

Thesis for the degree of Licentiate
Sundsvall 2005

Automatic Synthesis of Partitioned FSMs Based on
Mixed Synchronous/Asynchronous State Memory

Cao Cao

Supervisors: Associate Professor Bengt Oelmann
 Associate Professor Mattias O’Nils

Electronics Design Division, in the
 Department of Information Technology and Media

Mid Sweden University, SE-851 70 Sundsvall, Sweden

ISSN 1652-1064
Mid Sweden University Licentiate Thesis 4

ISBN 91-87908-84-0

ELECTRONI S
D e s i g n D i v i s i o nD e s i g n D i v i s i o n

Akademisk avhandling som med tillstånd av Mitthögskolan i Sundsvall framläggs
till offentlig granskning för avläggande av licentiatexamen i elektronik torsdagen
den 24 May 2005, klockan 13.15 i sal O102, Mitthögskolan Sundsvall. Seminariet
kommer att hållas på engelska

Automatic Synthesis of Partitioned FSMs Based on Mixed
Synchronous/Asynchronous State Memory

Cao Cao

©Cao Cao, 2005

Electronics Design Division, in the
Department of Information Technology and Media
Mid Sweden University, SE-851 70 Sundsvall
Sweden

Telephone: +46 (0)60 148925

Printed by Kopieringen Mitthögskolan and Kaltes Grafiska AB, Sundsvall, Sweden,
2005

To my parents

 i

ABSTRACT

The rapid development of digital circuits with high density and frequency
motivates power, in addition to area and speed, to become an important parameter
in design constraints. Nowadays, the electronics design industry is confronted by
increasingly costly package and cooling systems due to power dissipation. Battery-
powered portable devices, such as laptops, mobile phones etc., which provide
higher computational capacity and support multi-media information transformation,
greatly increase the previously rather small power budget. As synchronous digital
design has, over the past few decades, become the industry standard, this new
challenge means that asynchronous design techniques must now be reconsidered,
as they possess the potential for a reduction in power dissipation.

Finite state machine (FSM) partitioning proves effective for power
optimization. In this thesis, a mixed synchronous/asynchronous state memory
structure in the decomposed FSM is proposed, which results in implementations
with low power dissipation and low area overhead. The state memory is composed
of the synchronous local state memory and asynchronous global state memory,
where the former is used to distinguish the states inside a sub-FSM, and the latter is
responsible for controlling sub-FSM communication. Although asynchronous
communication mechanism is introduced between sub-FSMs, the input/output
behaviour of the decomposed FSM is still, cycle by cycle, equal to a complete
synchronous one. Power consumption can be further reduced by using a clock
gating technique and low power state assignment.

Based on this mixed synchronous/asynchronous structure an automatic
synthesis tool was developed, which accepted state transition graph (STG) as input
and outputted synthesizable VHDL code that can be directly used for logic
synthesis. An FSM partitioning algorithm, power estimation functions and state
encoding optimization aimed at this specific structure are also integrated into the
tool to find low power partitioning within a reasonable run time. The effectiveness
of the whole procedure is verified through optimization of standard benchmarks
where a power reduction of up to 70% has been demonstrated.

 iii

ACKNOWLEDGEMENTS

First and foremost, I am deeply grateful to my supervisor Bengt Oelmann
whose perspective and insight contributed both to the initial concept of my research
work and at every stage of its development. Thanks for all the guidance and
discussions that helped me stay on the right track and inspired me to put thoughts
into action. I would also like to thank my current assistant supervisor Dr. Mattias
O’Nils, who proposed the “candidate generation” algorithm incorporated in the
automatic synthesis tool developed, and my former supervisor Professor Hans-Erik
Nilsson.

Special thanks go to Shang Xue. I am so lucky to have you as my roommate.
I really appreciate all the help you gave me when I first arrived in Sweden,
knowing nothing about the place and the conversations with you will always be
my precious memory.

All exceptional people in Electronic design division have my gratitude for
the kindness and friendship that makes it such a pleasant place to work in. Namely
thanks to Lixin Ning, Krister Alden, Mats Hjelm, Fanny Burman, Jon Alfredsson,
Henrik Andersson, Jan Lundgren, Suliman Abdalla, Johan Siden, Claes Mattsson,
Hakan Norell, Torbjorn Olsson, Borje Norlin, Benny Thornberg,
GoranThungstrom. I would also like to mention Tao Feng and Xiaosong Ding for
their friendship, also other PhD students not mentioned but who have had
wonderful conversations with me.

Financial support from the Mid Sweden University and the Foundation for
Knowledge and Competence Development (KK-stiftelsen) is also gratefully
acknowledged.

Finally, I want to express my love to my family. My grandmother, parents
and elder brother, you are always the most important part of my life.

And, to Lebing Gong, thank you for always being there.

Sundsvall, March 2005

Cao Cao

 v

TABLE OF CONTENTS

ABSTRACT... I

ACKNOWLEDGEMENTS .. III

TABLE OF CONTENTS .. V

ABBREVIATIONS AND ACRONYMS...VII

GENERAL.. VII

LIST OF FIGURES ... IX

LIST OF PAPERS ..1

1 INTRODUCTION...3

1.1 MOTIVATION FOR LOW POWER ...3
1.2 SOURCES OF POWER DISSIPATION ...3
1.3 LOW POWER DESIGN METHODOLOGY..4
1.4 POWER-CONSCIOUS SYNTHESIS TOOL ..5

2 FSM LOW POWER DESIGN...9

2.1 FSM FUNDAMENTALS...9
2.2 DYNAMIC POWER MANAGEMENT..10

2.2.1 Introduction...10
2.2.2 FSM idleness exploitation...10
2.2.3 Shut-down circuitry...11

2.2.3.1 Clock gating ..11
2.2.3.2 Input disabling...12

2.3 STATE ENCODING ..12

3 MIXED SYNCHRONOUS/ASYNCHRONOUS STRUCTURE15

3.1 SYNCHRONOUS AND ASYNCHRONOUS DESIGN COMPARISON15
3.2 MIXED SYN/ASYN APPLICATION FOR LOW POWER17

3.2.1 System level mixed synchronous/asynchronous design.......................18
3.2.2 RT level mixed synchronous/asynchronous design18

4 AUTOMATIC SYNTHESIS TOOL ...21

4.1 DESIGN FLOW DESCRIPTION OF THE TOOL ...21
4.2 STATISTICS COLLECTION...22

4.2.1 FSM probabilistic model...22

 vi

4.2.2 Monte-Carlo-based simulation ...24
4.3 FSM PARTITIONING ..25
4.4 FSM SYNTHESIZER..28

4.4.1 STG Transformation ...28
4.4.2 State assignment for decomposed FSM...29
4.4.3 FSM decomposition structure ...32

4.5 POWER ESTIMATION..33
4.6 RT LEVEL CODE GENERATOR ..36

5 SUMMARY OF PUBLICATIONS ...39

5.1 INITIAL CONCEPT AND MATHEMATICAL FORMULATION.........................39
5.1.1 Paper I ...39

5.2 DEVELOPED AUTOMATIC SYNTHESIS TOOL REFINEMENT39
5.2.1 Paper II ...39
5.2.2 Paper III..39

5.3 AUTHOR’S CONTRIBUTIONS ..40

6 THESIS SUMMARY..41

6.1 CONCLUSIONS..41
6.1.1 Design model of mixed synchronous/asynchronous state memory41
6.1.2 Design flow of the automatic synthesis tool..41
6.1.3 FSM partitioning algorithm and RT level power estimation function 41
6.1.4 State encoding optimization ..42

6.2 FUTURE WORK...42

7 REFERENCES..45

PAPER I...51

PAPER II ...61

PAPER III ...67

 vii

ABBREVIATIONS AND ACRONYMS

GENERAL

ALU………….. Arithmetic Logic Unit
CAD………….. Computer Aided Design
CMOS………... Complementary Metal Oxide Silicon
DSP…………... Digital Signal Processor
EMI………….. Electro Magnetic Interference
FSM………….. Finite State Machine
FSMD............... FSMs with Datapath
GALS................ Globally asynchronous Locally synchronous
GDL………….. G State Bundle Detection Logic
GSM ………… Global State Memory
IC………......... Integrated Circuit
K-L…………... Kernighan-Lin
LSM………..... Local State Memory
RT……………. Register Transfer
RTL………….. Register Transfer Level
STG………….. State Transition Graph
Syn/Asyn…….. Synchronous/Asynchronous
VHDL………... Very High Speed Hardware Description Language
VLSI…………. Very Large Scale Integration

 ix

LIST OF FIGURES

Figure 1. Design abstraction level..5
Figure 2. Synthesis design flow from [57]...7
Figure 3. RT level design structure from [58] ..9
Figure 4. FSM representation ...10
Figure 5. Gated clock for shutting down...12
Figure 6. Disabled input for shutting down ..12
Figure 7. GALS basic model ..18
Figure 8. State memory structure in decomposed FSM..19
Figure 9. Mixed synchrnous/asynchronous structure..20
Figure 10. Tool design flow..22
Figure 11. A FSM example...23
Figure 12. Monte-Carlo-based simulation flow chart for FSM24
Figure 13. Interchange of subsets in KL algorithm..26
Figure 14. Hierachical clustering tree ...27
Figure 15. Bi-Partitiong hirarchical tree ..28
Figure 16. STG before and after transformation...29
Figure 17. STG example ...31
Figure 18. Decomposed FSM structure with mixed synchronous/asynchronous

state memory...33

1

LIST OF PAPERS

This thesis is mainly based on the following 3 papers, herein referred to by their
Roman numerals:

Paper I

Mixed Synchronous/Asynchronous State Memory for Low Power
FSM Design
Cao Cao and Bengt Oelmann,
Proceedings of EUROMICRO Symposium on Digital System Design,
pp. 363-370, France, 2004.

Paper II A Tool for Low-Power Synthesis of FSMs with Mixed

Synchronous/Asynchronous State Memory
Cao Cao, Mattias O'Nils, Bengt Oelmann,
IEEE Norchip Conference, Oslo, Norway, 2004
(Selected for publication in the Proceedings of the IEE Computer &
Digital Techniques)

Paper III State-Encoding for Partitioned FSMs with Mixed

Synchronous/Asynchronous State Memory
Cao Cao and Bengt Oelmann,
Submitted to the Proceedings of the IEE Computer & Digital
Techniques, 2005.

3

1 INTRODUCTION

1.1 MOTIVATION FOR LOW POWER

Historically, digital integrated circuit design focused on the optimization of
area and speed. Power consumption was often of secondary concern. In recent
years, however, there has been a rapidly growing interest in low power design.
Among the factors contributing to this trend, one most remarkable driving force
stems from the portable consumer electronics applications.

