be categorized in two groups:

1. Initial concept and mathematical formulation.

2. Developed automatic synthesis tool refinement.

Section 5.1 and 5.2 outlines the content of every paper and Section 5.3 presents the
contribution of each author to the papers.

5.1 INITIAL CONCEPT AND MATHEMATICAL FORMULATION

5.1.1 Paper I

In this paper a design model based on mixed synchronous/asynchronous
state memory is proposed that results in implementations with low power
dissipation and low area overhead for partitioned FSMs. The state memory here is
composed of the synchronous local state memory and asynchronous global state
memory, where the former is used to distinguish the states inside a sub-FSM, and
the latter is responsible for controlling sub-FSM communication.

5.2 DEVELOPED AUTOMATIC SYNTHESIS TOOL REFINEMENT

Two papers cover issues related to procedural refinement inside the
developed CAD tool for synthesis of low-power partitioned FSMs. They focus on
FSM partitioning method and state encoding optimization individually.

5.2.1 Paper Il

This paper presents FSM partitioning algorithms and RT-level power
estimation functions that are the key issues in the tool. The proposed n-way
partitioning algorithm with low complexity may also be used for general
synchronous partitioning method. The accuracy of the power estimation functions
is verified by standard benchmarks.

5.2.2 Paper Il

This paper presents state encoding techniques for a partitioned FSM
structure based on mixed synchronous/asynchronous state memory. The state
memory is composed of synchronous local state memory and asynchronous global
state memory. One hot encoding is used inside asynchronous global state memory
for low complexity and low power. For the local state assignment, a procedure
named as state-bundling is presented to enable states residing in different sub-
FSMs to share the same state codes. Two state-encoding techniques, one based on
binary encoding and one optimized for low-power consumption, are compared.
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5.3 AUTHOR’S CONTRIBUTIONS

The contribution of the author is essential to all the papers presented in the thesis.
The exact contribution of each author is specified in Table 6.

Table 6. Author’s contribution (M = main contributor, C = co-author).

Paper CC' MO? BO® Contributions
#
| M C CC: Implemented the automatic synthesis
tool of FSM decomposition model
BO: Outlined the concept of mixed
synchronous/asynchronous state memory
and Supervisor
1 M C C  CC: Developed the tool and specified the
power estimation function
MO: proposed the “candidate generation”
algorithm
BO: Supervisor
i M C  CC: Proposed the state encoding
optimization method
BO: Supervisor
1. Cao Cao
2. Mattias O’Nils
3. Bengt Oelmann
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6 THESIS SUMMARY

This thesis proposed the concept and implementation structure of FSM
decomposition based on mixed synchronous/asynchronous state memory. Key
issues in the design of the CAD tools for the synthesis of low power decomposed-
FSMs are also discussed.

A general introduction to the research area, the motivation, and the specific
problem description of the thesis, are given in Section 1. Section 2 gives an
introduction to the related research work. Section 3 introduced the special mixed
synchronous/asynchronous design architecture. Section 4 presented the tool
developed for automatic synthesis. Section 5 summarizes the three papers covered
by the thesis and identifies the original contribution for each paper.

In this chapter, section 6.1 summarizes the conclusions reached during the
research work on this thesis. Suggestions for future work are presented at Section
6.2.

6.1 CONCLUSIONS

6.1.1 Design model of mixed synchronous/asynchronous state memory

A novel design model for partitioned FSMs based on mixed
synchronous/asynchronous state memory is proposed. The basic idea is to have
synchronous memory in the part always clocked, i.e. the local state memory; and
asynchronous memory for the global state memory, which has a low probability of
being updated. In this way, the global state memory adds very low power-overhead.
In spite of the internal asynchronous operation, the input/output behaviour of the
decomposed FSM is equivalent to the original synchronous one.

6.1.2 Design flow of the automatic synthesis tool

The developed CAD tool fits into a standard-cell based design flow. It takes
an STG as input, transforms it and generates synthesizable RT-level VHDL code
that is fed to a standard logic synthesis tool. The effectiveness of the tool was
demonstrated by benchmarks [Paper I1] with an average power reduction of 56%.
The best result was a power reduction in excess of 70%.

6.1.3 FSM partitioning algorithm and RT level power estimation function

A novel multi-way partitioning algorithm for partitioned FSM synthesis is
proposed in the developed CAD tool. It was applied to a mixed
synchronous/asynchronous architecture but can also be used for fully synchronous
implementations. The proposed algorithms are of low complexity which is
important when it comes to the practical usage of the tool. Among the partitioning
candidates obtained from the algorithm, RT-level power estimation functions are
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proposed with efficient accuracy for selecting the candidate with the lowest power
consumption.

6.1.4 State encoding optimization

A state encoding algorithm for the partitioned FSM composed of inter-
connected sub-FSMs with shared state memory was proposed. The algorithm takes
the properties of partitioned FSMs and the constraints imposed by the
implementation architecture into account. Further power reductions can be
achieved for certain benchmarks after state assignment optimization. However, it is
not possible to benefit much from the state encoding optimization compared to the
method of FSM partitioning. Asynchronous state memory, idle condition detection
logic, and the shut-down logic have already been established before state encoding
and their power can not be reduced. The sub-FSM with the high possibility of
being active often has few state bits, which is also unlikely to be optimized.

6.2 FUTURE WORK

To further explore the concept of finite-state machines based on mixed
synchronous/asynchronous state memory, more detailed studies on the techniques
presented in thesis have to be conducted as well as expanding the studies to issues
not covered in this thesis. The following issues are to be addressed in future work:

e Formalized description of the asynchronous state memory

In [Paper I] the asynchronous state memory bit for two-way partitioned
FSMs is proposed and is actually an SR-latch. In [Paper 1] the
asynchronous state memory bit for an N-way partitioned FSM is a Muller-
C element. Even though it has been demonstrated that these asynchronous
state memory bits work very well in simulations, it has proven necessary to
provide a formal description of their behaviour in order to allow synthesis
for applications other than the type of FSMs discussed in this thesis. One
such application could be locally clocked FSMs with datapath (FSMDs)
using asynchronous interaction.

e Timing analysis of the asynchronous memory

The delay penalty for the partitioned FSMs has not been addressed in this
thesis. A partitioned FSM composed of two or more sub-FSMs has a
critical timing path that in most cases is smaller in comparison to the
monolithic FSM. However, the delay in the asynchronous state-memory is
added to the delay in the next-state function of the sub-FSMs for the
crossing transitions. How the partitioning affects the critical timing path is
not known at present and requires further investigation.

e Power-area tradeoffs
For all synthesis results reported in this thesis, the optimizations are not
constrained by area. It might prove possible to achieve power reductions
close to those reported but with much lower area-overhead. Due to the
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large difference in the complexity of the asynchronous state memory
between a two-way partitioned FSM and an FSM with more than two
partitions, large savings in area and possibly faster circuits can be obtained
by two-way partitioning.

Benchmarking of power in FSMs

Evaluating RT-level synthesis tools is quite difficult since the optimization
results are highly dependent on the benchmark circuits used. For the
evaluation of the power optimizations, the input data probabilities are of
great importance. Even though standard MCNC benchmark circuits were
used for all the developing tools for FSM optimizations, sufficient results
to ensure fair comparisons to others reported in the literature were not
found. For these benchmarks, no “typical” input patterns or input
probabilities are specified which makes it almost impossible to compare
results from two different tools. It is also difficult to make any general
conclusion for an optimization tool. For example, it is not possible to say
that this given tool gives good results for FSMs with certain characteristics
but cannot handle FSMs with other characteristics. This is a common
problem for all developing tools for power optimizations of FSMs and is
not specific to this work. A first attempt to address this problem was
presented in [64] by having an FSM benchmark generator tool. This tool
could generate synthetic FSMs with characteristics specified by the user.
Unfortunately this tool does not allow specification of state transition
probabilities, which makes it of no interest for researchers developing
power optimization tools. The belief is that a similar benchmark generator
including specification of the characteristics for the state transition
probabilities would be of great interest for those developing FSM power
optimization tools.

Formal verification of FSM transformations

The functional equivalence of a transformed FSM and the original FSM
description has been verified through extensive simulations. A formal
verification would provide a more rigorous proof of functional equivalence.
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Abstract

Finite state machine (FSM) partitioning proves effec-
tive for power optimization. In this paper we propose a
design model based on mixed synchrononsfasynchronons
state memery that results in implementations with fow
power dissipation and low area overhead for partitioned
FSMs. The state memary here is composed of the synchro-
nous local state memory and asynchronous global state
meniory, where the former is used to distingnish the stares
inside a sub-FSM, and the latter is responsible for control-
ling sub-FSM  communication. The input and owtpur
behavionr of the decomposed FSM is cvele by evele equiv-
alent to the undecomposed synclvonous FSM. Together
with clock gating technique, substantial power reduction
can be demonstraied.

1. Introduction

The majority of low power optimization techniques on
architectural level focus on shutting down pans of the cir-
Luih that are idle, technigues that go under the name

OWer nt [2]. For the contemporary
C M()h luhuolngy where the dynamic power cfmlpalmn
dominates over the static in digital cir
the switching capacitance is the objective of power mini-
mization. Here, shutting down means preventing idle cir-
cuits and nets from switching. Normally, systems are
designed to meet a certain peak performance that is only
required for 2 small portion of its entire operational time;
therefore, parts of the circuit are often temporarily idle.
There are also siwations where operations, known in
advance, will never be executed at the same time, which
always lead 1o having idle units consequently. In these sit-

£l

uations, dynamic power may be succ y
used.
Dy ic power tect disable the

clock signal or prevent inputs from switching 1o the pars
not in use, In order to do so, mechanism for detecting idle
states of different units is needed, also methods for "shut-

ting down" the idle units must be added to the design. Cir-
cuits responsible for handling this will constitute a
functional overhead and will consequently contribute to
increased circuit area, additional power consumption, and
possibly reduced speed performance. Careful analysis
must be so that the i luction of circuits for
power management will lead to as large power reduction
as possible. An optimization procedure for dynamic power
management secks the partitioned system that has the low-
est power consumption. The procedure partitions the
design afier identifying the most beneficial idle conditions
taking the overhead of detecting and shutting down circuits
into account.

For low power FSM design, the most efTicient way is to
divide the FSM imo two or more sub-FSMs where only
one of them is active at a time [3]. The partitioned FSM is
constructed in such a way that each of the sub-FSMs will
constitute a smaller effective capacitance than the original
FSM and consequently power can be saved. Gating the
clock signal to shut down the FSM not active is an efficient
way and it has been practised in several works, e.g.
5]. There are two drawbacks in these approaches. First, in
minimum length state encoding the area overhead from the
increased number of bits in the state memory is substantial
for a pantitioned FSM. Second, the power consumption for
activating and deactivating a sub-FSM is relatively high,
These problems have been addressed separately before in
e.g. [6] and [7]. In contrast to previous work, we propose a
design model that is able 1o handle both issues in an effi-
cient way.