The portable consumer electronics market continues to develop at a rapid
rate. Laptop computers, cellular phones, digital video cameras etc., all of these
portable devices require powerful systems that run on lightweight battery packs.
Reducing power consumption is obviously a primary concern here for prolonging
the operational life of a particular battery technology.

Besides portability, the more generic motivation for low power originates
from the heat dissipation problem. Nowadays, high-end products, such as
microprocessors, are designed with increasing circuit integration and faster clock
frequencies. Subsequently, the magnitude of power per unit area is growing and a
considerable amount of heat is generated. High temperature can affect the
reliability and shorten the lifetime of such systems. To address this problem, either
costly packaging technology or cooling devices should be introduced, or, the chip
has to be divided into several chips, which thus directly limits the circuit
integration capability. In [4], it was concluded that the constraint facing
microprocessors with reference to the die size is introduced by the power
dissipation and not the fabrication ability.

As a result, present day circuit designers must explore area, speed and power
to find suitable solutions. The available choices are expanded and in the meantime
the required complexity is also increased.

1.2 SOURCES OF POWER DISSIPATION

CMOS circuits (which combine PMOS and NMOS transistors) are the
dominant technology for modern high-performance digital electronics. The average
power consumption of a CMOS circuit can be modeled by the following equation:

leakagecircuitshortswitcingavg PPPP ++= _ (1)

The first term represents the switching power component. In a circuit, it can be
expressed as:

∑
=

=
N

i
iiclkddswithing CfVP

1

2

2
1 α (2)

 4

where ddV is the supply voltage, clkf is the clock frequency, iα is the average
number of logic transitions of node i per clock cycle, and iC is the loading
capacitance at node i. When ddV and clkf are settled, the power reduction stems

from the reduction of ∑
=

N

i
iiC

1
α , denoted as the effective capacitance in the rest of

the thesis.
The second term is due to the direct-path arising when both the NMOS and

PMOS transistors, in a static CMOS gate, are simultaneously conducting and a
short-circuit current is going directly from the supply to the ground.

The final term originates from various leakage currents that exist for idle
CMOS gates. It should be noted that leakage power has become an important
component for the whole power dissipation and will be comparable to the
switching power as the feature size continues to decrease [1].

Because switchingP is still the dominant term in static CMOS gate circuits [2],
in this thesis, only the switching power (or dynamic power) is considered. In the
rest of the thesis, the word “power” means switching power if not specified.

1.3 LOW POWER DESIGN METHODOLOGY

Low power design can be performed at all levels of abstractions. Typical
abstraction levels, in descending order, are shown in Figure 1. They are system,
architecture (or algorithm), register transfer (RT), gate, circuit and technology
levels. The most commonly used power optimization techniques at each level are
also shown.

At the system level, since the system can be viewed as a hardware platform
executing software program, a partitioning strategy, which decides whether a task
should be implemented in the hardware or the software, can be exploited to
minimize power dissipation [3]. Power management schemes can also be used to
shut down the idle system (or the system’s various components) to reduce power
[5]. In [9], power management is applied to a digital signal processor (DSP) design.
As a result, the power consumption of the DSP in idle-mode was less than 1/10 of
the original un-optimized one.

It is apparent from Equation (2) that reducing the power supply voltage can
decrease the power quadratically. However, when the supply voltage is reduced,
the power-delay product of CMOS circuits also decreases and the delays increase
monotonically. To compensate for the speed penalty introduced by voltage scaling,
at the architecture level, transformations, such as pipelining and parallelism [12],
are employed to increase the level of concurrency.

At the RT level, a circuit can be considered to be the sequential logic,
composed of the memory elements (registers) and functions responsible for
determining not only the state but also the data computation. Power optimization at
this level can be roughly categorized into two classes. One class is state assignment
and the other is an extension of the dynamic power management from the system

 5

level to the RT level [5]. More details with regard to the dynamic power
management at the RT level will be given in the following chapters.

Low

Gate and circuit

RTL synthesis

Achitecture

System
Paritioning,power management,etc

Parallelsim,pipelining,etc

Clock gating,state encoding,etc

logic optimizaiton,etc

Pow
er estim

ation accuracy

High
Opportunity to Influence Power

Technology

Figure 1. Design abstraction level

At the gate and circuit levels, logic optimization methods, such as transistor

reordering, can be used to reduce switching activity and subsequently reduce
power dissipation [10]. Design styles of global signals, such as bus architecture
configuration, can result in low power implementations by reducing the physical
capacitance [59].

At the technology level, methods such as reducing both the threshold voltage
and power supply voltage and scaling transistor sizes [11] can be used for low
power design.

1.4 POWER-CONSCIOUS SYNTHESIS TOOL

Computer aided design (CAD) plays an important role in the development of
integrated circuits. When transistors can be counted in millions in contemporary
circuits, it is impossible to synthesize manually without the assistance of CAD
tools.

A complete synthesis flow from the behavioural specification to the final
fabrication is shown in Figure 2. Each synthesis step translates a description of the
circuit to an optimized description at a lower level. At each level, estimation for
area, timing (speed) and power can be incorporated into the synthesis process to
verify whether or not the solution satisfies the design’s constraints.

Because area and speed have, for a long time, been the major design
concerns, a number of industrial standard synthesis tools are associated with these

 6

areas. In contrast, power-conscious synthesis tools are a relatively new area and the
focus has been primarily at lower levels.

In general, when optimizations are introduced at the higher abstraction levels,
larger power reductions can be expected [2] since the design space to be explored
is larger. However, the accuracy of the power estimation is in inverse proportion to
the design space. The lower the level, the more information is available regarding
the implementation of the design (see Figure 1). Therefore, when the possibility of
employing a global strategy to achieve significant power reduction at higher levels
exists, the lack of detailed implementation information makes it difficult to
evaluate the quality of the strategy. Based on the above, power-conscious tools at
higher levels are more significant, but also more difficult.

For power analysis (or estimation), mature commercial tools such as SPICE
and PowerMill are available at the circuit and gate level and they provide accurate
power values. However, the solutions at higher levels come mainly from academia
[62].

As to power optimization, although considerable methodologies have been
proposed [12], an industry standard framework for synthesizing low power circuits
has not yet been developed. Synopsys can be used for synthesizing low power
circuits at the gate level. However, the framework is designed to fulfil area and
speed constraints, so necessary critical information for power estimation and
optimization is not considered in the power-conscious procedure.

As an effort to provide a comprehensive environment for low power design,
in this thesis, an automatic synthesis tool at the RT level is presented incorporating
power analysis and optimization.

 7

Figure 2. Synthesis design flow from [57]

9

2 FSM LOW POWER DESIGN

At the RT level, a design synthesized from a higher level can be viewed
upon as an interacting system composed of two parts: controller and datapath.
Given that the controller is always running, it may consume a great deal of power
(about 40% of the total power is consumed in the controller [40]). Since the
controller is often implemented as finite state machines (FSM), the power
reduction problem reformulates to FSM power minimization. In this chapter, a
background concerning FSM is presented (section 2.1), followed by the two most
important design aspects targeting FSM power optimization, that is, the application
of dynamic power management at the RT level (section 2.2) and state assignment
optimization (section 2.3).

2.1 FSM FUNDAMENTALS

The general structure of a design at RT level is shown in Figure 3. It consists
of a datapath that is a network of ALUs (arithmetic logic units), multiplexers,
registers and busses, responsible for data storage and manipulation. The controller
is represented as the FSM that controls data transfers in the datapath.

Figure 3. RT level design structure from [58]

The name of finite state machine (FSM) comes from the fact that it consists

of a finite number of states and its formal definition can be found in [18]. As
shown in Figure 4a), state transition graph (STG) is widely used to describe the
behaviour of an FSM, where every state is labeled as a node with a unique

 10

symbolic name and the state transitions among them are represented as edges with
input and output values.

Figure 4. FSM representation

From a circuit point of view, it is shown in Figure 4b) that FSM is normally

implemented as a synchronous model composed of combinational logic and
registers. In every clock cycle, the combinational logic is responsible for
calculating the next state and output value while the registers store the updated
state information.

2.2 DYNAMIC POWER MANAGEMENT

2.2.1 Introduction

Benini et al. proposed the concept of dynamic power management [5]
which is based on idleness exploitation. Normally, systems are designed to meet a
certain peak performance that is only required for a small portion of its entire
operational time. Therefore, parts of the circuit are often temporarily idle. There
are also situations where operations, known in advance, will never be executed at
the same time, which thus always leads idle units being available. In these
situations, dynamic power management may be successfully used. Firstly, it highly
accurately detects idleness; secondly it rapidly shuts down the idle resources and
forces it to a state where power dissipation is as low as possible. Since a power
management scheme is able to eliminate a fraction of the useless switching activity
that consumes power without producing useful results, it proves to be effective at
various levels of abstractions. Its exploitation at the RT level is the main focus of
the rest of this section.

2.2.2 FSM idleness exploitation

Many FSM low power methods can be collectively viewed upon as the
exploitation of idleness, internal or external. When outputs of an FSM are
observable to primary outputs but remain unchanged, internal idleness can be
exploited. In [6], under the condition of self-loops where both state and primary

 11

output values remain constant, the whole FSM can be shut down after adding state-
holding mechanism.

When an FSM is decomposed into sub-systems, the output of a sub-network
may change but not influence the primary output. In this case, external idleness can
be exploited. As opposed to internal idleness, external idleness is induced by the
environment, and depends on the entire output behaviour of the system. For
example, in [19], after introducing pre-computation methodology, the original
synchronous network is decomposed into two sub-networks. One of them is
unconditionally clocked while the other can be conditionally shut down if the
calculation performed is irrelevant to the network output, that is, externally idle.

A more aggressive method of exploiting the external idleness of FSM is FSM
decomposition. The original FSM is partitioned into two or more sub-FSMs where
only one of them is active at a time and others can be deactivated without
consuming power since their outputs are unobservable (or irrelevant) to the
primary outputs [20]. The partitioned FSM is constructed in such a way that each
of the sub-FSMs constitutes a smaller effective capacitance than the original FSM
and consequently power can be saved.

2.2.3 Shut-down circuitry

To prevent idle components from consuming switching power, dynamic
power management techniques disable the clock signal or, make input values to the
parts not in use remain constant. Mechanisms for detecting when the unit is idle
then shutting it down must therefore be added to the design. Circuits responsible
for handling this mechanism will constitute a functional overhead and will
consequently contribute to the increased circuit area, additional power consumption,
and possibly reduced performance. Careful analysis must be undertaken so that the
introduction of circuits for power management will contribute to as little power
consumption as possible.