In the design model for pannmm.d FSMs we are pro-
posing in this paper, both synct and as
state memories are used 1o implement FSMs with synchro-
nous input/output behaviour. This means that externally
the FSM will work as a synchronous FSM but imternally
there is a mechanism operating asynchronously. This
madel is the result of our search for finding ways to utilize
asynchronous logic in synchronous designs, The general
idea is to only use synchronous state memory for state bits
that have high probability of changing and asynchronous
state memory for those bits with low probability of chang-
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ing.

The outline of rest of the paper is as follows. First a
presentation is given on approaches 1o low power FSM
design based on FSM partitioning and how the proposed
design model is related 1o them. After that the proposed
maodel is described, first through an example and then by a
formal description. This is followed by a description of
how to transform a finite state machine specification, in
the form of a state transition graph, to the form suitable for
implementing it as a partitioned FSM with mixed synchro-
nous/asynchronous  stale  memory.  An  implementation
architecture is then proposed and the effectiveness is illus-
trated by optimizations through two-way pantitioning of a
subset of the MCNC FSM benchmarks [8].

2. Background

From the point of view of structural decomposition,
there are basically two approaches to partition FSMs. The
first one is based on separate stale memory for each sub-
FFSM and the second one has shared state memory for all
sub-FSMs. The two alternative structures are shown in the
figure below. In this section we first introduce the key
issues in the impl ion of panitioned FSMs, and
from that motivate our approach based on mixed synchro-
nous/asynchronous technigue.

M M, My, My

from its reset state to the correct destination state of the
crossing transition. My will reside in its reset state and shut
itself down through gating the clock and input signals.

Power reductions can be achieved through clock gating
and disabling the primary inputs to the sub-FSMs not
active.

Suppose the original, monolithic machine is partitioned
into n sub-FSMs with the state subsets Sy, S, ..., 8,
respectively, the total number of bits for the local state will

2 [log.|S]]

i=1
in the case minimum encoding is used. It will always be
more bits than what is reguired in the monolithic imple-
mentation. The disadvantage here is the area overhead.
The additional flip-flops often constitute a large portion of
a state machine. This approach has for example been used
in fully synchronous partitioned FSM by Benini et al. [2,
3]. Inthe events of crossing transitions between sub-FSMs
there are actually two state transitions taking place {from
the source state to the reset state in My and from the reset
state to the destination state in M), This makes crossing
transitions more power consuming than local transitions.
The work by Oelmann et al. [10] introduces a mechanism
that makes the crossing transition asynchronously and
thereby removes the double-clocking requirement, which
leads 1o lower power consumption. This approach leads
h to large area overhead mainly due to complex

—>

asynchronous logic and large overhead in the output logic.

2.2, FSM decomposition with shared state
memory

To overcome the problem of the large area overhead,
the .fm al state memary is shared by all the sub-FSMs [7] as

a) Separate state memory
Figure 1. Structural decomposition of FSMs

b) Shared state memory

2.1. FSM decomposition with separate state
memaory

As depicted in Figure 1a) above, each sub-FSM has its
own state memory. These state registers are local 1o the
sub-FSM and are referred to as local state memory. A stale
transition with a destination state not residing in the same
sub-I'SM as the source state we refer to as a crossing tran-
sition. No global state is needed and the interaction
between different sub-FSMs is handled by adding reset
states, one in each sub-FSM, to the local states and an
additional signal interface for activating and deactivating

il I in Figure 1b). Considering the previously
described approach, it can be realized that only the state
memory in the active sub-FSM is of importance when
computing the next state and the outputs, the rest of the
state memory is in that sense of no imponance. By divid-
ing the states into two parts, global states and local states,
the bits for the local states can be shared by all sub-FSMs.
The global states decide which one of the sub-FSMs is
active. In this way identical state codes can be used for
states residing in different sub-FSMs and being distin-
guished by the global state.

A monolithic FSM is partitioned into a partitions with
state subsets 85, 5, ..., 8, respectively. The global state
needs [ log,n| bits 1o distinguish between n sub-FSMs
and the local state needs I'mux{ln;, |Sis -+ 1og) LC 1
bits to represent the sub-FSM with the largest num g
states. The total number of bits in the state memory will be
lower compared to the separate stale memory approach.

different sub-FSMs. Assume a crossing from
sub-FSM M to sub-FSM M, when exiting M) it turns to
its reset state and causes the activation of M, that goes

H . from the power consumption point of view, the
disadvantage is that the extra flip-flops for the global stare
memory and the identical number of flip-flops required for
cach current active sub-FSM. The increased capacitive
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load on the clock signal will be the major reason for
increased power dissipation.

In the design model for partitioned FSMs introduced in
this paper, a shared state memory approach is used where
the global state memory is asynchronous. The basic idea of
having asvnchronous global state memory comes from the
fact that the crossing transitions, which lead to changes in
the global state, are of low probability and are therefore
idle most of the time. By not having the global state con-
tinuously clocked, power reduction is achieved. The local
state memory is kept synchronous and is conditionally
clocked based on the number of bits required for the sub-
FSM currently active.

3. FSM decomposition model

The main objective of this work is 1o propose a new
FSM decomposition model based on mixed synchronous/
asynchronous state memory to achieve low power con-
sumption and low circuit overhead. At the same time, the
input/output behaviour of the decomposed FSM is identi-
cal to the original fully synchronous one.

3.1, Design model overview

In our model, the pantitioned sub-FSMs share the same
synchronous local state memery while asynchronous glo-
bal state memory controls which one of the sub-FSMs
should be active. In order o handle crossing transitions,
the STG is transformed 10 suppon an interaction scheme
for asynchronously activating and deactivating the sub-
FSMs.

After decomposition, the original state set is partitioned
into several subsets, State transitions having the source and
destination states belonging to the same state subset will be
copied without transformation. For every crossing fransi-
tigm, an extra g state is introduced.

A crossing Iransition is completed by the following
sequence of events:

1. A synchronous state transition from the source state of
the crossing transition to the g state, which has the
same index as the original destination state.

. An asynchronous state transition from the g state to the
original destination state, both of which have the same
index.

The first event is called synchronous because the local
state memory is updated to the g state at the active edge of
the clock signal, The second event is called asynchronous
because it takes place in the global state memory upon
detection of transitions in the g states. The global sate is
then used to deactivate the currently active sub-FSM, acti-
vate the sub-FSM in which the destination state of the
crossing transition is. Thanks to the asynchronous global
state transition the entire crossing transition is completed
within one clock cyele.

Consider the STG in Figure 2 and assume a partition of

=
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M, and M,, with state subsets 8,= {5,555} in M; and
S {5251 i

Figure 2. FSM example dk27

Figure 3 shows the transformed STG afler decomposi-
tion (Input/output is ignored here for clarity). After intro-
ducing g states, two new state subsets are formed as U
{85 8g.22) I My, Uy {50.53.55.57.8 1841 in M3,

Figure 3. Transformed STG in decomposed FSM

Take the crossing transition s; — 5, as an example.
Afler g5 is introduced in M, the first event is the transition
5, < &, inside M), Then at the second event, the detec-
tion of g, makes the asynchronous state memory update its
state from ry to r; (labelled as ry-ry+ on edge & — 5, ).
The global states rp, r5 indicates the active sub-FSMs M,
M3 respectively. After the completion of the asynchronous
transition, M is deactivated and M is activated,

The asynchronous transition g, — s, will not influence
the local state memory which only can be triggered by
clock signal; therefore, the source state g» and the destina-
tion state s will have the same state code, whereas their
global states are different. A group of states with identical
local state codes and differem global states is called a stare
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bundle in this paper. Specially, the state bundle including g
state is called a g state bundle. In Figure 3, there are three
@ state bundles (255701225201 86.55) indicated with circles
shaded gray.

3.2. Definitions

To study state transitions separately, a state machine is
defined as a triplet: & = (5, £, 8), where § is the set of
states, [ is the set of binary inputs, 6: §x /- § is the
transition function.

Let there be a panition on  the set &
& = {8, ... S} where 7is defined as a collection of n
subsets, called blocks also, such that

- G
V) 5= 8
and S, S, = @ for i# i where 1< 7, j<n.

The monolithic FSM associated with S is then pari-
tioned into sub-FSMs My, M, ... M,,.

In state transitions, to reflect the property of states
entering or exiting a cenain partition block S, let us
define

HS) = {585, D) = 5p5,€ S, 85}

sy = | "',-15("}- f)=s5,5¢ S, 8,5
Both 1{S;) and /{5,) are set of states outside block S,
the former has state transitions to S;; the latter has state
transitions originating from 5.
Inside 5, let us define:

A5) = {s)dlsp, N =5,5,€5,5,€5]}

M5 = {585, D)= 5, 5,€ 5, 5, € 5;}

Both & 5;) and #S;) are state subsets inside block §;,
the former has state transitions originating from another
partition Mack; the latter has state transitions 1o another
partition flock.

These four state sets defined above are depicted in Fig-
ure 4.

Figure 4, State sets associated with S;

They will be denoted as Vi, T, (4 and W; in short in the
rest of this paper.

3.3. Network transformation

According 10 the definition in section 3.2, the STG
transformation is made in the following steps:

331 Introduce g states

For a cenain Mock S, G; s a collection of g states,
which are introduced based on the destination states of
crossing lransitions exiting S;.

Gy = 18

The state subser associated with sub-FSM M; is then
madified from S; to U, where

Uy = 5,06

In the transformed network, let us define

s e T}

Wy Gy = 6 as the collection of all g stares and
=1

" as the modified collection of all states. The

elements in I/ can be generally designated as ng, where & is
a subscript variable.
332  Transition function transformation

The original transition function & is transformed into

&, and &, representing the state transition inside the local
state memory and global state memory, separately.

1. Form the local transition function &, .
Letusdefine &, @ Sx /=0 as

s, el
8,(5, 1) £

i

{5(5,.. n it (s, 1) -

& if 8(s,0) = sl
Transitions from a certain set W, to T are replaced with
transitions from W} to the additional introduced set G

2. Form the global transition function & .
The global state set is defined as £ = {ry, . o)
There are as many states in & as the number of sub-
FSMs in the partitioned FSM. The global state identical to
r; indicates sub-FSM M, as the active sub-FSM.

Letus define &, : Ax U=/ as
rysrg+ if med

8(,“‘.:' ) S ‘. !
Ty otherwise

Where rp-,r,, + representing the asynchronous state transi-
tion. Since w, & &, we assume it represents the g stale gg.
A crossing transition is thus implied and its destination
state is sg. Thereby, ri-r,, + indicates sub-FSM M; is deacti-
vated and M, satisfying s, € 5, is activated.
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3.4. State bundling

In section 3.1, we proposed the g state bundle and stare
Bundle concept through an example. The reasons for state
bundling are: 1) It enables states to share the same local
state code. 2) It enables an efficient asynchronous hand-
over mechanism. 3) The g state bundle enables an efficient
clock gating implementation.

After the network transformation, a bundled state table
is built. Every column of the table represems a state bun-
dle. A state bundle is a set of states with same Jocal stawe
code but different global state ¢ very row of the table
represents the states in a sub-FSM which have the same
global state code. The number of rows is the same as the
number of sub-FSMs.

It is known that the g stare in G and its commesponding
state in § with the same index must be put into the same g
state bundle, so we build the table beginning with g stare
lundles.

To be specific, let us examine the example in Figure 3
again. s bundled state table is built with two rows, repre-
senting M; and M, and max(|U;JU5])-6 columns, repre-
senting the larger number of states in a single sub-FSM (g
state is also included). Firstly, three g state bundles are put
into the table cells shaded gray.

Table 1. Bundled state table

| ba bs | bg

| 5 g $7

Other states in each sub-FSM are then put into the table
ordinally from the leftmost empty cell. We finally get six
bundles and every sub-FSM has the same number of bun-
dles as the number of states inside it, After building the
Bundfed state table, the state transition inside a sub-FSM
can be viewed upon as the state bundle transition.

Let us observe the crossing transition from 55 to 5,
again. From Table 1, this transition can be explained in the
following sequence: 1) local state transition from state
bundle by to by inside M. 2) global state transition from
M to My, when local state memory still resides in by

3.5, State encoding

In the global state memory, one hot encoding is used for
state encoding. Every global state r; is encoded with only
one bit to be one and all other bits 1o be zero. The rest of
this section explains how to encode the states in the local
state memory and the influence of the state assignment o
the final gated clock implementation.

State encoding in the local state memory has the same
meaning as state bundle encoding. The requirement on the
state bundle encoding is that minimum number of bits in

the state code are changeable for a certain sub-FSM. This
will enable efficient clock gating and minimize the size of
the combinational logic and often the switching activity of
this logic. Binary encoding, which satisfies the require-
ment, will be used in the rest of the paper. It gives the
binary code of zero to the leftmost column of the bundied
state table. Codes are then increased by one for the col-
umns from left to right.

As mentioned in section 3.4, the number of local state
bits is decided by the sub-FSM with the largest number of
state bundles, that is, [ max(log,|6]. ... log,|6])].

Due to the property of binary encoding, for state transi-
tions inside a sub-FSM M, only [ log,| {-",L bits can be
changed. These bits are called the changeable bit field of
M;. Onher bits which are always zero can be called don’t
care bits of My Thereby, when M; is active, only the
changeable hit field needs o be triggered by the clock sig-
nal and taken as inputs to the combinational logic of M,
One thing that needs to be pointed out is cach changeable
bt field related with a certain sub-FSM is decided by the
global state; therefore, it only changes after the global state
asynchronous transition, that is, the next clock cyele after
the crossing transition. The problem left is how we can get
the correet code in local state memory when there is a
crossing transition between two sub-FSMs with different
changeable bit fields. This problem is solved by the intro-
duction of g state bundles which give extra restrictions to
the state encoding. The g state which is in the same sub-
FSM as the source state of the crossing transition, working
as a transition state, makes the source and destination state
of a crossing transition have their local state codes within
the same changeable bit field of the current active sub-
FSM. Accordingly, the current sub-FSM s don't care bits
which keep zero after the completion of the crossing tran-
sition will not influence the correct code of the crossing
transition destination state.

To be specific, we examine the example in Figure 3
again and binary ling is assigned in the bundled state
table.

From Table 2, we can see the number of local state bits
is three. In My, only bit0 and bitl are changeable and
belong to the changeable bit field. The bit2 which is
always zero is regarded as don't care bit of M. In M, all
three state bits are in its changeable bit field.

Table 2. State encoding for bundled state table
by | by | by | by | bs | bg | [loz,|t) 'l
B | 000 | oot | ofo | o1l | 160 | 101

My |51 [% |8 [s 2
My |21 (B |82 |85 |85 |5 3

Suppose there is a crossing (ransition from 55 in My to
sy in My After the synchronous transition from by to b,
the local state memaory is changed to “0007, Bit2 becomes
zero and will be disabled in the next clock cycle after the
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asynchronous transition from M 1o M. I there is a cross-
ing fransition from sz in M to 53 in M reversely, after the
synchronous transition from b to by, the local state mem-
ory will be changed to “0107. The g state bundle by makes
the highest bit of 55 zero only, which is restricted by g,
Without this encoding restriction, a crossing transition
from M 10 M> may require the local code 10 change from
#0017 to “ 1107, for example, then the disabled bit2 is still
zero and the result will be “010” instead. In other words, g
state bundles ensure a correct state code in the lecal state
meniory after the completion of the crossing transition.

4. Implementation structure

In this section we first propose a general structure for
our decomposed FSM model. Then we give a detailed
deseription of the implementation. For clarity we limit our-
selves o deseribing the two-way partitioned FSM.

4.1. N-way partitioning structure

Suppose the monolithic machine has [ as input, € as
output and is partitioned into sub-FSMs M, Ms, ... M,
The original state subsets S, S5 ... 5, combining the
introduced g states, form the new state subsets Uy, Us, ...,
U, for My, Ma, ... My, respectively. All sub-FSMs share
the samwe lecal state memory but have their own combina-
tional logic. Our decomposed FSM structural model is
shown in Figure 5.

The G state bundle Detection Logic (referred to as
GDL} decodes the state bits in the Local State Memory
{referred to as LSM). 17 a g state bundle is detected, a sig-
nal is sent to the Global State Memory (referred 10 as
GSM).

GSM decides the current active sub-FSM. It is imple-
mented as an asynchronous finite state machine. A state
transition in the GSM only takes place at the evemt of a
crossing fransition, that is, when a g stafe has been
detected. In a “well-partitioned” FSM., where the probabil-
ity of a crossing fransition is low, the GSM will be idle
most of the time and will therefore dissipate no dynamic
power. The state information in the GSM is directly used
as control signals to both the LSM and the combinational
part {implementing the next state and primary output func-
tion} of the sub-FSMs (labeled My ... M, in Figure 5).

As pointed out in section 3.5, the mumber of local state
bits to the combinational part of M; is [ log,[{/[]. For an
active M, only the changeable im field of the LSM is
clocked when the other bits are disabled by clock gating,
The global state controls the clock gating.

At any given time, except for the events of crossing
transitions, only one sub-FSM is active. The active sub-
FFSM is responsible for determining the primary output and
the next local state. When inactive, all its inputs are disa-
bled by AND gates and no dynamic power will be dissi-
pated. All outputs of an inactive sub-FSM are set 1o zero.
By using OR gates, the correct primary outputs and nexi

state outputs can be obtained by collecting corresponding
outputs from all sub-FSMs.

It is known that the number of state bits into the combi-
national logic of a sub-FSM is important to its implemen-
tation size and is also related 1o the power dissipation. This
partitioning of a FSM resulis in a less number of state bits
needed for sub-FSMs. Reduction in both area and power
can thus be achieved. Large power reductions is obtained
when a good partitioning is found where a small sub-FSM
active most of the time.

GDL GSM
A A
. SEm
LSM M, 0
- My »
A Y
clk
1

Flgure 5. Smmral model based on mixed
state memory

Y M Y

4.2. Two-way partitioning implementation

For the sake of clarity, we limit ourselves to present the
detailed implementation architecture for two-way parti-
tioning, but it can easily be extended to FSMs with more
panitions. In addition, according to our experiments, two-
way partitioning can result in large power savings.

To be specific, we examine the example in Figure 2
again, The original STG is transformed in Figure 3 and
bundled state table is set up in Table 1. Local state codes
are given in Table 2. The global state set is defined as
R={rpral and the state codes of vy or vy are indicated as
(13.15), where (1,050 01 represents that sub-FSM M, is
active, (npng)~10 represents that sub-FSM M is active.
By one-hot encoding of the global state, it is possible 1o
decode the active sub-FSM directly from the state bits.

Figure 6 shows the block diagram for the overall reali-
zation. The & state bundle Detection Logic (GDL) detects
the local states. The g state bundle by, B>, and by (in Table
1) corresponds to the output signal a (dg-a5), which are
sent 1o the Global State Memory (GSM),

The clock gating logic for glitch-free operation is com-
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posed of a NAND gate and an inverter here. Three bits are
needed for the local state since My has six states, but only
two bits are needed for M. The bundled state encoding
restriction results in that the lower two bits FFi in the
Local State Memory (LSM) are always active and are
therefore directly controlled by the global clock. State bit
FF2 is not used in My and is therefore conditionally
clocked. The global state bit n; controls the clock gating of
FF2. The highest bit FF2 is always zero when M is active,
in which case it is disabled. When M is active the global
state bit iy equals one and enable the clock signal of FF2.

GDL GSM

FF2

SlelL]e

'

M, 0

o

Py

I

ek

Figure 6. Circuit of a decomposed FSM(dk27)

Besides clock gating, disabling of the inputs to the com-
binational logic is used to reduce the power dissipation. In
our ple. the input disabling logic is impl 1 by
three AND gates in fromt of M; and four AND gates in
front of M». Depending on the global bits, these AND
gates can block the state bits and primary input signals
from propagating through M; or M.

Both the primary outputs and the next state values are
computed by both sub-FSMs but separated in time. The
signals from M; and M have 10 be merged. There are four
OR gates. Two of them are used to decide the correct pri-
he other two are used for FFO and FF1. Note
don’t care bit 1o the combinational part of M
and it is only updated by the next state signal from the
combinational pan of M.

For two-way partitioning, it is shown by Figure 7 that
GSM is composed of two asynchronous memory clements
ASO and AST with output iy, g respectively. ASO is reset
by ASI and set by the signal which is a collection of g
state in sub-FSM M (see g; and gg in Table 1). ASI is
reset by ASO and set by a collection of g state in sub-FSM
M (sce gy in Table 1).

Suppose there is a crossing transition {rom 85 in M 10
sy in My, Al the beginning, global state bits (1 ,0g)-01. In
the first step, the local state memory is updated by the g
state bundle by, In the second step, after detecting by, GDL
will set the output @ o be one and send this signal 10
GSM. In GSM, together with its own feedback signal
g1, g2 is detected, which set AS] immediately. AS1 will
then reset ASO. Now (n,05)=10 and the crossing transi-
tien from M to M, is completed. The completion of g,
signal can be depicted by the signal sequence: go+, npt,

. GSM v
H H

4 ASO ¥
B g :
T H
H g %
ag H
f! 14 .
GDL| 3
; =T B
iy | .
N :
H '
[ ASI .

v >

Figure 7. Global state memory structure in dk27

g, @3-, where 47 represents a monotonical change from
(1o 1, =" represents a monotonical change from 1 1o (.

Through this example, the whole procedure for two-
way FSM decomposition is explained, also the potential is
shown that a good partition with unbalanced size of sub-
FSMs can efficiently reduce the arca size in the combina-
tional logic. The structure inside asynchronous glebal state
memory (in Figure T) is similar for all two-way pantition-
ing and used in the experiments of the next section.