2.2.3.1 Clock gating

As shown in Figure 5, the clock gating logic (CL) accepts the clock signal
Clk and the control signal CNTRL as its inputs and generates the gated clock signal
(Gclk) as its output to control the update of registers. When the gated clock is
stopped by CNTRL, power consumption can be minimized in combinational logic
because the flip-flops are not triggered on any rising clock edge, hence their
outputs remain unchanged. The disadvantage of this method is that the presence of
a gate in the clock line usually increases clock skew, which may cause problems in
high performance design [6].

 12

Figure 5. Gated clock for shutting down

2.2.3.2 Input disabling

In Figure 6, combinational logic can be selectively turned off by the input
disabling logic (IL), which consists of transparent latches with an enable signal EN.
When units are executing useful calculation, EN makes the latches transparent,
thus permitting normal operations. If this does not occur, the latches retain their
previous state and no transitions propagate through the inactive units. This method
is called the guarded evaluation in [23] where both a theoretical framework and
algorithms, which automatically decide when the logic units performing useless
calculations should be shut down, are provided.

Compared with the clock gating technique, this method is less power
effective because the power in the clock line is not saved. However, in the case
where two functions share the same register but never work simultaneously, the
register should remain active and the clock gating methodology cannot be
exploited. By disabling the input to each function, it is still possible to reduce the
power. Also, an input disabling strategy is safer than clock gating when
considering timing issues. Note that in either method it is impossible to avoid
leakage power as it does not depend on signal transitions.

Figure 6. Disabled input for shutting down

2.3 STATE ENCODING

State encoding，which strongly influences the final realization of an FSM,
has been an active research area for decades. Until the early 1990’s, its main
objective was towards area optimization for two-level or multilevel logic [24]. The
requirement for low power, high computing portable systems determined the
current focus on state assignment optimization for power. Generally, the search

 13

area for state encoding is too large to explore, therefore, approximate methods,
depending on pre-logic cost functions, are used to obtain the optimal solution.

 From Equation (2) it can be seen that dynamic power is related to both area
(the total number of nodes) and switching activity, therefore, state encoding for
low power is, to some extent, more difficult than for area minimization. To
simplify this problem, in [26], the cost function assumes that power consumption is
proportional to the switching activity of state bit lines. The problem concerning
power reduction is reformulated to reduce the Hamming distance of state
transitions that have a high probability. Both minimum length [8] and non-
minimum encoding are subsequently developed [27]. In [29], two code lengths are
used in the same state machine. After the introduction of the Huffman coding
algorithm, states that are highly probable of being active are coded with less than
⎡ ⎤Slog state bits, where |S| is the number of states. Other states, which have less

likelihood of being active, are assigned state bits greater than ⎡ ⎤Slog .
 Since reducing switching activity in state lines does not always lead to

reduced power in the combinational logic, efforts are also being made to take area
into account. Among them, Benini et al [8] adds the area constraint to the cost
criteria and explores the trade-off between computation complexity and the quality
by using different algorithms. Olson et al [31] use the linear combination of the
switching activity and the number of literals as the cost function. Tsui et al [30]
propose the power model, considering switching activity and capacitive loading
simultaneously. All the above state encoding methods aim at monolithic FSM
optimization. Low power state assignment in decomposed FSM will be further
discussed in chapter 4.

15

3 MIXED SYNCHRONOUS/ASYNCHRONOUS STRUCTURE

 In terms of operation mode, digital circuits can be classified into two
categories: synchronous and asynchronous. In synchronous circuits, information
storage or process is orchestrated by one global signal, called the clock signal.
Conversely, asynchronous circuits remove the clock signal and locally generated
timing signals are used to ensure proper control of the sequence of events.
Nowadays, even though synchronous systems dominate the circuit design field due
to their simple rules, asynchronous systems are being looked as an increasingly
viable alternative to purely synchronous systems. In this chapter, the advantages
and disadvantages of both classes are discussed from various design perspectives
(section 3.1), then the concept of mixed synchronous/asynchronous design as well
as its implementation is presented (section 3.2).

3.1 SYNCHRONOUS AND ASYNCHRONOUS DESIGN COMPARISON

 With the rapid development of digital circuits, the limitations facing purely
synchronous designs offer asynchronous designs the possibility to realize their
potential. The understanding of the properties of both operational modes from
various design aspects enables the design space to be explored more freely and
reveals the reason behind mixed synchronous/asynchronous design.

 Design efficiency
 In a synchronous system, a designer can simply define the combinational

logic necessary to compute the given functions, and surround it with latches (or
registers). By setting the clock rate to a long enough period, all worries about
hazards (undesired signal transitions) and the dynamic states of the circuit are
removed. However with asynchronous systems, a great deal of attention must be
paid to the dynamic state of the circuit. Hazards must also be explicitly removed
from the circuit or, not introduced in the first place, to avoid incorrect results [32].
The ordering of operations, which is fixed by the placement of latches in a
synchronous system, requires careful execution through the asynchronous control
logic. As reducing the design cycle is a necessity in the present intense industrial
competition, the overwhelming design efficiency of the synchronous circuit means
that it constitutes the bulk of commercial practices as well as CAD tools.

 Clock skew problem

Clock skew is the difference in arrival times of the clock signal in different
parts of the circuit and it restricts the maximal frequency achievable by the clock.
In current high speed, highly complex circuits, it is very costly to limit the clock
skew to an acceptable range and sometimes systems have to be slowed down to

 16

accommodate the skew. This problem has already been noted in [33]. In the design
of DEC Alpha CPU, keeping the clock skew within 300 picoseconds results in a
clock driver circuit that occupies 10% of the circuit area and consumes over 40%
of the power. For asynchronous circuits, which by definition have no globally
distributed clock, this problem does not exist. As feature sizes decrease, the clock
skew problem, which is inherent in the synchronous design, will become more
serious in the future.

 Area

To provide glitch or hazard free outputs in the timing constraints,
asynchronous design must introduce extra logic. Also, the control signals necessary
for initializing an action or denoting the completion of the action [34] make the
asynchronous system generally larger than its functionally equivalent synchronous
counterpart. The generation of area overhead may cause performance degradation
or, consumes considerable power.

 power
Standard synchronous circuits have to toggle clock lines, and possibly

precharge and discharge signals, in portions of a circuit that remain idle in the
current computation. Although power management can partially remove the
wasteful power dissipation, it only works at a course granunarity and introduces
area overhead. Asynchronous circuits, by their nature, only activate the units
currently involved in useful calculation and therefore result in lower power
solutions [35].

 Performance

 Synchronous circuits must wait until all possible computations have been
completed before latching the results, so the chosen fixed clock period must
accommodate the worst-case timing condition. Average-case or best-case
performance can not be explored. Many asynchronous systems, on the other hand,
sense immediately when a computation is complete. This inherent adaptivity
allows them to exhibit average-case performance. For circuits where the worst-case
delay is significantly worse than the average-case delay, an asynchronous
implementation can result in a better performance [36]. But it should also be noted
that asynchronous circuits generally require extra time due to their signaling
policies, hence cause an increase in the average-case delay. Whether this cost is
greater or less than the benefit differs from case to case.

 Technology migration potential
During their lifetime, integrated circuits are often implemented in several

different technologies. Early versions of systems may be implemented using gate
arrays, while later products may migrate to semi-custom or custom ICs. Greater
performance for synchronous systems can often only be achieved by migrating all
system components to a new technology, since again the overall system

 17

performance is decided by the longest path. In contrast, many asynchronous
systems are able to migrate only the more critical system components in order to
achieve higher performance, since performance is based on the currently active
path. Furthermore, the adaptivity of asynchronous systems makes it possible for
components with different delays to be combined into a larger asynchronous
system without any special structural alteration, whereas careful analysis is
required for synchrnous circuit. The modularity in asynchronous circuits is
demonstrated in [37].

 EMI and noise
Without the clock, noise and electro magnetic interference (EMI) spectrums

are significantly flatter across the entire frequency domain. According to McCardle
et al. [38], there can be a 10-dB drop in noise in an asynchronous processor. Until
recently, EMI and noise metrics were ignored when area, speed or power were
being considered. But EMI and noise metrics are now attracting more attention
due to two emerging applications: mixed-signal design and smart cards. In the
former, analog functions are particularly sensitive to clock-correlated, digital
switching noise. Reducing noise and EMI will significantly boost both precision
and performance. In the latter, EMI has a significant impact on security. Non-
invasive security attacks depend on monitoring a smart card’s power usage, or EMI
signature, to extract key information on the card. Even distribution of circuit-
switching activities in the asynchronous system obviously improves security [39].

Even though asynchronous design is not the mainstay of commercial

practice, its beneficial properties with regards to low power, low noise etc.,
suggests that instead of having completely synchronous systems the introduction
of asynchronous methodology offers great potential for the future. This confidence
has also acted as the inspiration for the research on mixed
synchronous/asynchronous design, dealt with in greater detail in the next section.

3.2 MIXED SYN/ASYN APPLICATION FOR LOW POWER

 Industrial standard asynchronous CAD tools are far from mature and the
temporal trends in mixed synchronous/asynchronous design thus involve the
exploitation of some proven benefits of the asynchronous circuit in a largely
synchronous environment. In this case, the widely accepted synchronous system
design methodology can be utilized and the asynchronous design can be taken
advantage of simultaneously. In this section, the mixed design concept at the
system level is introduced. After the comparison between two different
implementation models of the state memory is given, an RT level mixed
synchronous/asynchronous design method is proposed.

 18

3.2.1 System level mixed synchronous/asynchronous design
 In a synchronous circuit, the clock signal connects every part, registers,
latches and also the pre-charge and evaluation transistors of dynamic gates. These
elements constitute a huge capacitance load on the clock line which is further
added to by the capacitance of clock wire itself. The total capacitance in the clock
line makes the clock net power dissipation in a high frequency circuit unacceptable.
It has been demonstrated in an Alpha 200MHZ processor that 40% of the whole
power originates from clock [33]. To tackle this problem, at the system level,
asynchronous logic can be introduced as the interfacing circuit to synchronous
modules and the requirement of a global clock is thus removed.

The concept of globally asynchronous, locally synchronous (GALS) was
founded by D. M. Chapiro [63] to avoid the costly global synchrony in large scale
VLSI circuit. Its basic model is shown in Figure 7 where the main modules are
synchronous but the data exchange between any two modules is handled by an
asynchronous handshake protocol. A prototype GALS system is built in [41] by
using pausible clocking control to prevent synchronization failures. The effects of
GALS approach is verified by Hemani et al. [42] with a power reduction of up to
70% in the clock net and a 20% reduction in the overall dissipation compared to a
conventional globally synchronous design.

Figure 7. GALS basic model

3.2.2 RT level mixed synchronous/asynchronous design

Generally at the RT level, the finite state machine is implemented
completely synchronously. Efforts made towards mixed synchronous/asynchronous
design involve the introduction of asynchronous communication into the sub-FSM
network after FSM decomposition. Meanwhile, the input and output behaviour is
still cycle by cycle equivalent to a complete synchronous one.

 19

In the decomposed FSM design, there are two ways of implementing state
memory as shown in Figure 8.

The first method is rather straightforward. After FSM partitioning, each of
the sub-FSMs has its own state memory, see Figure 8a). These state memories are
local to the sub-FSMs and named after local state memory. Global state is not
required while reset states, one in each sub-FSM, are added to the local state
subsets. An additional signal interface is introduced between sub-FSMs to activate
or deactivate them. This approach has, for example, been used in a fully
synchronous partitioned FSM by Benini et al. [7]. Its disadvantage is the area
overhead introduced by the additional flip-flops. In some sense, these local state
memories are redundant because only the one in the current active sub-FSM is of
importance for storing the state information. In the meantime those remaining in
the deactivated sub-FSMs are not useful.

Figure 8. State memory structure in decomposed FSM

In contrast, Chow et al. [21] propose a structure where the local state

memory (LSM) is shared by all the sub-FSMs, as depicted in Figure 8b). By
dividing the states into two parts, global states and local states, the local state bits
can be shared among the sub-FSMs whereas the global states are used to determine
the active sub-FSM. States residing in different sub-FSMs can therefore use
identical local state codes and be distinguished by different global states. The total
number of flip-flops required in the state memory will be lower in comparison to
that for separate state memory implementation. However, from the power
consumption point of view, the disadvantage concerns the flip-flops introduced for
global state memory (GSM, the memory of global states). These flip-flops are
always clocked and will add substantially to the power consumption.

It has been proposed in [43] that an asynchronous communication protocol is
more power efficient than its synchronous counterpart in the decomposed FSM.
This idea of mixed synchronous/asynchronous design in FSM partitioning is
implemented in an automatic synthesis tool in [56]. It uses separate synchronous
local state memories for sub-FSMs but the disadvantage is the substantial area
overhead.

 20

Targeting an implementation with low power and low area overhead, the
idea is now suggested that a shared synchronous local state memory should be in
the part always clocked and an asynchronous global state memory should be used
to decide which sub-FSM is active. Global state memory has a low probability of
being updated. It is idle most of the time and therefore adds very low power
overhead. By using clock gating technique in the local state memory, power
dissipation can be further reduced. The mixed synchronous/asynchronous state
memory structure is shown in Figure 9, where the input/output behaviour is cycle
by cycle equivalent to that of a non-decomposed synchronous one.

Figure 9. Mixed synchrnous/asynchronous structure

Based on this structure, an automatic synthesis tool for low power

decomposed FSM implementation is also developed, which will be described in the
next chapter.

 21

4 AUTOMATIC SYNTHESIS TOOL

With the increasing design complexity, designers have to resort to automatic
tools to speed up the design process. At present there are many mature CAD
synthesis tools which target area and performance optimization. However, low
power design, particularly for higher levels, is still far more of an art than a
standard industrial practice. In an effort to address this problem and normalize the
design process for power optimization, an automatic synthesis tool at the RT level,
which is based on mixed synchronous/asynchronous state memory, has been
developed. In this chapter, an overview of the whole design flow of this tool
(section 4.1) is followed by a detailed description of each step in the flow. Firstly,
effective ways of collecting information from the input of the tool (section 4.2) are
discussed. FSM partitioning algorithm is then considered (section 4.3). The
required transformation steps for this mixed synchronous/asynchronous state
memory implementation as well as the associated state assignment problem
(section 4.4) are then presented. Following this, the power estimation model at the
RT level is built (section 4.5). Finally, the format of the tool output and the related
technology information are described (section 4.6).

4.1 DESIGN FLOW DESCRIPTION OF THE TOOL

Starting from a single state transition graph (STG) description, a procedure
is proposed for automatically synthesizing a monolithic FSM into a network of
interacting sub-FSMs. A standard-cell based design flow (see Figure 10) is
assumed, which means that there are no special library requirements beyond that
normally provided. However, the tool does require some cell library dependent
information to perform accurate power estimations and to define the gate level
implementation of the asynchronous elements.

In Figure 10, in addition to STG specification, the signal probabilities of the
primary inputs are also given in order to generate a long series of inputs to the
STG simulator. The outputs of the simulator are probabilities related to the states
and primary outputs of the FSM. According to the mutual state transition
probabilities derived from the STG simulator, states are firstly clustered into a
hierarchical tree. A novel algorithm is then adopted to group the clusters at each
level and form a limited number of partitioning candidates. Each candidate is
subsequently synthesized to an RT level description and its power dissipation is
measured by the cost function. The candidate with the lowest power is considered
to be the best, and its RT level VHDL description and synthesis scripts are finally
generated. The VHDL file and the scripts can be used directly as the inputs to a
standard synchronous tool for the optimization of the decomposed FSM at the gate
level.

 22

Figure 10. Tool design flow

4.2 STATISTICS COLLECTION

Power dissipation is strongly dependent on the switching activity of the
circuit, which in turn is related to the input pattern. For effective FSM partitioning
and power estimation, the first step is to specify information about the primary
inputs of the FSM. Other FSM statistics, such as state and primary output related
probabilities, can be obtained subsequently. To obtain the above information, there
are basically two ways depending on the knowledge available about primary inputs.

4.2.1 FSM probabilistic model

If the information of the inputs is provided by input probabilities, i.e., the
probability of the value of the input to be one, the STG behaviour of an FSM can
be modelled as a Markov chain [8]. A Markov chain represents a finite state
Markov process, where the probability distribution at any time is decided only by
the current state, regardless of how the process reaches that state. The Markov
chain model for the STG can be described as a directed graph isomorphic to the
STG with weighted edges.

In Figure 11a), input configurations for state transitions are labelled on the
edges of the STG. It is assumed that all input probabilities are 0.5, that is,
Prob(i1)=Prob(i2) = 0.5. The corresponding Markov chain model of the STG is
shown in Figure 11b). In the Markov chain model, edges are weighted using the
conditional transition probability, that is, weight pi,j on the corresponding edge

 23

represents the probability of a transition to state sj given that the machine is in state
si. For instance, the transition from s2 to s1 occurs when the input is “11” and the
corresponding conditional transition probability is p2,1 = Prob(i2)×Prob(i1) = 0.25,
as shown in Figure 11b). Primary inputs are assumed to be independent of each
other in this case.

S1

S2S3

-0
 11/1

 10
 0-

 --

-1
S1

S2S3

0.5
 0.25

 0.75

 1

0.5

a) a FSM b) Its Markov chain model

Figure 11. A FSM example

Conditional transition probability itself is not sufficient to represent the

probabilistic property of an FSM. For example, if the conditional transition
probability from si to sj is high but the FSM will never reside in si, the actual
transition probability between the two states is still zero. Hence, the total transition
probability is introduced, independently to the present state of the FSM. Total
transition probability is the product of the conditional transition probability and
the static state probability. The static state
probability represents the probability of a state that the FSM will reside in when
time increases to infinity. The calculation of the total transition probability Pi,j can
be expressed as:

Pi,j = pi,jPi i, j = 1, 2, …, |S| (3)

where pi,j is the conditional transition probability from si to sj, Pi is the static state
probability of state si and |S| is the number of states. Under the assumption that
input variables are mutually independent, pi,j can be calculated directly from the
STG by multiplying the input probabilities. The remaining problem is to compute
Pi.

Given a STG with |S| states, let P represent the conditional transition
probability matrix of size of |S|× |S|. The static state probability Pi of each state can
be obtained by solving the following equations:
qTP=qT (4)

∑
=

=
||

1

1
S

i
iP (5)

 24

where q is the static state probability vector whose components are the static state
probability Pi of the state si (i.e., q = []TSPPP ||21 ,,, K). The sufficient condition
that the static state probability vector of states exists is that an STG has a reset
state. For those STGs without a reset state, cases also exist for which the total
transition probability [8] can be obtained.

It should be noted that the value of the total transition probability and the
conditional transition probability between two states is generally different. More
information about Markov analysis of FSM can be found in [60].

4.2.2 Monte-Carlo-based simulation

A long specified input stream provides the most complete information
about the inputs. In this case, collecting other FSM statistics becomes
straightforward by simulating the state machine for a sufficient length of time. For
example, it is possible to calculate the total transition probability as the number of
state transitions during the whole simulation time divided by the number of time
units (often the clock cycle). Formally, this method is described as Monte-Carlo-
based simulation [45]. Stopping criteria (or convergence criteria), based on
statistical techniques, are used to decide when the simulation should stop. For
sequential circuits, which have feedback of state bits, the stopping criteria can be
obtained by determining whether the probabilities of the state bits are stable or not.
The Monte-Carlo-Based simulation flow chart for FSM is shown in Figure 12.

Figure 12. Monte-Carlo-based simulation flow chart for FSM

 Start

Generate a random state

Run simulation for a warmup period

Converge

End

 Generate inputs(a,P) and sample

Yes

No

 25

In this tool, a randomly generated input stream is used in the simulator.
The probabilistic distribution of inputs can be specifed by the user and the default
value is set to 0.5. It is assumed that the static state probability of each state
becomes a constant as time increases to infinity, and after a warm-up period of
clock cycles, the state probability of every state is sampled. A simplified
convergence criterion is used, i.e., only when the maximum difference value
between the probabilities of each state sampled in two consecutive time units (or
clock cycles) is less than ɛ, a user specified constant, does the simulation stop. The
default value of ɛ is set to 610− . For all the standard benchmarks [46] tested, their
simulations converged in a reasonable time.

From the simulator, FSM information such as the static state probability,
total transition probability, signal probabilities of primary outputs etc. are collected
for further use.

4.3 FSM PARTITIONING

In VLSI design, the initial interest in partitioning arises from min-cut
placement [47]. As the complexity of circuits increases and the desired number of
transistors is above that which a chip or module can accommodate, the circuit must
then be divided into components. Because the load of driving an external net in
another component is significantly bigger than that of driving an internal net,
partitioning techniques are needed to reduce the interconnection between
components. By dividing a complex system into smaller, more manageable
components, partitioning proves effective in reducing the design complexity and
emerges in many phases of circuit design. Although here the focus is only on FSM
partitioning, the proposed partitioning algorithm may also be useful for addressing
the general partitioning problem.
 As mentioned in section 2.2.2, at the RT level, FSM partitioning is an
important technique for dynamic power management. After partitioning, the
original FSM is decomposed into several smaller sub-FSMs. Apart from the case
involving a state transition between two sub-FSMs, only one sub-FSM is active
and thus all others are idle and can be deactivated without consuming power.
Because each sub-FSM is smaller than the original one, sub-FSMs as a whole
contribute to a lower average power. Depending on the quality of partitioning
algorithms, this FSM power reduction can be significantly different.