5. Experimental results

By two-way decomposition, our solution of mixed syn-
chronous/asynchronous state memory was applied on cir-
cuits from the standard benchmark set. The number of
states in the benchmarks range from 1910 121 states.

For state partitioning, we use Kernighan-Lin algorithm
to find a small cluster of states composing the first sub-
FSM and all other states composing the second one [9].
The cost function is based on transition probability and the
smaller sub-FSM should has high probability of state tran-
sitions inside itself, and low probability of crassing transi-
tions 1o the other sub-FSM.

The power dissipation was obtained from gate level
power estimation by Power Compiler (Synopsys), assum-
ing a supply voltage of 1.8V, a clock frequency of 20MHz.
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The area estimation was based on the cell area and the tar-
get technology is a 0.25um CMOS standard cell technol-
ogy.

The primary input probability was set 1o 0.5 and its

asynchronous operation, the input/output behaviour of the
decomposed FSM is equivalent to the synchronous one.
By applying model to a number of standard FSM
benchmark circuits using two-way partitioning, we have

switching activity was set 1o 0.5 also. The v state
probabilities are computed based on random-walk simula-
tions.

In Table 3, characteristics of the original finite state
machine are shown. The circuit name, input, output and
number of states are given in the first four columns. The
area and power statistics is given in the last two columns,

Table 3. Finite state machine statistics

Circuit | #P1 | #PO | #states | area | power
51488 | « 19 44 9247 | 1559
8820 | 13 19 25 4439 | 71
51494 | 4 19 a4 wes | 1367
styr | @ 10 30 4279 | 543
keyb | 7 2 L] M2 | 60
sB32 | 1= 19 D 4665 | 759
sef |27 | s 121 861 | 63
* power: oW aren: Fgate eq

Table 4. Results after decomposition

Circuit U/
2 U, | area | power P
51488 | 444 a48 | sna | sie &T0%
8820 | s20 | 723 | sess [ 402 43.5%
s1494] qu1 | sus | sa1n | sos £3.1%
styr | 426 | e | smas | 430 20.8%
keyb | 415 M6 | 3309 | 309 41.3%
§832 | 322 | 424 | sves | 307 AT
scf | sm12 | wnis | s637 | ass BT
* power: uW area: figate ¢q

In Table 4, The column labeled “|S;)8," shows the
state subsets for respective pantition in the decomposed
FSM. The column labeled “|U /U, shows the modified
state subsets after introducing g srates. The following two
columns show the area, power of the decomposed FSM.
The percentage area increase, power reductions of the
decomposed FSMs are shown in the last two columns. An
average power reduction of 46.0% is achieved with an area
increase of 9.5%. For benchmarks such as s/488, power
reduction can be up to 70%.

6. Conclusions

In this paper we propose a novel design model for parti-
tioned FSMs that is based on mixed synchronous/asyn-
chronous  state memory. In spite of the internal

I I that large power reductions (up to 70%) can
be achieved with low or no area overhead.

The panitioning and STG transformations are made
automatically in our prototype tool, which takes an 8TG as
input, generates synthesizable RT-level VHDL code that is
fed 1o a standard logic synthesis tool. A standard CMOS
cell-library can be used without the need of any special
cells.

In this work we have not paid any special attention 1o
the optimization of state clustering and state encoding. We
believe that there is room for funher power reductions
when these issues are addressed.

We also believe the mixed synchronous/asynchronous
state memory concept deserves further investigation. By
applying it to n-way partitioning, more power reductions
can be expected, especially for large FSMs.
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Abstract

An efficient way to obtain Finite-State Machines (F'SMs)
with low power consumption is to partition the machine
into two or more sub-FSMs and use dynamic power man-
agement, where all sub-FSMs not active are shut down, to
reduce dynamic power dissipation. In this paper we focus
on FSM partitioning algorithms and RT-level power esti-
mation functions that ave the key issues in the design of a
CAD tool for synthesis of low-power partitioned FSMs. We
target an implementation architecture that is based on both
synchronous and asynchronous state memory elements that
enables larger power reductions than fully synchronous
architectures do. Power reductions of up to 77% have been
achieved at a cost of an increase in area of 18%.

1. Introduction

Power optimizations at the architectural level often
involves some Dynamic Power Management (DPM)
scheme that reduces the dynamic power consumption [1].
Whenever DPM 1s applied, the original design has to be
partitioned into two or more units in such a way that they
dynamically can be “shut down” when idle. An automated
optimization procedure will take the original design
description along with statistics for the primary input sig-
nals to a partitioning algorithm with cost-functions that
seeks for the best partition. The number of possible parti-
tions (candidates) are, for non-trivial problems, too large to
explore. Therefore, an algorithm for selecting only the most
promising candidates is required. Among these candidates
one should be ranked to be the best. Here, it is crucial to
have accurate cost-functions despite lack of detailed infor-
mation of the final implementation.

This paper focuses on the partitioning and candidate-
selection procedures and the RT-level power estimation
functions which are implemented in a tool for low-power
FSM synthesis. The outline for the paper is as follows. In
section 2 a background on partitioned FSM design for low-
power is given. This is followed by an overview of the tool
we have developed. Section 4 goes into the details on parti-
tioning algorithm and power estimation functions. In sec-
tion 5 synthesis results are given and after that the paper is
concluded.

2. Background

The imtial design description for most approaches of
partitioned FSM design 1s the synchronous State Transition
Graph (STG). Partitioning, cost-estimations, and transfor-
mations are done on the STG. The first step is typically to
identify clusters of states with high mutual state-transition
probabilities. These states are said to be strongly connected.
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The objective is to find small clusters with strongly con-
nected states because they will result in small sub-FSMs
that are active most of the time which leads to low average
power consumption. Each sub-FSM will require circuitry
for idle condition detection and for the shut-down mecha-
nism, which both constitutes a functional overhead. The
partitioner seeks the most beneficial idle conditions, taking
this overhead into account. In the early work by Benini et
al. [2], so called self-loops with high transition probabilities
were implemented as separate sub-FSMs. This work was
generalized to involve clusters of many states [1]. The
major power-overhead introduced in a partitioned FSM
comes from the fact that at the event of a crossing transition
(a state transition has source state and destination state
residing in different sub-FSMs). Two sub-FSMs have to be
clocked in that cycle to complete the transition [3] which
makes it very costly. To overcome this double-clocking
requirement, an asynchronous mechanism has been pro-
posed [4]. By allowing asynchronous state changes, two
state changes can be made in the same clock eycle. Another
advantage of using asynchronous control is that the capaci-
tive load on the free-running global clock is reduced [4].
The straight-forward way to implement a partitioned
FSM 1s to have separate state memory for each of the sub-
FSMs, see Figure 1a. On the other hand, the state memories
can be shared by all the sub-FSMs since only one is active
at a time. One main advantage here is reduced area for flip-
flops. In this case there is, however, a need for a global state
determining which one of the sub-FSMs is active, see Fig-
ure 1b. The global state memory needs to be clocked by the
global clock and will add substantial power consum ption.

|M2 My, M2

MIE
[

a) Separate state memory b) Shared state memory

Figure 1. Structural decomposition of FSM

The CAD-tool discussed in this paper targets the mixed
synchronous/asynchronous architecture developed in [5]
that has a shared synchronous local state memory (LSM)
together with a global asynchronous state memory (GSM),
see Figure 2. The basic idea is to have synchronous mem-
ory in the part always clocked, i.e. the local state memory,
and asynchronous memory for the global state memory, that
have a low probability of being updated. In this way the
global state memory adds very low power-overhead. The
shut-down mechanisms used are input-gating to reduce
power dissipation in idle combinational logic, and gated-



clocks to shut down flip-flops temporarily not needed in the
local state memory.

] Merging function
% Gating function

Figure 2. Mixed Synch/Asynch. FSM Architecture

3. Design Flow and Tool

As shown in Figure 3, the tool accepts FSMs described
as synchronous STGs. For each input, the switching activity
and signal probability are given. A standard-cell based
design flow is assumed which means that there are no spe-
cial requirements on the library that goes beyond what is
normally provided. However, the tool requires some cell
library dependent mformation in order to make accurate
power estimations and gate-level synthesis of the asynchro-
nous elements.

In order to enable power estimation, the first step is to
generate necessary statistics for the FSM. From the behav-
1oural FSM description (STG) and the primary input proba-
bilities, we get the state-transition probabilities, input and
output statistics for the state-memory, the transition and out-
put functions. Based on the state-transition probabilities, the
states are clustered according to their mutual state-transition
probahilities. We then use an algorithm that selects those
candidates most likely to give the best partition. With a lim-
ited number of candidates, more accurate RT-level power
estimation is made. Each candidate is synthesized to a RT-
level description and power consumption 1s estimated. From
these results the best candidate 15 selected and RT-level
VHDL code 1s generated along with synthesis seripts for
logic synthesis in a standard tool.

Input
robabilitie: andom paitern
[i] i
STG for FSE}‘

STG Simulator ‘

1 ot o)

II State Clustering I"I Partitioner ”

D)
N

I FSM Synthesizer H Power estimator |
A
IRTLcudaganeratorI I Script generator |

1) G
D L G R L U

Figure 3. Overview of the tool

64

4. Automatic Synthesis of Partitioned FSMs

4.1. State Clustering

The original state transition graph can be looked upon as
an edge-weighted undirected graph G(FEJ. A binary tree is
bult by recursively applying the Kernighan-Lin two-way
partiioming, states are clustered depending on their state
transition probability for minimizing the crossing transi-
tions between two sets. Redundant states, that in later stage
are discnrdcd, are introduced to I firstly, forming 17, to
make sure |[F7] (number of vertices) is the power of 2.
Assumed [J7 | equals 2, the complexity of this algorithm is
O(n‘lngn) For the benefit of the second phase, the tree is
built with the left hand cluster having higher static probabil-
ity. The left most cluster at each level has then the highest
static probability. Take benchmark 427 [7] which has 7
states as an example. After introducing one redundant state
(8), a full binary tree is built as shown in Figure 4.

Level 1: {1.2,.3.4 56,78} 1 Cluster

Level 2: {2.357}.{1.48, 8} 2 Clusters
Level 3. {2.5}{3.7}.{1.6}{ 4 Clusters
Level 4: {2} {SHEMT }{6} {1} {4} {8} & Clusters

Figure 4. Full binary tree for dk27

4.2. Candidate Generation

We propose an efficient algorithm that combines clusters
in each level of the binary tree for generating the partition-
ing candidates. For » states, this algorithm finds candidates
ranging from 1-way to n-way partitioning with a complexity
of only Ognlog®a). Within a limited number of candidates, a
good partition with low power can be found. Applying the
algorithm, given in Figure 6, on the binary tree shown in
Figure 4, candidates are generated as shown in Figure 5.