An efficient FSM partitioning algorithm can select a “good” partition within
a reasonable running time. The measure of “good” is performed by the cost
function and states having high total transition probability between them are
placed in the same sub-FSM in a “good” partition. Because the number of possible
partitioning solutions is generally too large to explore, heuristic partitioning
algorithms are used for reducing the complexity. Two main categories of
partitioning algorithms are discussed here, namely, the iterative-based algorithm
and the clustering algorithm. The partitioning algorithm proposed in this thesis is
then discussed.

 26

From an initial feasible solution, iterative-based algorithms iteratively move
to a better solution according to the cost metric. Among these algorithms, one of
the best known is the Kernighan-Lin algorithm (K-L) [48]. Its partitioning process
is illustrated in Figure 13.

Figure 13. Interchange of subsets in KL algorithm

It is assumed that there are 2n nodes, and two initial equal partitions, each

with n nodes, are formed. These are referred to as A0, B0. Then in each iterative
step, pairs of nodes are chosen to swap between the two partitions to reduce the
interconnection. For instance, in the iterative step m, subsets mX from partition
Am-1 and Ym from partition Bm-1 will swap their positions to achieve a minimal cut
cost.

This algorithm can produce good results for small amounts of CPU time. It
can also be used as the basis for solving general n-way partitioning problems. Its
employment in the FSM partitioning for low power can refer to [20], where two-
way unbalanced K-L partitioning is used to minimize the total transition
probabilities between two state sub-sets.

Another widely applied iterative-based partitioning algorithm is the genetic
algorithm [49]. The motivation behind its use is Darwin’s theory of natural
selection in evolution where “superior” groups of a species produce more offspring
in successive generation than “inferior” members. Its successful utilization in FSM
low power partitioning can be found in [7]. However, the algorithm sometimes
faces the problem of long running time.

Hierarchical clustering algorithms [50] consider sets of objects and they
group them according to given measures of closeness. For a specific problem,
closeness is defined by the corresponding cost function, representing the possibility
of clustering objects. For example, in the FSM partitioning problem for low power,
the total transition probability between states is used as the closeness criterion.
Two states having mutually high transition probability are called “close” and they
are more likely to belong to the same sub-FSM. Algorithms for hierarchical
clustering can be further divided into two classes, both of which are shown in the
clustering tree of Figure 14, using arrows to represent different directions.

Xm Ym

Am-1 Bm-1

Ym Xm

Am Bm

 27

Figure 14. Hierachical clustering tree

The first class of clustering is in an agglomerative way (bottom-up). In the

initial clustering solution, each object is itself taken as a single cluster. The
algorithm continues by grouping two objects (single object or the object merged
from single objects) and stops when all the objects are included in a single cluster.
The second class of clustering is in a divisive way (top-down). It can be thought
of as the reverse process of the agglomerative way. All objects are in a single
cluster at the beginning and objects with the worst closeness are split in the
subsequent steps.

Actually, clustering itself is rarely the goal. However, hierarchical trees
provide a means of organizing objects at different levels of granularity. If the tree
is cut at a particular level, clusters with corresponding granularity can be extracted.
A cut-line closer to the leaves of the tree generates more clusters and the states in
each cluster are closer. A cut-line closer to the root generates fewer clusters and the
states in each cluster are more distant. Iterative-based algorithms, meanwhile, are
more effective for a smaller solution space with greater density [51]. Hence, if the
clustering algorithm is used initially followed by the iterative-based algorithm on
the clusters obtained, better partitioning solutions can be expected, compared to
those where only iterative-based algorithms are used. On this basis, in the FSM
partitioning algorithm proposed here, a hierarchical tree integrating an iterative-
based algorithm is built firstly for further algorithm optimization.

 The partitioning criterion in this case is to obtain a small cluster of states
which are active most of the time. Meanwhile, the probability of the state
transitions within a cluster should be high and the probability of the state
transitions between two clusters (two sub-FSMs) should be low. A two-phase
partitioning algorithm is employed. In the first phase, by recursively applying the
K-L two-way partitioning, a hierarchical binary tree is built as shown in Figure 15.
Depending on their state transition probabilities, states are divided into groups in
order to minimize the inter-transitions between two groups. The complexity of this
algorithm is O(n2logn). For the benefit of the second phase, the tree is built in such
a way that the states in the left hand cluster are more likely to be active. The left-
most cluster for each level therefore has the highest probability of being active. In
the second phase, an efficient algorithm is proposed that groups the clusters on

Agglomerative Divisive

 28

every level of the binary tree and generates a limited number of partitioning
candidates. For n states, this algorithm finds the candidates ranging from 1-way to
n-way partitioning with a complexity of only O(nlog3n). Further explanation about
the algorithm can be found in [52].

Figure 15. Bi-Partitiong hirarchical tree

4.4 FSM SYNTHESIZER

 In this stage, every partitioning candidate obtained from the partitioning
algorithm is synthesized into a network of sub-FSMs. In the first instance, the
original STG is partitioned and transformed to support the interaction between sub-
FSMs. Then state codes for low power are assigned to each state. Finally, the
structure of the sub-FSM network is determined. The gate level implementation of
the combinational logic for each sub-FSM is still unknown. But, for the
asynchronous logic, its gate level implementation is decided in the synthesizer to
prevent glitches from the synchronous part of the decomposed FSM resulting in
hazards to the asynchronous part.

4.4.1 STG Transformation

To illustrate the procedure of STG transformation, the FSM in Figure 16a) is
divided into two sub-FSMs F1 and F2, with state subsets S1

 = {s1} in F1 and S2= {s2,
s3} in F2. There are two crossing transitions between F1 and F2. A crossing
transition is the state transition whose source state and destination state reside in
different sub-FSMs. In order to be able to detect a crossing transition, an extra g-
state is introduced. A g-state is inside the sub-FSM which contains the source state
of a crossing transition, but it has the same index as that of the destination state.
After the STG transformation, two new state subsets are formed which are U1 = {s1,
g2} in F1 and U2 = {s2, s3, g1} in F2. The transformed STG is shown in Figure 16b).

Divisive

 29

a) STG before transformation b) STG after transformation

Figure 16. STG before and after transformation

The behaviour of a crossing transition changes after the introduction of a g-

state. The crossing transition s3 in F2 to s1 in F1 can be taken as an example. After
introducing g1 in F2, the original transition is transformed via the following
sequence of events:

1) A synchronous state transition in the local state memory, from the source
state of the crossing transition to the g-state, denoted as s3→g1.

2) An asynchronous state transition in the global state memory, from the g-
state to the original destination state, denoted as g1 → s1. Both these transition
states have the same index.

The entire crossing transition is completed within one clock cycle. The first
event is synchronous because the local state memory is updated to the g-state at the
active edge of the clock signal. s3 and g1 should be distinguished from the local
state code when sharing the same global state.

The second event is asynchronous because the global state memory is
updated immediately upon detection of the transition in the g-state. The local state
memory is only triggered by the clock signal and therefore remains unchanged. In
this example, g1 and s1 share the same local state code whereas their global states
are different. The global state is then used to deactivate the currently active sub-
FSM F2 and activate the sub-FSM F1 as the destination state of the crossing
transition s1 , is to be found here.

 Coupled states are used to indicate the g-state and its corresponding state
which both share the same local state code. In Figure 16b), two coupled states (s1,
g1) and (s2, g2) are then obtained. A formalized description concerning STG
transformation can be found in [53].

4.4.2 State assignment for decomposed FSM
 When synthesizing a network of sub-FSMs, state encoding is strongly related to
the structure in which the sub-FSMs are implemented. In other words, whether or
not the sub-FSMs share the same state memory will greatly influence the state
assignment strategy.

 30

In [7], after partitioning, each sub-FSM has its own local state memory.
Because there is no direct crossing transition connecting the states in two different
sub-FSMs in the sub-FSM network, it is possible to synthesize each sub-FSM
separately. This state assignment problem can be considered to be the same as for
the monolithic FSM.

In contrast to the separate state memory method, Chow et al. [21] propose a
decomposition model with shared local state memory. Additional state bits are
added to decide which one of the sub-FSMs is active. For state encoding, they
present a method that considers crossing transitions by introducing pseudo-outputs.
A pseudo-output bit represents a fanout-oriented relation imposed by the crossing
transitions. For example, if there are crossing transitions that have the source states
in the same sub-FSM and toward the same destination state, these source states
should be assigned “close” state codes (in terms of Hamming distance). Transitions
(rows in the state transition table) whose current states are these source states
should have a pseudo-output of “1” added when all other transitions are given a
pseudo code of “0”. Subsequently, all crossing transitions are deleted and Jedi [54]
is used to perform low power state assignment for each individual sub-FSM.

Both approaches described above assume fully synchronous
implementations. Based on the decomposed FSM structure with mixed
synchronous/asynchronous state memory, a state assignment procedure called
state-bundling is proposed to address the low power state encoding problem.

As mentioned in section 4.4.1, after the STG transformation, a group of
coupled states is formed. The proposed state assignment begins from these coupled
states because they are related to crossing transitions and should be assigned the
same local state code. The whole procedure can be described in the following steps
through the example in Figure 17.

1) A state bundle table is built (see Table 1). Each row represents the states
inside the same sub-FSM. Each column, named after a state bundle, includes states
residing in different sub-FSMs with the same local state code. Binary encoding in
incremental order is assigned to columns from left to right. The state bundle
including g-states can be further referred to as the g state bundle.

2) The coupled states are put into the table, as shown in Table 1.

 31

Figure 17. STG example

3) Rows in the table are sorted according to the duty time of their

corresponding sub-FSMs (see Table 2). The duty time Ti represents the probability
of the sub-FSM Fi being active. Its value is decided by the sum of the static state
probability of states in the sub-FSM, that is,

i
iii SssprobT ∑ ∈=),(where Si is

the state subset of Fi
. The duty time of the sub-FSMs top down is in descending

order after rearrangement.

 4) The coupled states are merged and two or more of them may possibly
reside in the same column (see Table 3). The reason for merging is to reduce local
state bits, which often results in lower power in the final implementation. The
proposed algorithm ensures that the sum of the state probabilities of states in the
first column is a maximum.