Level 1:{1.2,34.5,6,7 8}

Level 2: {2357} {1468}

Level 3: {2,5}(3.7,6.1 4,812 5}.{3, 7}.{6.1,4,8); {2.51{3, T}{6,1.4.8);
{2.5043,73.{8.1}.44.8}

Level 4:

{2}45.3,7,6,1,4,B3{2},{5}{3, 7}.{6,1.4,8) {2}.{5}.{3. 7}.{6, 1}.{4.8}

{2},{5}.{3.7.6,1.4.9}{2}.{5}.{3.7}.{1,6,4.8):{2}.{5}.{3.7}.{6.1}.{4.8}

{21{51{3}47.6.1.4 8{21SLAAATH 6.4, BH(2)A5) ({7148 11 {4.8)

{2} {513} {THE 1.4 BL{ZH S {2 {THE. 1.4 B {2} 45} {3}.{T1.{6, 1}.{4.8}

{2).{51{3} AT} {6).{1.4.8}:{2).AS} {3} {TL.{6}.{1}.{4.8}

LSM3ATHEM 14,8}

{2145} {3}.{7}.{6}.{1}.{4}.{6}

Figure 5. Generated candidates for dk27

4.3. Power Estimation

The power estimation functions are used on the partition-
ing candidates obtained in Section 4.2. to find the best one
with lowest power. For both the asynchronous global and
synchronous local state memones the gate-level implemen-
tations are known. It is not the same as the combinational
logic which requires different power estimation technigues.
From the STG simulator input and output statistics are
obtained and used for the power estimation.



Candidate_Select(set of Clusters ClusterTree) |
for (level « I, level< clusterTree. depth(}; fevel « levei+ 1) {
Clusters C « cutlevel(clusterTree, levell:
int N« C.size();
for (base « 1, base< N, base « base+1) {
Clusters Py, + fo ), .. fepsds
Clusters P00 ¢ fopasersdh oo fepds
Clusters TMP < Py .M Prosigase
candidates «— candidates U TMP;
int restBase « N - base;
int place « N;
int r 0,
if (restBase >2) {
re—vrestBase;
while (r > 0} {
int e | log,r|:

inmd « 2

int g« (- mod(nd)/d:
remodird);

for (f ¢ g3/ > 0, & j-D) {
Porotpase ¢ {cﬁ'md et
place « place - d;
TMP ¢ Praseld Presepase:
candidates « candidates U TMP;

}

}
}
)

}
return candidares,

Figure 6, Algorithm for selecting candidates

// the quotient of 1/d
/1 the residue of r/d

e f-'p{m} .

Power estimation for combinational logic:
An entropy-based power estimation approach proposed

in [6] 15 used for the combinational logic. The transition
table together with entropy for the combinational logic,
based on the switching activity of the inputs and the out-
puts, are used-

J[]

comb

Y Hox Row X k2% T; Where H, is the
entropy of the Ioglc Row; is the number of rows in the state
transition table originating from the sub-FSM 7, &, is an
empirically determined constant to adjust to the cell library
used, and 7; is the duty period of the sub-FSM 7.

Power for global state memory:

For the global state memory we use an empirical model
that is based on the structure of the memory. Even though
the gate-level implementation is known, we found it more
accurate to use the macro model shown below that consists
of two parts representing the power of 1) the logic that
detects and initiates the transition from one sub-FSM to
another and 2) the asynchronous state memory element.

Pasy=  (kpXpyou_pt kX pet ko x18) 1
L
+ Z Pex T, 7

=
The expression inside the parenthesis estimates the
power in the global state transition function that is a func-
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tion of the local state and the global state. The first term rep-
resents the contribution from the local state memory where
Prsacp 15 the toggle probability of local state bits. The sec-
ond term represents the contribution from the global mem-
ory where p, is the sum of toggle probabilities of the g-
states. A g-state is a local state that initiates a global state
transition. The third term represents the complexity of glo-
bal state transition logic where |g| is the number of g-states.
The sum 2) represents the contribution from the global state
memory devices, implemented as muller-C elements where
T} 1s the probability of global state transition, which is the
probability of a crossing-transition between different sub-
FSMs. The number of sub-FSMs is denoted n. The con-
stants &, k., and,k, are determined empirically. These can
be determined based on a single FSM partition run. For
more details on the global state memory architecture we
refer to [5].
Powe y ip flop:

The local state memory consists of a set of D flip-flops
and s estimated by:

EI Pore, T
-

Where T} is the duty time of the flip-flop, m is the number
of local state memory bits,
Power for clock net energy:

The power dissipation in the clock net is estimated by:
Petock = WFAX i % % V{HHX Kpurror® Kujre -
Where |FF| is the average number of [lip flops clocked,
Cjkin 18 the capacitance of the clock input, Iy, is the power
supply voltage, fis the clock {requency, kp,p.- 15 the clock
buffer capacitance coefficient, and &, 1s the wire capaci-
tance coefficient.
Power fo

Prsw =

averhead garedCon + anrr edBF where /7 gatedCon
includes the power of AND gates for activating and deacti-
vating the combmallonal logic, also the OR gates for merg-
ing the output; 7, ... is the power for activating and
deactivating Lhe ocal state bits and basically originates
from NAND gates.

The power dissipation for the whole partitioned FSM is
simply a sum of the above:

‘Fllmh ‘itrmﬁ- * Pyt '{.f‘w'4 "{u lack " ‘Fm‘ rhead

5. Results

The accuracy of the power estimation functions is veri-
fied by comparing the estimated power before and after
logic synthesis, As reference we use Power Compiler (Syn-
opsys) for gate-level power estimation. In Figure 7, the
results from the estimation functions 2, ;.. P, 0. Py -
and P,y (labeled Estimated) and the results from Power
Compiler (labeled Actual) can be compared. A 0.18um
technology is used with Vpp, of 1.8V, clock frequency of
20MHz. The primary input probability and switching activ-
ity are both set to 0.5, A series of candidates chosen from
each level of the partitioning tree of three different FSM
benchmarks (5820, keyb, and s1488) were used in this verfi-
cation. It can be seen that estimation functions match well
with the results from the gate-level estimations. The correla-
tion coefficient, which measures the extent to which two
sets of data match with each other, is used for verifying the



cost function. The reason for using the correlation coeffi-
cient is that we want to find a candidate with the actual low-
est power also is the candidate with lowest estimated power.
Therefore, the absolute difference of these two is not impor-
tant. The coefficient between estimated and actual power
for the whole partitioned design (P, 15 0.77 for 5820,
0.98 for 51488, and 0.88 for keyb.

180 T T T T T T T
= EstimatedWhole

— Actuahhole
160 o EdimatedComb |

140 —— ActualGSM d

15 il 2% 30 E3
51488 Algorithm Candidate Mo

Figure 7. Cost function verification

It is crucial that the candidate generation algorithm finds
the candidate with the lowest power consumption. In order
to verify that we randomly generated 50.000 partitions of
the 51488 and compare them to the one selected by the tool.
From Figure 8§ it can be seen that, none of the randomly
generated partitions 1s better than the one selected by the
tool.

To illustrate the overall performance of our tool a com-
parison between the original monolithic FSM and the multi-
way partitioned FSM is shown in Table 1. The columns
labeled “A.O” and "P.O” represent the area and power of the
original monolithic FSM; the column labeled “n” represents
the number of sub-FSMs after partitioning; “A.D” and
"PD” represents the area and power of the decomposed
FSM; The following two columns represent the percentage
of area increase and power reduction of the decomposed
FSMs.

250 5
| . L . RandomCandiate

100

Power Estimatian (ul)

0 05 1 15 2 25 3 25 4 45 5
51488 Random Candidate No. 10

Figure 8. Algorithm verification

The CPU times in Table 1. are for the state clustering and
candidate generation algorithms executed on a Pentium4,
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1.6GHz processor, under Windows 2000. The total time for
the largest benchmark (scf 121 states) is 5 minutes which
shows that the most time consuming part is FSM synthesis
to RT-level and power estimation. This supports our idea of
the importance of having a candidate selection algorithm
that early limits the number of candidates.

Table 1. Results for standard benchmarks [7]

FSM
AO PO | n| AD P.D %A | %P cpu
gates | UW gates | UW []
1488 | o5 160 | 7| 1090 | 37 18% | 7% | 2.7
s820 | 444 75 3 | 630 a1 420 | 45% | 0.9
51494 | 900 41 | 7| 1002 | 38 21% | 73% | 3.3
S832 | 467 80 2| 534 36 149% | 55% | 0.9
keyb | 271 72 | 5| 436 34 61% | 53% | 0.9
scf | 786 80 | 3| 1067 | 54 36% | 33% | 127

6. Discussions and Conclusions

In this paper we present a novel multi-way partitioning
algorithm for partitioned FSM synthesis. We have applied it
to a mixed synchronous/asynchronous architecture but it
can also be used for fully synchronous implementations. We
also present RT-level power estimation functions that have
sufficient accuracy for selecting the candidate with the low-
est power consumption. The proposed algorithms are of low
complexity which 1s important when it comes to practical
usage of the tool. The tool, as shown in Figure 3, has been
completely implemented in C. It fits into a standard-cell
based design flow and is fully compatible with the Synop-
sys tool set. Our tool reduces the power consum ption signif-
icantly, in average 56% for the benchmarks, which 1s better
than any previously reported results for partitioned FSMs.
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Low-Power State-Encoding for Partitioned
FSMs with Mixed Synchronous/Asynchronous
State Memory

Cao Cao and Bengt Oelmann

Abstract; Partitioned Finite-State Machine (FSM) architectures in general enable low-
power implementations and it has been shown that for these architectures, state
memory based on both synchronous and asynchronous storage elements gives
lower power consumption compared to the fully synchronous ones. In this paper we
present state-encoding techniques for a partitioned FSM architecture based on mixed
synchronous/asynchronous state memory. The state memory here is composed of a
synchronous local state memory and a global asynchronous state memory. The local
state memory is shared by all sub-FSMs and uses synchronous storage elements.
The global state memory is operating asynchronously and is responsible for handling
the interaction between the different sub-FSMs. Even though the partitioned FSM
contains asynchronous mechanisms, its input/output behavior is cycle by cycle
equivalent to the original monolithic synchronous FSM. In this paper we study state
encoding for partitioned FSMs that have been partitioned according to their state-
transition probabilities. For the local state assignment we present a, what we call,
state-bundling procedure to enable states residing in different sub-FSMs to share the
same state codes. Two state-encoding techniques, one based on binary encoding

and one optimized for low-power consumption, are compared.
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1