B: b0
000

b1
001

b2
010

b3
011

b4
100

F1 s0 g1 - - -
F4 - g1 g3 s4 g5
F3 - - s3 g4 -
F2 - s1 g3 - -
F5 g0 - - s5

B: b0
000

b1
001

b2
010

b3
011

b4
100

F1 s0 g1 - -
F4 s4 g1 g3 g5
F3 g4 - s3 -
F2 - s1 g3 -
F5 g0 - - s5

Table 2. Sorted state bundle table Table 3. After merging coupled states

S0

S6

S5

S4

S1

F1

F5
F2

S2

S1

F3
F4

Duty time: T1>T4>T3>T2>T5

Table 1. Initial state bundle table
B: b0

000
b1
001

b2
010

b3
011

b4
100

F1 s0 g1 - - -
F2 - s1 g3 - -
F3 - - s3 g4 -
F4 - g1 g3 s4 g5
F5 g0 - - - s5

 32

5) Each coupled states is taken as a whole and its position is optimized by a

greedy algorithm. If the states in two different coupled states have a high mutual
state transition possibility, they are assigned the state codes for the least Hamming
distance (see Table 4).

6) Other states, not included in the coupled states, are finally put into the
table in a greedy way. The Hamming distance of states with high transition
probability is minimized (see Table 5).

More details about the computational efficient state-encoding algorithm for
low power can be found in Paper III.

4.4.3 FSM decomposition structure

Suppose the monolithic FSM has I as its input, O as its output and is
partitioned into sub-FSMs F1, F2, ..., Fn. The original state subsets S1, S2, ..., Sn, in
combination with the introduced g-states, form the new state subsets U1, U2, ...,Un
in F1, F2, ..., Fn, respectively. All sub-FSMs share the same local state memory but
have their own combinational logic. The general structure of the proposed
decomposed FSM model is shown in Figure 18.

The G state bundle Detection Logic (referred to as GDL) decodes the state
bits in the Local State Memory (referred to as LSM). If a g state bundle is detected,
a signal is sent to the Global State Memory (referred to as GSM).

The GSM decides which is the current active sub-FSM. It is implemented as
an asynchronous finite state machine. A Muller-C element [61] is used as the basic
asynchronous element. A state transition in the GSM only takes place at the event
of a crossing transition, in which case, a g-state will be detected. In a “well-
partitioned” FSM, the probability of crossing transitions is very low. Therefore, the
GSM will be idle for most of the time and dissipate no dynamic power due to the
inherent property of an asynchronous circuit. The state information in the GSM is
directly used as the control signals to both the LSM and the combinational part
(implementing the next state and primary output function) of the sub-FSMs
(labeled F1, F2, ..., Fn in Figure 18). The state bits in the LSM can be selectively
turned off via the clock gating logic controlled by the GSM.

B: b0
000

b1
001

b3
010

b2
011

F1 s0 g1 - -
F4 s4 g1 g5 g3
F3 g4 - - s3
F2 - s1 - g3
F5 g0 - s5 -

B: b0
000

b1
001

b3
010

b2
011

F1 s0 g1 - -
F4 s4 g1 g5 g3
F3 g4 s2 - s3
F2 - s1 - g3
F5 g0 s6 s5 -

Table 4. g state bundle optimization Table 5. Final state bundle table

 33

At any given time, apart from crossing transition events, only one sub-FSM
is active. The active sub-FSM is responsible for determining the primary output
and the next local state. When deactivated, the inputs to the sub-FSM are disabled
by AND gates and no dynamic power will be dissipated. The outputs of a
deactivated sub-FSM are all blocked to zero. By using OR gates, the correct
primary outputs and next state outputs can be obtained by collecting output
information from all sub-FSMs.

The structural information will be used in the power estimation function in
the next section.

Figure 18. Decomposed FSM structure with mixed synchronous/asynchronous state
memory

4.5 POWER ESTIMATION

 Power estimation is an indispensable component in the design process. In the
early design steps, power estimation can help to avoid power violation of the
design constraints. In synthesis practices for each level, power estimation can be
combined into cost metrics to explore the design space between power, area and
speed and assist in choosing the design methodology most suitable for a given
circuit.
 The tradeoff in power estimation is between accuracy and running-time. At
lower levels, more information can be obtained and more accurate power
estimation can be made. However their corresponding computational costs are
higher. SPICE, the circuit level simulator for power estimation, provides accurate
power information. However, it cannot be used for a circuit that includes more than

 34

thousands of transistors due to the computational expense. Therefore, the
utilization of SPICE is limited to power analysis of the basic cell module.

At the gate level, when the design layout has been determined, power
analysis is based on the signal model to calculate the switching activity of internal
nodes of the circuit. Both probabilistic and statistical techniques can be exploited
[12].

 At higher levels, the final hardware implementation is uncertain and precise
information is absent, so it is more difficult to estimate the power. Only the RT
level power estimation is focussed on in the rest of this section.

At the RT level, [55] used the statistical modelling method for DSP circuits,
where the basic models can be built as adders, comparators, registers etc. Power
estimation is performed by combining the power coefficients of each model with
the statistics of the circuit activity. The former are stored in the library database
and the latter are derived from the simulation of specified input patterns.

Another more general power estimation method is based on information
theory, using entropy as a measure of circuit average switching activity [13]. It is
known that the average power dissipation is proportional to the effective
capacitance (see equation (2)), which can further be expressed as the average
switching activity multiplied by the whole circuit capacitance. Nemani et al. [13],
after reasonable approximation, concluded that:

∝avgP HA× (6)
where A is an estimate of the circuit area, representative of the whole capacitance
of the circuit. H is the average value of entropy H(i) over all nodes i in the circuit
and represents the node average switching activity. After a series of deduction, H
can be finally expressed as:

)2(3
2

oi HH
mn

H +
+

≈ (7)

where Hi is the sum of node entropy of the inputs to the combinational logic. Ho is
the sum of node entropy of the outputs to the combinational logic. n is the total
number of inputs and m is the number of outputs.

 To calculate the value of A, an area estimation model is proposed in [14].
Firstly a multi-output Boolean function is transformed to an equivalent single
output function and then the associated complexity measure is computed.

In the proposed tool, the power estimation function including structural
information (see power estimator in Figure 10) is employed to every synthesized
partitioning candidate. The best candidate with the lowest power will be chosen as
the input for the code generator. The purpose is to find a candidate with the actual
lowest power and which is also the candidate with the lowest estimated power.
Therefore, the absolute difference between the actual power and the estimated
power is not important.

 35

In this decomposed FSM model, the power of the combinational logic of
each sub-FSM is estimated using this entropy-based method. The area A associated
with each sub-FSM is computed directly from the state transition table for the sake
of simplicity. As for the other parts, their power estimations are straightforward
since their gate level implementations are known.
Power estimation for combinational logic:

As mentioned, the power estimation of the combinational logic is made via
the state transition table, together with entropy. It can be represented as:

itechi

n

i
icomb TkRowHP ×××=∑

=1
 (8)

where Hi is the entropy of the combinational logic implementing sub-FSM Fi. Rowi
is the number of rows in the state transition table with source states in Fi. ktech is an
empirically determined constant to adjust to the cell library used. Ti is the duty
period of Fi .

Power for global state memory:

For the global state memory, an empirical model is used based on the
structure of the memory. Even though the gate-level implementation is known, it
proved more accurate to use the macro model shown below consisting of two parts
representing the power of a) the logic that detects and initiates the transition from
one sub-FSM to another and b) the asynchronous state memory element:

|)|(_ gkpkpkP gGGBLSMBGSM ×+×+×= a)

 i

n

i
C TP ×+∑

=1
 b) (9)

The expression inside the parenthesis estimates the power in the global state
transition function which is a function of the local state and the global state. The
first term represents the contribution from the local state memory where pLSM_B is
the toggle probability of local state bits. The second term represents the
contribution from the global memory where pG is the sum of toggle probabilities of
the g states. A g state is a local state that initiates a global state transition. The third
term represents the complexity of global state transition logic where |g| is the
number of g states.

The sum b) represents the contribution from the global state memory devices,
implemented as muller-C elements where Ti is the probability of global state
transition, i.e., the probability of a crossing transition between different sub-FSMs.
The number of sub-FSMs is denoted by n. The constants are determined
empirically based on a single FSM partitioning run.

Power for D type flip flop:

The local state memory consists of a set of D flip-flops and its power is
estimated by:

 36

∑
=

×=
m

i
iDffLSM TPP

i
1

 (10)

where Ti is the duty time of the flip-flop, m is the number of local state memory
bits.

Power for clock net energy:

The power dissipation in the clock net is estimated by:

wirebufferddclkinclock kkVfCFFP ×××××= 2|| (11)

where |FF| is the average number of flip flops clocked, Cclkin is the capacitance of
the clock input, Vdd is the power supply voltage, f is the clock frequency, kbuffer is
the clock buffer capacitance coefficient, and kwire is the wire capacitance coefficient.

Power for overhead:

gatedDffgatedComoverhead PPP += (12)

where PgatedCom includes the power of AND gates to activate and deactivate the
combinational logic, as well as the power of OR gates for merging the outputs.
PgatedDff is the power to activate and deactivate the local state bits and basically
originates from NAND gates.

The power dissipation for the whole partitioned FSM is simply a sum of the
above:

overheadclockLSMGSMcombwhole PPPPPP ++++= (13)

The verification of the cost function can be found in [52].

4.6 RT LEVEL CODE GENERATOR

For the best partitioning candidate with the estimated lowest power, the
proposed automatic synthesis tool outputs RT level VHDL code and synthesis
scripts, both of which can be used directly as inputs for a standard logic synthesis
tool for gate level optimization .

The automatically generated VHDL file includes the detailed
implementation information of the decomposed FSM. For the state memory and
overhead circuit, the gate level implementation is defined in the file based on cell
library dependent information. In the main it is the combinational logic of sub-
FSMs which can be further optimised at gate level. The synthesis scripts provide
the constraints and instruction for the logic optimization.

Both the gate level area and power estimation are performed using Power
Compiler (Synopsys), assuming a supply voltage of 1.8V and a clock frequency of
20MHz. The area estimation is based on the cell area and the target technoglogy is
0.18µm CMOS circuit. The overall power dissipation at gate level is obtained by

 37

dividing the decomposed FSM into several parts, synthesizing each part separately
and then adding their power dissipations together. The combinational logic of each
sub-FSM, for example, is synthesized separately and has its own power dissipation
report. Because the logic syntheis tool only supports the synchronous design, for
the asynchronous element (muller-C in this case), its gate level power estimation is
assumed to be the same as the value computed by the cost function b) in equation
(9).

 The effectiveness of this tool is verified via a series of benchmarks. For all
of them, the power consumption in the decomposed FSM is significantly reduced
by an average of 56% compared to the original unpartitioned FSM.