Introduction

Dynamic Power Management (DPM) is a commonly used approach for low-power
optimization on the Register-Transfer (RT) and architectural level [1]. The
objective for a DPM scheme is to shut-down the parts of the design that are
temporarily idle. By shutting down a part it is meant that the power dissipation is
reduced for that part. For reduction of dynamic power dissipation, clock-gating
and input-disabling is used. For reduction of leakage currents, such as
subthrehold and diod leakage, various approaches have been proposed in the
literature, e.g. [2]. Common for all these techniques is that mechanisms for
detecting idle conditions of the different units are added to the design. Also means
for shutting down the units are added. Implementation of these will result in
additional circuits that will add to the circuit area and power dissipation. Before
introducing shut-down circuits in the design, careful analysis must be made to
achieve a solution with as low power consumption as possible. The objective for a
power optimization procedure is to find the most beneficial idle conditions, taking
the overhead into account. Complex designs, composed of several functional
units, such as microprocessors that are composed of large functional units like
floating-point unit and cache memory can be temporarily shut-down when not
used. For a given architecture, this kind of coarse-grained DPM is possible to
implement manually by the designer thanks to the small number of places shut-
down circuits are introduced and to the fact that the different units are functionally
well separated and therefore easy to identify. When applying DPM to a single
functional unit, the unit has to be partitioned into two or more sub-units where

each of them can be individually shut-down. The unit is decomposed in such a
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way that the lowest possible power consumption is achieved. This type of fine-
grained DPM requires an automated optimization procedure since the optimum
decomposition is not necessarily made according to the functionality it is therefore
not obvious to know how to make the decomposition. The most commonly used
approaches for power optimization procedures, takes a behavioral description of
the designh and seeks the optimum, or near-optimum solution, for a pre-defined
architecture. For data path units (combinational logic) the precomputation-based
logic has been proposed [3]. The idea is to pre-compute a part of the function one
clock cycle ahead in order to gate the clock signal to the register holding the
inputs to the combinational logic and thereby reducing the average switching in
the logic. Different architectures have been proposed that block either all inputs or
a subset of the inputs [4]. This approach can also be used for synchronous FSMs.
For low-power FSM design Benini et al. presented an approach called
computational kernels [5]. From the State Transition Graph (STG) of the FSM, a
sub-FSM is extracted that implements the function of the FSM for a subset of its
states whose steady-state occupation probability is high. WWhen the FSM is in one
of these states a smaller and less power-consuming circuit is used (the kernel)
and otherwise the original function is used. Chow et al [6] propose an
implementation architecture that resembles of the one used for computational
kernels. They propose a decomposition model for multiple coupled sub-FSMs. A
shared state memory stores two sets of states, the original states and additional
states that are used for determining which one of the different sub-FSMs that is
active. For state-encoding they present a method that consider the crossing
transitions (transitions where the source and destination state do not reside in the

same sub-FSM) is used. In contrast to the shared state memory architecture, an
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architecture with separate state memory, one for each sub-FSM, has been used
by for example [7,8]. For state encoding and other optimizations, each sub-FSM
can be separately optimized using standard methods. The disadvantage is that
the circuit area for the state memory becomes larger compared to using shared

state memory.

The approaches to low-power FSM design described above, all assume fully
synchronous implementations. For both architectures, based on shared and
separate state memory, fully synchronous implementations have disadvantages.
For the cycle when a crossing transition occurs, the two sub-FSMs involved, both
have to be clocked which is very power consuming. For partitioned FSMs with
separate state memory an asynchronous hand-over mechanism has been
proposed that removes the requirement of clocking two sub-FSMs at a crossing
transition and thereby the power-overhead introduced for managing the
interaction between the sub-FSMs can be reduced. In [9] it has been shown that
asynchronous control for sub-FSM interaction is 5.8 times more power efficient

when idle compared to synchronous control.

In [8] it was demonstrated that automated synthesis for low-power FSMs based
on a mixed synchronous/asynchronous architecture with separate state memory
achieved power reductions of 45% in average for a set of FSM benchmark circuits.
For a recently presented decomposition model [10] for FSMs with shared state
memory power, reductions of 56% in average. Here, state encoding optimizations

for low power was not considered.

In this paper, a novel low-power state encoding algorithm for coupled FSMs is

proposed and applied to partitioned FSMs based on mixed
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synchronous/asynchronous state memory. The main contributions of this paper

are the following:

¢ A state assignment procedure: State bundling enables crossing transitions in

one single clock cycle (or in other words, only one sub-FSM has to be clocked).

o Power-optimized state encoding: A computational efficient state-encoding

algorithm for coupled FSMs.

o Demonstration of efficiency: The algorithms presented have been
implemented in a tool for low-power synthesis of partitioned FSMs and it is
demonstrated that the state-encoding algorithm leads to power reductions of
6% in average for low-power partitioned FSMs originating from the MCNC
benchmark circuits. The total average power reduction that is the result from

both partitioning and state-encoding is 59%.

The outline for the rest of this paper is as follows: The next chapter introduces the
partitioned FSM implementation architecture with a focus on the organization and
operation of the mixed synchronous/asynchronous state memory. In chapter 3 the
basic binary state encoding procedure and our procedure that we propose for
power optimized state encoding are presented. In chapter 4 some experimental
results from automatic synthesis of a set of FSM benchmark circuits show the
possibility of reducing the power consumption in a partitioned FSM by using
power-optimized state encoding after partitioning. In chapter 5 we conclude the
paper by a discussion regarding the limitations of the two step approach with a

partitioning step followed by a state encoding step.
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2 Partitioned FSM with Mixed Synchronous/Asynchronous State Memory

2.1 Implementation Architecture

The straight-forward way to implement a partitioned FSM is to have separate state
memory for each of the sub-FSMs, see Figure 1a. From state encoding point of
view, state-encoding is made separately for each of them and well-established
optimization algerithms can therefore be used. Since only one of the sub-FSM is
active at a time, the state memory can be shared by all the sub-FSMs. The main
advantage with shared state memory is the reduced area for the state memory,
see Figure 1b. There is, however, a need for a global state memory determining
which one of the sub-FSMs is for the moment active. For power-optimized state
encoding, state-transition probabilities of the crossing transistions must be
considered which is not the case for the separate state memory implementation.
For a synchronous solution the global state memory needs to be clocked by the
system clock signal that cannot be gated and will therefore increase the power
consumption substantially, especially for a partitoned FSM composed of large
number sub-FSMs. The architecture considered in this paper is a mixed
synchronous/asynchronous architecture developed in [10] that has a shared local
state memory (LSM) with a global asynchronous state memory (GSM). The basic
idea is to have synchronous local state memory in the part always clocked and
asynchronous memory for the global state memory. The partitioned FSM is made
on the basis of the state transition probabilities which results in clustering of states
with high probabilities that will be implemented in the same sub-FSM. The state-

transition probabilities between the sub-FSMs will be of low probability and hence
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the state-change probability is low for the global states which make an

asynchronous implementation power efficient [12].

2.2 STG decomposition

In this section the decomposition of the STG of the monolithic FSM for the
architecture described in the previous section is presented. To describe to basic
ideas of the design model for STG decomposition, the example in Figure 2 will

serve as an illustration.

The initial monolithic machine is decomposed into two separate sub-FSMs F'
and F? as indicated in Figure 2a. We can see that there are two crossing
transitions, one from sz in F' and one from s5 in F2. For each crossing transition,
an additional g-state is intfroduced and the source state of the original crossing
transition will have that as destination state. In Figure 2b the destination states
of the crossing transitions from s, are changed from s; and s; to gz and gs
respectively. A crossing transition is completed by the following sequence of
events. When the machine enters a g-state this is detected and the global state,
denoted R, of the partitioned FSM will change. The global state is pointing out
which one of the sub-FSMs that is active. A change in the global state will
deactivate the sub-FSM containing the source state and activate the sub-FSM
containing the destination state. Consider the crossing transition from s to s3 in
the example. The transition from s, will enter gs. This will cause the global state
R making a transition from rqy to r,. The global state will after completion of the
crossing transition point out F? as the active sub-FSM and not F' as before. In a
synchronous FSM the crossing transition, as all transitions, must be completed

within one clock cycle. From the example above it can be seen that a crossing
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transition requires two state transitions which will take two clock cycles to
complete in a synchronous machine. To solve this, the transition from the g-
state to the entry state of the destination sub-FSM (e.g. g4 to s¢) is made
asynchronously. By that it is meant that the transition is triggered by a signal
transition rather than by the active edge of the clock signal. A control signal,
decoded from the g-state, makes the global state to change. The states
originating from the initial FSM and the additional g-states are stored in a state
memory clocked by the common clock signal. We call this local state memory. A
global, asynchronous, state transition does not permit a local state change
which puts a restriction on the state encoding. The local states must be coded
in such a way that the code for a g-state and its associated entry state must be
identical. From the example in Figure 2b, the following pairs of states, that we
call coupled-states, must have identical codes: (s1,91), (83,93), and (s4,94). The
states s; and ss may share the same state code since they are located in

different sub-F SMs and distinguished be the global state.

A, what we call, a coupled-state table describes the behaviour of the
decomposed FSM including the sub-FSM interaction. To illustrate the
construction of the coupled-state table the example from Figure 2 is used. Its
coupled-state table is shown in Figure 3. Each row in the table holds all states

for one sub-FSM and each column represents a bundle of states that will have
the same local state code. A sequence of state transition s, = s, =5, = 55
will  result in the following sequence in the partitioned FSM

8 —> 8, —> g3 —> 8, —> 5; where the transition g, — s, is asynchronous. In
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3.1

the table, a local state transition is represented by a horizontal change and a

global state transition is represented by a vertical change.

The coupled-states will of course impose restrictions on the state encoding of
the local states because it contains information about how the different sub-

FSMs are related.

State Encoding for Local States

After the FSM partitioning, the state encoding is performed in two steps. First the
coupled-state table is build by locating the coupled-states together in bundles.
After that the total number of bits in the local state memory is minimised by the
“‘coupled-state merging” algorithm which also takes the state-transition
probabilities into account in order to reduce the power. In the second step state-
codes are assigned to each bundle. State encoding is made for one sub-FSM at

a time, starting with the most active sub-FSM.

Basic Definitions

The monolithic Mealy-type FSM is defined as a sextuple: F =(S,X.Y,6,4,5,)

where S is the set of states, X is the set of binary inputs, Y is the set of binary
outputs, 3 is the transition function, 7 is the output function and sg is the initial

state.

Let there be a partition on the set S: I1=4{5",5%,...,5"} where IIis defined as a
collection of subsets such that C)S”” =S and §'nS/ =@ for i#; where

m=1

1<i,j<n.
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The monolithic FSM is decomposed into a set of sub-FSMs where every subset
S' eIl defines a sub-FSM as: F" =(S", X", 7Y™, 6", A" 5)"). We call states S™
internal states of the sub-FSM. X™ is the set of input variables at all transitions

from the states in S™, and Y™ is the set of outputs variables on the sets S and

X7,

We define a set of states, T(S™), not included in F" to which there are

transitions from the states of F7™ : T(S™)=4s,|0(s,,X,)=5,,5, €875, €S"}.

Q(S™) is defined as the set of states in F” where there are transitions from

other sub-FSMs as: Q(S")={s, [3(s,,X,)=5,,5, €S",5, ¢ S"}.

For the above defined sets we will use the shorter notations 77, Q™.

The set of g-states G, that reflects the set of destinations states of the crossing

transitions in 7" is defined as: G™ ={g, | s, e T"}.

Let the set of local states in the transformed network of F” to be U™

Uun=8"uG".
3.2 State Bundling

There are two reasons for state-bundling: 1) it enables state in different sub-FSMs
to share state codes and 2) it enables an efficient asynchronous global state
transition. In the state encoding step the state bundles are considered as states.
In this section the criteria and procedures for state bundling will be introduced.

First a basic procedure is introduced which will give good results for most
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partitioned FSMs. Then a procedure for merging the coupled-states into the same

bundles is presented. This will for even exceptional cases give improved results.

3.2.1 Basic algorithm

We start with the following example of a partitioned FSM. Let there be a partition

IM=4S',5%.55*y which results in the following local sets of states:
U1={SI,S2,S3,g4} ) U2={545555365g7} ' U3={S7,g1} ) and

U" = {54, 59,510, 511> 512, 81,85} - The duty time of each partition U™ or the

probability of the corresponding sub-FSM to be active, is given by the sum of the

static state probability of states inside the partition, that is

"= meb(s’)’sf €s . Inthe rest of the paper, it is denoted as T™.

State bundling starts from the coupled-states, the states that are the source and
destination states of an asynchronous transition. From previous discussion we
know that these have identical state codes. We construct a table of n rows for an
n-way partitioned FSM where each column represents a bundle of states that

after state encoding will have the same state code. The set of bundles B needed

is defined as B=1{b,.b, ....b,}, where p= . In other words, the number of

n
w Q"
m=1

bundles needed for the coupled-states are the sum of the entry-states of all sub-

FSMs. Two probabilities are defined that reflects the property of state bundles.

State bundle probability is defined as: prob(b,)=> prob(s).s €b, . Bundle
transition probability is defined as: prob(bmbk)zZprob(sxsj),slebm,sjebk

describes the probability for a state transition between states in the bundles by,
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and by. The states are aligned in columns in such a way that all states coupled to
each other reside in the same column. In Figure 4, showing the state table for our
example, the entries for the coupled-states are shaded grey. We can see that for
example sy in F? is in the same column as g+ in F' ie. s;and g+ are coupled-
states. The state bundling procedure first adds the bundles containing coupled-
states and thereafter states not coupled may be freely positioned in any bundle as
long as all states residing in the same sub-FSM have unique state codes. The

pseudo-code for the bundling algorithm is shown in Figure 5.

The efficiency of this procedure is dependent on the ratio of the number of

coupled-states to the number of free states given by: c=—————.

For most partitioned FSMs, partitioned according the state transition probabilities,
have small numbers of crossing transitions and will therefore have small ¢. For

that reason this basic state bundling procedure works well in most cases.

3.2.2 Merged coupled-state algorithm

Using the basic bundling algorithm for FSM partitions with large ¢ will result in
large local state memory. However, the number of clocked state memory bits for
each sub-FSM will not necessarily be all state hits. The objective of merging
coupled-states is to reduce the total number of state bits. To illustrate the merged

coupled-state algorithm we use the example in Figure 6 that have a ¢=5/2.

The initial coupled-state table, before merging the coupled-states, is shown in

Figure 7a, where the five g-states reside in five different bundles. Fixed state
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codes for the state bundles are assumed were the bundle index indicate the
binary value of the code (b, has the code “000”, by “001” and so on). The

merging procedure is performed in the following steps.

1) The objective of the Sort() function is to introduce prioritization among the
sub-FSMs. It sorts the sub-FSMs according to the descending order of their duty
time T7. Since the sub-FSMs with high duty time generally contribute more to the
final power dissipation, they are given higher priority in the coupled-state merging
step. The sorted coupled-state table is shown in Figure 7b. After that, the
coupled-state with the highest state bundle probability is moved to the by bundle
that will always be assighed the state code “zero” after state encoding. The
objective is to minimize the switching activity in the next-state bit-lines for
crossing transitions. The reason for this is that a deactivated sub-FSM's next-
state is always encoded to “zero” in order to enable efficient implementation of
merging the next-state variables of the different sub-FSMs [10] by using OR

gates.

2) In order to reduce the number of bits in the local state memory, the algorithm
merges two or more coupled-states into the same bundles when possible. The
algorithm first tries to merge the coupled-states in bundles to the right of the
leftmost bundle (bg) in the sorted coupled-state table. In the cases where only
one of two or more coupled-states can be merged, the one in the bundle with
highest state bundle probability is chosen. After a merging has been completed,
the table is sorted again as described in step 1. \When no more coupled-states
can be merged into by it is locked. Now the same procedure is done for by and

continues until the last column has been reached. In the example given in Figure

83



7, it is shown that both b, and b; can be merged into by. Because the state

bundle probability of b is 0.3 (Prob(b,) = prob(s,) = prob(T*)), higher than that of
b2 (Prob(b,) = prob(s,) < prob(s;)+ prob(s,) = prob(T*)=0.2), by is chosen to be

merged into by. The updated coupled-state table after merging is shown in Figure

7c¢), where the total number of state bundles is reduced from 5 to 4.

3.3 Basic State Encoding Algorithm

The basic state encoding algorithm is a straight-forward technique that does not
consider power optimizations at all. It takes the initial coupled-state table
without merging and put free states (S™) into the bundles starting from bundle
by. The whole state bundling algorithm is given in Figure X. Each bundle is
assigned the binary code that corresponds to its index. Binary-encoding makes

sure the number of clocked local state bits in each sub-FSM is minimal.

3.4 Power Optimized State Encoding

Since we consider the state code assigned to the bundles to be fixed, the task of
state encoding optimization is to move states to suitable bundles in order to

reduce the switching activity in the state bit lines.

We first consider coupled-states in the table (Figure 7d). Since every bundle is
given a unique state code and can be viewed upon as a state, the algorithm tries
to reduce the switching activity in the transitions between these bundles. At the
same time, the algorithm tries to keep the sub-FSMs with higher duty time to
minimum-length encoding. The merging algorithm, described in the previous

section, has sorted rows in descending order of the duty period. Therefore,
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encoding starts from the top row. For each row, the position of state bundles will
be optimized first and then locked, which will not be changed afterwards. A
greedy algorithm is used to minimize the hamming distance for the bundle
transition probability. The algorithm is shown in Figure X. We illustrate the
procedure through an example. In Figure X, the initial coupled-state bundles
have been built including bg, by, by, bs. As mentioned before, by is the state
bundle with highest state bundle probability and its position is locked initially. We
start the state bundle optimization from by because it is the only bundle besides
by that has a valid state in the top row representing sub-FSM F'. To make
coupled-state bundles in F' use the minimum length codes, b; can only be
assigned the code “01” and thereby the coupled-state bundle in F' only use one
state bit. Since the position of by and b, is locked after the assignment of F' only
b> and b; coupled-state bundle are left. In F* the number of minimum local state
bits needed for the state bundles is 2 (obtained from minimumCodeLength()
function in Figure 10). Since the codes “00” and “01” already has been assigned
for b, and bs, the only possible codes are “10” or “11”. We compare the bundle
transition probability of b, and b; with already assigned state bundles by and b. If
the transition probability between bs and by is assumed to be the highest, we
assign bz to the position “10” which has the hamming distance of 1 to bg; by is
subsequently assigned the code “11”. Since all state bundles have been
assigned, state encoding for the coupled-state bundles is completet. The result of
the coupled-state encoding optimization is shown in Figure 11a) where the

position of bs and b, has been swapped.

The next step is to encode the free stafes, i.e. states not coupled to any other

sub-FSM. Since these are internal states in a sub-FSM, each sub-FSM can be
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separately optimized in an arbitrarily order. In each sub-FSM, one single free
state is considered at a time. That is the one having the highest state transition
probability to a certain state in this sub-FSM or to a state in another sub-FSM.
Constrained by minimum-length encoding, the algorithm minimises the hamming
distance for local state transitions with high state transition probabilities. For
example, in sub-FSM F® s, is a free state. We first determine the minimum state
code bits for F* that is 2. (obtained from minimumLengthCode() function in Figure
12). Since s, only has the state transition to s;, we put s, in the state bundle of b,
which has the smallest hamming distance to by, which is 1, (where state s; is in).
It can be noticed that s, also can be put in bs, which has the same hamming
distance from bs. In sub-FSM F®, s is a free state. It has the state transitions to
ss and sg, where the former transition occurs in sub-FSM F® and the latter
transition is between sub-FSM F° and F'. Assume that the state transition
probability between ss and ss is higher than that between sg and sp, we put s in
the bundle b, with code “11”, which has only one bit hamming distance from bs
with code “10”. Bundle by is not chosen for sg is because there are two bits

hamming distance between by and bs.

The final state table including merging coupled-state and state encoding
procedure is shown in Figure 11b) whereas the initial state bundle table without

optimization shown in Figure 11c).

Experimental Results

In this section we present results showing how the state bundling and state
encoding algorithms, given in section 3, influences the power consumption of

partitioned FSMs. We have implemented the algorithms in an automatic
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synthesis tool that is based on our previous work [12]. Seven of the MCNC [13]
standard benchmarks were used in the experiments. The number of states in
these benchmarks range from 19 to 118. To determine the state transition
probabilities of the FSMs, average input probability and switching probability are
inputs to the tool. In our experiments, both are set to 0.5. The power and area
figures presented in graphs and tables come from gate-level estimations in
Power Compiler and logic synthesis is done by Design Compiler, both these tools
from Synopsys [14]. We use a 0.18um CMOS standard cell library [15] and we

assume power supply voltage V44 0f 1.8V and a clock frequency of 20 MHz.

The total average power of a monolithic FSM is P,

ot ,mono

=P,+P_+P +PF,.

reg

Where P, is the clock net power, P

reg

is the power in the state registers, P_ is
the power in the next-state function, and P, is the power in the output function.

The total power of the partitioned FSM is P, =P,+P_ +P +P,+P,.

tot, part

Where the P, is the power-overhead which is the sum of the power dissipated in

the global state memory, circuits for idle condition detection, and shut-down

circuits.

FSM partitioning is alone an efficient method for achieving power reductions. As
shown in Figure 11, significant reductions have been obtained for the mixed

synchronous/asynchronous architecture without optimized state encoding.

In the partitioned FSM a significant part of the power is dissipated in the global
state memory and the circuits for idle condition detection and shut-down circuits

(2,). This part is not affected by state encoding procedures presented in this

paper. To look in detail on how the proposed procedures affect the power
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consumption, we first consider only power dissipation in the sub-FSMs

(P P —-P,). In Figure 12, it is shown how coupled-state merging

tot sub- FM L tot,part

and optimized state encoding affects power dissipation in comparison to the
basic procedures. Merging of coupled-states has very little to say for the power
consumption and for three of the benchmarks (s832, s820, and scf) coupled-
state merging has not affect at all. This is what could be expected since the
objective here is to minimize the number of state bits and not the power. The

state-encoding gives in average a reduction of 13%.

As shown in Figure 11, the sub-FSM power (7, ., o) is only a portion the total
(Pt ar ) Which is in average 40%. For the total power, the reductions are shown

in Figure 12 with an average reduction of 6%.