 39

5 SUMMARY OF PUBLICATIONS

The three papers included in the thesis can be categorized in two groups:
1. Initial concept and mathematical formulation.
2. Developed automatic synthesis tool refinement.
Section 5.1 and 5.2 outlines the content of every paper and Section 5.3 presents the
contribution of each author to the papers.
5.1 INITIAL CONCEPT AND MATHEMATICAL FORMULATION

5.1.1 Paper I
In this paper a design model based on mixed synchronous/asynchronous

state memory is proposed that results in implementations with low power
dissipation and low area overhead for partitioned FSMs. The state memory here is
composed of the synchronous local state memory and asynchronous global state
memory, where the former is used to distinguish the states inside a sub-FSM, and
the latter is responsible for controlling sub-FSM communication.

5.2 DEVELOPED AUTOMATIC SYNTHESIS TOOL REFINEMENT

Two papers cover issues related to procedural refinement inside the
developed CAD tool for synthesis of low-power partitioned FSMs. They focus on
FSM partitioning method and state encoding optimization individually.

5.2.1 Paper II

This paper presents FSM partitioning algorithms and RT-level power
estimation functions that are the key issues in the tool. The proposed n-way
partitioning algorithm with low complexity may also be used for general
synchronous partitioning method. The accuracy of the power estimation functions
is verified by standard benchmarks.

5.2.2 Paper III

This paper presents state encoding techniques for a partitioned FSM
structure based on mixed synchronous/asynchronous state memory. The state
memory is composed of synchronous local state memory and asynchronous global
state memory. One hot encoding is used inside asynchronous global state memory
for low complexity and low power. For the local state assignment, a procedure
named as state-bundling is presented to enable states residing in different sub-
FSMs to share the same state codes. Two state-encoding techniques, one based on
binary encoding and one optimized for low-power consumption, are compared.

 40

5.3 AUTHOR’S CONTRIBUTIONS

The contribution of the author is essential to all the papers presented in the thesis.
The exact contribution of each author is specified in Table 6.

Table 6. Author’s contribution (M = main contributor, C = co-author).

Paper

CC1 MO2 BO3 Contributions

I M C CC : Implemented the automatic synthesis
tool of FSM decomposition model
BO: Outlined the concept of mixed
synchronous/asynchronous state memory
and Supervisor

II M C C CC: Developed the tool and specified the
power estimation function
MO: proposed the “candidate generation”
algorithm
BO: Supervisor

III M C CC: Proposed the state encoding
optimization method
BO: Supervisor

1. Cao Cao
2. Mattias O’Nils
3. Bengt Oelmann

41

6 THESIS SUMMARY

This thesis proposed the concept and implementation structure of FSM
decomposition based on mixed synchronous/asynchronous state memory. Key
issues in the design of the CAD tools for the synthesis of low power decomposed-
FSMs are also discussed.

A general introduction to the research area, the motivation, and the specific
problem description of the thesis, are given in Section 1. Section 2 gives an
introduction to the related research work. Section 3 introduced the special mixed
synchronous/asynchronous design architecture. Section 4 presented the tool
developed for automatic synthesis. Section 5 summarizes the three papers covered
by the thesis and identifies the original contribution for each paper.

In this chapter, section 6.1 summarizes the conclusions reached during the
research work on this thesis. Suggestions for future work are presented at Section
6.2.

6.1 CONCLUSIONS

6.1.1 Design model of mixed synchronous/asynchronous state memory
A novel design model for partitioned FSMs based on mixed

synchronous/asynchronous state memory is proposed. The basic idea is to have
synchronous memory in the part always clocked, i.e. the local state memory; and
asynchronous memory for the global state memory, which has a low probability of
being updated. In this way, the global state memory adds very low power-overhead.
In spite of the internal asynchronous operation, the input/output behaviour of the
decomposed FSM is equivalent to the original synchronous one.

6.1.2 Design flow of the automatic synthesis tool

The developed CAD tool fits into a standard-cell based design flow. It takes
an STG as input, transforms it and generates synthesizable RT-level VHDL code
that is fed to a standard logic synthesis tool. The effectiveness of the tool was
demonstrated by benchmarks [Paper II] with an average power reduction of 56%.
The best result was a power reduction in excess of 70%.

6.1.3 FSM partitioning algorithm and RT level power estimation function

A novel multi-way partitioning algorithm for partitioned FSM synthesis is
proposed in the developed CAD tool. It was applied to a mixed
synchronous/asynchronous architecture but can also be used for fully synchronous
implementations. The proposed algorithms are of low complexity which is
important when it comes to the practical usage of the tool. Among the partitioning
candidates obtained from the algorithm, RT-level power estimation functions are

42

proposed with efficient accuracy for selecting the candidate with the lowest power
consumption.

6.1.4 State encoding optimization

 A state encoding algorithm for the partitioned FSM composed of inter-
connected sub-FSMs with shared state memory was proposed. The algorithm takes
the properties of partitioned FSMs and the constraints imposed by the
implementation architecture into account. Further power reductions can be
achieved for certain benchmarks after state assignment optimization. However, it is
not possible to benefit much from the state encoding optimization compared to the
method of FSM partitioning. Asynchronous state memory, idle condition detection
logic, and the shut-down logic have already been established before state encoding
and their power can not be reduced. The sub-FSM with the high possibility of
being active often has few state bits, which is also unlikely to be optimized.

6.2 FUTURE WORK

To further explore the concept of finite-state machines based on mixed
synchronous/asynchronous state memory, more detailed studies on the techniques
presented in thesis have to be conducted as well as expanding the studies to issues
not covered in this thesis. The following issues are to be addressed in future work:

• Formalized description of the asynchronous state memory
In [Paper I] the asynchronous state memory bit for two-way partitioned
FSMs is proposed and is actually an SR-latch. In [Paper II] the
asynchronous state memory bit for an N-way partitioned FSM is a Muller-
C element. Even though it has been demonstrated that these asynchronous
state memory bits work very well in simulations, it has proven necessary to
provide a formal description of their behaviour in order to allow synthesis
for applications other than the type of FSMs discussed in this thesis. One
such application could be locally clocked FSMs with datapath (FSMDs)
using asynchronous interaction.

• Timing analysis of the asynchronous memory
The delay penalty for the partitioned FSMs has not been addressed in this
thesis. A partitioned FSM composed of two or more sub-FSMs has a
critical timing path that in most cases is smaller in comparison to the
monolithic FSM. However, the delay in the asynchronous state-memory is
added to the delay in the next-state function of the sub-FSMs for the
crossing transitions. How the partitioning affects the critical timing path is
not known at present and requires further investigation.

• Power-area tradeoffs
For all synthesis results reported in this thesis, the optimizations are not
constrained by area. It might prove possible to achieve power reductions
close to those reported but with much lower area-overhead. Due to the

43

large difference in the complexity of the asynchronous state memory
between a two-way partitioned FSM and an FSM with more than two
partitions, large savings in area and possibly faster circuits can be obtained
by two-way partitioning.

• Benchmarking of power in FSMs
Evaluating RT-level synthesis tools is quite difficult since the optimization
results are highly dependent on the benchmark circuits used. For the
evaluation of the power optimizations, the input data probabilities are of
great importance. Even though standard MCNC benchmark circuits were
used for all the developing tools for FSM optimizations, sufficient results
to ensure fair comparisons to others reported in the literature were not
found. For these benchmarks, no “typical” input patterns or input
probabilities are specified which makes it almost impossible to compare
results from two different tools. It is also difficult to make any general
conclusion for an optimization tool. For example, it is not possible to say
that this given tool gives good results for FSMs with certain characteristics
but cannot handle FSMs with other characteristics. This is a common
problem for all developing tools for power optimizations of FSMs and is
not specific to this work. A first attempt to address this problem was
presented in [64] by having an FSM benchmark generator tool. This tool
could generate synthetic FSMs with characteristics specified by the user.
Unfortunately this tool does not allow specification of state transition
probabilities, which makes it of no interest for researchers developing
power optimization tools. The belief is that a similar benchmark generator
including specification of the characteristics for the state transition
probabilities would be of great interest for those developing FSM power
optimization tools.

• Formal verification of FSM transformations
The functional equivalence of a transformed FSM and the original FSM
description has been verified through extensive simulations. A formal
verification would provide a more rigorous proof of functional equivalence.

45

7 REFERENCES

[1] M. C. Johnson, D. Somasekhar, and K. Roy, “Models and algorithmsfor
bounds on leakage in CMOS circuits,” IEEE Transactions on Computer-
Aided Design, vol. 18, pp. 714–725, June 1999.

[2] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-Power CMOS Digital
Design,” IEEE J. Solid-State Circuits，vol. 27, No. 4, pp. 473–484, April
1992.

[3] J. Henkel, “A Low-Power Hardware/Software Partitioning Approach for
Core-based Embedded Systems,” Design Automation Conference, pp. 122-
127, June 1999.

[4] F. Pollack, “New microarchitecture challenges in the coming generations of
CMOS process technologies”, 32nd Annual International Symposium on
Microarchitecture, Nov.1999.

[5] L. Benini and G. De Micheli, “Dynamic Power Management design
techniques and CAD tools”, Kluwer, 1998.

[6] L. Benini and G. De Micheli, “Automatic Synthesis of Low-Power Gated
Clock Finite-State Machines,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 1996, vol. 15, No. 6, Pages. 630-
643.

[7] L. Benini, F. Vermeulen, G. De Micheli, “Finite-State Machine
Partitioning for Low-Power,” Proceedings of the IEEE International
Symposium on Circuits and Systems 1998, vol. 2, pp. 5-8.

[8] L. Benini and G. De Micheli, “State Assignment for Low Power
Dissipation,” IEEE Journal for Solid-State Circuits, vol.30, No.3, March 95,
pp.32-40.

[9] S. Mutch, S. Shigematsu, Y. Matsuya, H. Fukuda, and J. Yamada, “A 1V
Multi-Threshold Voltage CMOS DSP with an Efficient Power Management
Technique for Mobile Phone Applications,” Proceedings of the International
Solid-State Circuits Conference, 1996, pp. 168–169.

[10] R. Hossain, M. Zheng, and A. Albicki, “Reducing power dissipation in
CMOS circuits by signal probability based transistor reordering,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 15, No. 3, Mar, 1996.

[11] W.Nebel and J. Mermets (Eds.), “Low power design in deep submicron
electronics,” Kluwer, 1997.

[12] K. ROY, S. Prasad, “Low Power Digital CMOS Design,” Kluwer, 1995.
[13] M. Nemani, F. Najm, “Towards a high-level power estimation

capability,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 15, No. 6, pp. 588-598, 1996.