It Table 1 can be seen that the partitioning algorithm result in small sub-FSMs
with high duty probability T and the large sub-FSMs have low duty period. From
In Figure 13 it can be seen that sub-FSMs with large number of bits in the local
state memory, the power optimization procedure is efficient but for the ones with

few bits only small reductions can be obtained.

Conclusions

In this paper we have presented a state encoding algorithm for partitioned FSM
composed of coupled sub-FSM with shared state memory. The algorithm takes
the properties of partitioned FSMs and the constraints imposed by the
implementation architecture in to account. The relation between the coupled sub-
FSMs is given by the state bundling. State encoding is carried out sequentially,

one sub-FSM at a time where high priority is given to sub-FSMs with high duty
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time. The power reductions we achieved for the sub-FSMs are promising. The
reductions for the partitioned FSMs as a whole are obviously lower since state
encoding cannot reduce the power in the asynchronous state memory, idle
condition detection logic, and the shut-down logic that are already established
before state encoding. This limitation comes from the fact that we first have the
partitioning procedure followed by the state-encoding. An algorithm for
simultaneous partitioning and state encoding, as the one presented in [16],
removes this limitation. But the complexity of the problem increases dramatically
and so do the run-times for the algorithms. The average power reduction
achieved in [16] is very close to ours. It is however difficult to compare our results
to theirs since there is no information on the statistics given of the input signals to
the FSM benchmarks. A direction for future work is to develop an algorithm for
simultaneous  partitioning and state encoding for the  mixed
synchronous/asynchronous architecture in order to find out if the more complex

algorithms will pay off in reduced power.
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Figure captions:

Figure 1. Structural decomposition of FSM

Figure 2. Example, a) Monolithic FSM with state partition indicated, b) coupled-states

introduced

Figure 3. Example, Coupled-state table

Figure 4. State table

Figure 5. Pseudo code for bundling of the coupled and the free states

Figure 6. Example of a partition FSM with high ¢

Figure 7. Optimized coupled-state table

Figure 8. Pseudo code for g-state merging

Figure 9. State encoding in re-ordered state table

Figure 10. Pseudo code for optimized state encoding

Figure 11. Power reductions for partitioned FSMs

Figure 12. Power reductions in the sub-FSMs

Figure 13. Power reductions versus number of state memory bits

Table 1.Structural information from the decompositions
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Figures:

M, M, My, M,
1 i ol
-+~
.a) Sepﬂrﬁte su.ue mema.)ry E) Shared state m.cmory

FIGURE 1. Structural decomposition of FSM

-

FIGURE 2. Example, a) Monolithic FSM with state partition indicated, b) Coupled states

introduced
B: by by by
= 91 S3 S4
g2 84 93 9a

FIGURE 3. Example, Coupled state table
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struct subFSM {
setofint S, G, Q;
}

set of struct subFSM F;
int sb[n, lllax(’—logz‘ D'ﬂ) 1< null;

assignCoupledStates(set of struct subFSM F, int sb)

intij<«1;
forallfe F §
forallqe fQ{
1 < indexOA(f);
sblij] < q;
for all ft € F\f {
forallg € ft.G { //g states in other subFSMs
if (indexOf(g) = indexOf(q))
sb[indexOf(ft),j] < g;

Jeitl

}

assignFreeStates(set of struct subFSM F, int sb)

forallfeF §
intj <1,
1 < indexOf(f);
foralls € £3\.Q §
while (sb[i,j] # null)
jeitL
sb[ij] < s;

FIGURE 4. Pseudo code for bundling of the coupled (assignCoupledStates) and free states
(assignFreeStates)
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Duty Period:
T'=03
T2=01
=02
T=03
T5=0.1

=)
FIGURE 5. Example of a partitioned FSM with high ¢
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a) Initial coupled state table b) Sorted table

B: | bg | by | by | by | by B: | bp [ by | by | by
F'lso o |- |- |- s o |- |-
F2 |- |s1 |G |- |- F4 |- |91 |9 |sa
F3|- |- |s3|94]- F3 |- |- |s3|9s
F4 |- | 91|93 84|95 F2|- |s |Gs| -
FS 9o |- |- |- |ss F5 1% |- |- |-

¢) After merging coupled-state d) Final coupled state table

| bg| by | by|bs|b
B:|Po| ™ | P2 | ba B: | bg | by | by | b;

Floso |91 |- |- |- Fllso |91 |- |-
F4 S |91 93|95 |- F4 S+ |91 |93|9
F39a| - |83 |- |- F3|Ga| - |S3] -
F2| - |81 |Q3 |- - F2 | - |sq |93 |-
FS (9 |~ | - [S5]- FSl% |- |- |ss

FIGURE 6. Optimized state table
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struct subFSM §
setof int S, G, Q,
3

set of struct subFSM F;
int sb[n, max(’—logz‘m-‘) 1; //state bundle table

double probBundle[numberOf(F.G)]; //sum of static state probability of states in each state bundle
mergeCoupledStates(set of struct subFSM F, int sb, double probBundle)

sort(sb);
g_n < numberOf(F.G);
for (i« 1;i<g mi<« i+1){
max_gain < 0,
opt b «0;
for (j «—it1;j <g n;jj+1)f
oW < 1;
while (sb[row, i]=null ||sb[row,j]=null)
TOW < row+1;
if (row=n){ //column i and j can be merged
gain <« probBundle [i]+probBundle [j];
if (gain > max_gain){
max_gain < gain;
opt b «j;

}

if (opt_b > 0){ //find column obt_b can be merged into column 1
for (k < Lk < m k< k+1)§
if (sb[k, 1] = null)
sb[k, i] «— sb[k, obt_b];
}
“remove column opt_b in sb”;
gn«gmnl;

}

H
sort(sb);

FIGURE 7. Pseudo code for g-state merging
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: by by

&
g
&
&
g
&

c: Jooo | oot |ot0 | o1 | 100 | 101 | 10 | 111 [ log;| ¢ l
F| s 2 | s | - | - | - | - 2
F2 | se Sy | S5 | O - - - - 2
FPla | - | - | s - - - - 2
Fé 94 Sg 9s Sg Si0 | S | S12 | Sz 3

FIGURE 8. State encoding in re-ordered state table

int old_sb[n, maxi |— ]ozz|b’ﬂ} I Jistate bundle table before optimization

int new_sb[n, max |— lmzl b'|-|} J<null; /state bundle table after optimization

double b_matrix[ numberOffmergedCoupledState), numberOfi mergedCoupledState) |
optimiseCoupledStates(int old_sb, double b_matrix, int new_sb)

int bnumberOfimergedCoupledState)]; I/state bundles

struet sub_b,  /subset of state bundles

for (1 < 15 1< numberOfimergedCoupledState); 1« 1+1)
bli] < the ith column of old_sb;

lock(b[1]);

for (i« 1: e tal]
new_sbfi, 1] « b[1];

for (i< Lii=mie i+l

sub_ b+ &
for (j « 17 = numberOfimergedCoupledState); j «— j+1)§
if (old_sb[i, j] # null)
sub_ b« sub_b U b[j].
i
b 1« least state bits needed for sub_b in new_sb;
for unlocked state bundle b[x]e sub_bf{
for each locked state bundle by] inb

“find b_matrix[xy;] with maximal state bundle transition probability™,

i
for (e 13j= 2°M j e j+1)
“find m 1s the column index of b[y;] in new_sb,such that
Hammingdistance(binaryCode(m),binaryCode(j}) is minimal™;
for(k « i k=mkektl)
new_sh(k, J] « b[x];
lockib]x;]);

FIGURE 9. Pseudo code for optimized coupled state di

p
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a) Final coupled state table after optimization  b) Final state table after free state optimization

c) State table before state encoding optimization

bp | by by by by | pits
B: 000 | 001 | 010 | 011 100
F' [0 o1 |- - - 1
oo s Je [- |- 2
FPose |- 3 |9 |- 2
- 9 |9 |s |9 |3
% s |- - ss |3

FIGURE 10. Comparison of state bundle table before and after optimization

98



struct subFSM {
setof int S, G Q;

}

set of struct subFSM F;

int sb[n, max( ’— logz‘ ﬂ -‘) ], //state bundle table before free states assignment
double s_matrix[numberOf(S),numberOf(S)]; //state transition probability matrix

optimizeFreeStates(set of struct subFSM F, int sb, double s_matrix)

{
intb n[n]; //minimun state code length in each subFSM
int sb_backup[n, max(’— log, ‘ D“‘ -‘) IR
sb_backup < copy(sb);
assignFreeStates(F,sb_backup);
for (i< 1;i<ni«itl)
b_nl[i] «- minimumLengthCode(sb_backup[i]);
forallfeF {
i < indexOf(f);
A« fQUIG, /assigned states ,g states included
D« f8\fQ; /hunassigned states
do{
count <— numberOf(D); //unassigned state number
if (count>0){
forallac A {
foralld e D
“find s_matrix{aj,d;] with highest state transition probability”;
}
ke« 1;
while (sb[i,k] # a;)
k« ktl;
for (m « 1;m < 2°000 m o mt1)(
if{sb[i, m] # null)
“find position m; with minimal Hammingdistance(binaryCode(m; -1), binaryCode(k-1));”
}
sbli, mj] « d;;
A AU d;
D« D\d;;
count < count-1;
Jwhile (count>0)
}
}

FIGURE 11. Pseudo code for free state encoding optimization
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Power for original FSMs. Power for partitioned FSM {Basic state encoding)
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FIGURE 12. Power reductions for partitioned FSMs
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FIGURE 13. Power reductions in the sub-FSMs
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Power reductions n local sub-FShis
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FIGURE 14. Power reductions versus numhber of biis in the state memory
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TABLE 1. Structural information from the FSM decomposition

€ S S SC! S Styr S
FSM keyb 832 820 f 1494 1488
s 1 4 1 1 1
U 4 5 5 5 2 4 2
1 3 6 6 1 3 5 3
poY 1 5 9 12 12 6 13
T 0.99 0.99 0.99 0.96 091 0.85 0.91
ITH

‘SZ‘ 1 21 4 4 1 1 1
W 3 24 7 H 4 4 4
P 6 18 9 3 3 5 3
Po? 0 17 10 8 7 2 7
\Tl\ 027 0.03 0.03 0.08 0.20 030 0.20
\SB\ 1 17 110 1 2 1
|03 4 23 8 4 3 4
1 7 17 3 6 6 6
P3| 1 12 8 13 1 12
\TJ\ 0.18 <0.01 0.02 0.08 0.20 0.08
[s4 1 1 4 1
) 4 2 8 3
I 7 0 5 1
[PoY| 1 5 5 4
\T“\ 0.09 0.02 0.08 0.02
9 15 1 8 1
U3 16 3 16 2
[P1°| 6 1 7 0
[POY| 2 4 10 3
‘TS‘ 0.03 0.03 0.03
9 1 14 42
[us| 3 21 46
[P19| 2 6 8
[POS| 7 10 19
\Ts\ 0.02 <0.01 0.02
1871 42 1
7 46 3
17| 8 2
PO’ 19 5
I 0.02 0.02
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