46

[14] M. Nemani, F. Najm, “High-level area and power estimation for VLSI
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 18 , No. 6 , pp. 697 – 713, June 1999.

[15] N. Kumar, S. Katkoori, L. Rader and R. Vemuri, “Profile-Driven Behavioral
Synthesis for Low Power VLSI Systems,” IEEE Design & Test of
Computers, Fall Issue, 1995, pp.70-84.

[16] V. Tiwari, S. Malik, A. Wolfe, “Power analysis of embedded software: a
first step towards software power minimization,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 2 , No. 4 , pp. 437 – 445, Dec.
1994.

[17] D. Lidsky, J. Rabaey, “Early Power Exploration - A World Wide Web
Application,” Proceedings of Design Automation Conference, pp. 27 – 32,
June 1996.

[18] J. Hartmanis, R. E. Stearns, “Algebraic structure theory of sequential
machines,” Prentice Hall, 1966

[19] M. Alidina, J. Monteiro, S. Devadas, A, Ghosh, M. Papaefthymiou,
“Precomputation-based sequential logic optimization for low power,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, No. 4,
pp. 426 – 436, Dec. 1994.

[20] J. Monteiro, A. Oliveira, “Finite State Machine Decomposition for Low
Power,” Proceedings of the 35th Design Automation Conference, pp. 758-763,
June, 1998.

[21] S-H. Chow, Y-C. Ho, T. Hwang, “Low-Power Realization of Finite-State
Machines - A Decomposition Approach,” ACM Transactions on Design
Automation of Electronics Systems, 1996, vol. 1, No. 3, pp. 315-340.

[22] 1999 ITRS Roadmap.
[23] V.Tiwari, S. Malik, P. Ashar, “Guarded evaluation: pushing power

management to logic synthesis/design,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 17, No. 10, pp. 1051 –
1060, Oct.1998.

[24] G. De Micheli, “Symbolic design of combinational and sequential logic
circuits implemented by two-level logic macros,” IEEE Transactions on
Computed-Aided design, vol.CAD-5, pp.597-616, Oct.1986.

[25] S. Devadas, H. Ma, AR Newton and A. Sangiovanni-Vincentelli,
“MUSTANG: state assignment of finite state machines targeting multilevel
logic implementations,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 7, No. 12, pp. 1290 – 1300, Dec. 1988.

[26] K. Roy and S. Prasad, “SYCLOP: Synthesis of CMOS Logic for Low Power
Applications,” Proceedings of International Conference on Computer
Design (ICCD), 1992, pp. 464–467.

[27] W. Nöth and R. Kolla, “Spanning Trees Based State Encoding for Low
Power Dissipation.” Proceedings of the conference on Design Automation
and Test in Europe, 1999, pp. 168-174.

47

[28] I. Lemberski, M. Koegst, S. Cotofana, B. Juurlink, “FSM non-minimal state
encoding for low power,” Proceedings of the 23rd International Conference
on Microelectronics, vol. 2, pp. 605 – 608, May 2002.

[29] P. Surti, L. F. Chao, A.Tyagi, “Low power FSM Design Using Huffman-
style encoding,” Proceedings of European Design and Test Conference,
pp.521-525, Mar.1997.

[30] CY. Tsui, M. Pedram, AM. Despain, “Low power state assignment targeting
two and multilevel logic implementations,” IEEE Transactions on Computer
Aided Design, vol.17, No. 12, pp. 1281-1291, Dec. 1998.

[31] E. OLSON, and S. KANG, “Low-power state assignment for finite state
machines search,” International Workshop on Low power design, 1994, pp.
63–68.

[32] A. Davis and S.M. Nowick, “Asynchronous circuit design: Motivation,
background and methods,” in book Asynchronous Digital Circuit Design, pp.
1-49, Springer, 1995

[33] D. Dobberpuhl et al., “A 200-MHz 64-b dual-issue CMOS microprocessor,”
IEEE Journal of Solid-State Circuits, vol. 27, No. 11, pp. 1555-1567, Nov.
1992.

[34] K. van Berkel and M. Rem, "VLSI programming of asynchronous circuits
for low-power", In book Asynchronous Digital Circuit Design, pp. 152-210,
Springer, 1995

[35] S. B. Furber, D. A. Edwards, and J. D. Garside. “AMULET3: a 100 MIPS
asynchronous embedded processor,” Proceedings of International
Conference on Computer Design (ICCD), pp. 329-334, September 2000.
(power)

[36] Ivan Sutherland and Jon Lexau. “Designing fast asynchronous circuits”. In
Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 184-193. IEEE Computer Society Press, March
2001.

[37] T. Meng, R. Bordersen, D. Messerschmitt, “Asynchronous Design for
Programmable Digital Signal Processors,” IEEE Transactions on Signal
Processing, pp. 939-952, April 1991.

[38] J. McCardle and D. Chester, “Measuring an Asynchronous Processor's
Power and Noise,” Proceedings of Synopsys Users Group Conference
(SNUG 01), Synopsys, Mountain View, Calif., 2001, pp. 66-70.

[39] S. Moore, R. Anderson, R. Mullins, G. Taylor, J. Fournier, “Balanced Self-
Checking Asynchronous Logic for Smart Card Applications” Journal of the
Microprocessors and Microsystems, Special Issue on Asynchronous System
Design, pp. 421-430, Oct. 2003

[40] K. Borum, T. Gleerup, J. Madsen, S. Pedersen, “Power-over-time estimation
for processor design,” Proceedings of NORCHIP'01, pp. 87-92, Nov. 2001.

[41] K. Y. Yun and R. P. Donohue, “Pausible clocking: a first step toward
heterogeneous systems,” Proceedings of International Conference on
Computer Design(ICCD), pp. 118 - 123, Oct. 1996.

48

[42] A. Hemani et al., “Lowering power consumption in clock by using globally
asynchronous locally synchronous design style,” Proceedings of the 36th
Design Automation Conference, pp. 873 – 878, June 1999.

[43] B. Oelmann and M. O’Nils, “Asynchronous Control of Low-Power Gated
Clock Finite-State Machines,” Proceedings of the IEEE International
Conference on Electronics, Circuits, and Systems, 1999, pp. 915 - 918.

[44] K. Trivedi, “Probability and Statistics with Reliability, Queueing, and
Computer Science Applications,” Prentice-Hall, 1982

[45] R. Burch, F. N. Najm, P. Yang, T. N. Trick, “A Monte Carlo Approach for
Power Estimation,” IEEE Transactions on VLSI Systems, vol. 1, No. 1, pp.
63-71, March 1993.

[46] S. Yang, “Logic synthesis and optimization benchmarks user guide,”
Technical report, Stanford University, 1991.

[47] M. Breuer. “A class of min-cut placement algorithms,” Proceedings of the
14th Design Automation Conference, pp. 284-290, June 1977.

[48] B. W. Kernighan and S. Lin, “An efficient heuristic for partitioning graphs,”
Bell System Technical Journal, vol. 49, No. 1, pp. 291 - 307, 1970.

[49] H. Inayoshi and B. Manderick, “The Weighted Graph Bi-Partitioning
Problem: A Look at GA Performance,” In Parallel Problem Solving from
Nature, pp. 617 - 625, Springer-Verlag,1992.

[50] S. C. Johnson, “Hierarchical Clustering Schemes” Psychometrika 2, pp. 241-
254, 1967.

[51] C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partitioning: A
Survey,” Integration: the VLSI Journal, 19(1-2), 1995, pp. 1 - 81.

[52] C. Cao, M. O'Nils, B. Oelmann, “A Tool for Low-Power Synthesis of FSMs
with Mixed Synchronous/Asynchronous State Memory,” Proceedings of
Norchip, pp. 199-202, Nov. 2004.

[53] C. Cao and B. Oelmann, “Mixed Synchronous/Asynchronous State Memory
for Low Power FSM Design,” Proceedings of EUROMICRO Symposium on
Digital System Design, France, 2004, pp. 363-370.

[54] Bill Lin, A. Richard Newton, “Synthesis of Multiple Level Logic from
Symbolic High-Level Description Languages,” VLSI 89, Munich, 1989, pp.
187- 196.

[55] P. Landman and J. Rabaey, “Black-Box Capacitance Models for
Architectural Analysis,” Proceedings of the International Workshop on Low
Power Design, pp. 165–170, April 1994.

[56] B. Oelmann, K. Tammemäe, M. Kruus, M. O'Nils, “Automatic FSM
synthesis for low-power mixed synchronous/asynchronous implementation,”
Journal of VLSI Design 2001, Special issue on low-power design, vol. 12,
No. 2, 2001, pp. 167-186.

[57] J. Monteiro, “A Computer-Aided Design Methodology for Low Power
Sequential Logic Circuits,” PhD Thesis, Massachusetts Institute of
Technology, May 1996.

49

[58] E. Huwang, F. Vahid, Y.-C. Hsu, “FSMD functional partitioning for low
power,” Proceedings of Design, Automation and Test in Europe, 1999, pp.
22–28.

[59] C. T. Hsieh and M. Pedram, “Architectural energy optimization by bus
splitting,” IEEE Transactions on Computer-Aided Design, vol. 21, No. 4, pp.
408–414, April 2002.

[60] G. Hachtel, E. Macii, A. Pardo, and E Somenzi, “Markovian Analysis of
Large Finite State Machines,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 15, No. 12, pp. 1479 - 1493,
Dec 1996.

[61] David E. Muller and W. S. Bartky, “A theory of asynchronous circuits,”
Proceedings of an International Symposium on the Theory of Switching, pp.
204 - 243, April 1959.

[62] D. Singh, J. Rabaey, M. Pedram, F. Catthoor, S. Rajgopal, N. Sehgal, T.
Mozdzen, “Power-conscious CAD tools and methodologies: a perspective,”
Proceedings of the IEEE, pp. 570 - 594, April 1995.

[63] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous Systems,”
PhD thesis, Stanford University, Oct. 1984.

[64] L. Józwiak, D. Gawlowski, A. Slusarczyk, “An effective solution of
benchmarking problem: FSM benchmark generator and its application to
analysis of state assignment methods,” Proceedings of EUROMICRO
Symposium on Digital System Design, France, 2004, pp. 160-167.

51

PAPER I

Mixed synchronous/asynchronous state memory for low power FSM design

P a p e r I

52

53

54

55

56

57

58

59

61

PAPER II

A Tool for Low-Power Synthesis of FSMs with Mixed Synchronous/Asynchronous
State Memory

P a p e r I I

63

64

65

66

67

PAPER III

State-Encoding for Partitioned FSMs with Mixed Synchronous/Asynchronous
State Memory

P a p e r I I I

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

