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A novel storage requirement estimation methodology is presented for use in the early system
design phases when the data transfer ordering is only partially fixed. At that stage, none of the
existing estimation tools are adequate, as they either assume a fully specified execution order or
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demonstrators, we show how our techniques and tool can effectively guide the designer to achieve
a transformed specification with low storage requirement.
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1. INTRODUCTION

Many integrated circuit systems, particularly in the multi-media and telecom do-
mains, are inherently data dominant. For this class of applications, data transfer
and storage largely determine cost and performance parameters. This is the case
for chip size, since large memories are usually needed, performance, since access-
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2 . P. G. Kjeldsberg et al.

ing the memories may very well be the main bottleneck, and power consumption,
since the memories and buses consume large quantities of energy. Even for systems
with caches, the overall storage requirement has vital impact on the performance
and power consumption, since it greatly influences the number of slow and power
expensive cache misses. For the system development process, the designer must
hence concentrate first on exploring the data transfer and storage to achieve a cost
optimized end product [Catthoor et al. 1998].

At the system level, no detailed information is available about the size of the
memories required for storing data in the alternative realizations of the applica-
tion. To guide the designer and assist in choosing the best solution, estimation
techniques for the storage requirements are needed, very early in the system de-
sign trajectory. For our target classes of data dominant applications the high level
description is typically characterized by large multi-dimensional loop nests and ar-
rays. A straightforward way of estimating the storage requirement is for each array
to multiply the size of its dimensions, and then add together the sizes of the dif-
ferent arrays. This will normally result in a huge overestimate however, since not
all the arrays, and possibly not all parts of one array, are alive at the same time.
In this context an array element is alive from the moment it is written, or pro-
duced, and until it is read for the last time. This last read is said to consume the
element. To achieve a more accurate estimate, we have to take into account these
non-overlapping lifetimes and their resulting opportunity for mapping arrays and
parts of arrays in the same place in memory, the so-called in-place mapping prob-
lem. To what degree it is possible to perform in-place mapping depends heavily on
the order in which the elements in the arrays are produced and consumed. This
is mainly determined by the execution ordering of the loop nests surrounding the
statements accessing the arrays.

At the beginning of the system design process, no information about the execution
order is known, except what is given from the data dependencies between the
statements in the code. As the process progresses, the designer makes decisions
that gradually fix the ordering, until the full execution ordering is known. No exact
memory size can be determined at these stages as long as the execution order is
not fixed. So to steer this process, the best strategy to aid the system designer at
each transformation step appears to come from estimates of the upper and lower
bounds on the storage requirement, given the partially fixed execution ordering.
Even though such bounds are far from trivial to derive, we will show in this paper
that this is both feasible and efficiently achievable within realistic assumptions on
the application code.

After a discussion of previous work in the field, the main ideas behind a novel
storage requirement estimation technique is presented. We then introduce a pro-
totype CAD tool employing these techniques, before we show how it can be used
during design of real life applications.

2. PREVIOUS WORK
2.1 Scalar-Based Estimation

By far the major part of all previous work on storage requirement, has been scalar
based. The number of scalars, also called signals or variables, is then limited,
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and if arrays are treated, they are flattened and each array element is considered
a separate scalar. Using scheduling techniques like the left-edge algorithm, the
lifetime of each scalar is found so that scalars with non-overlapping lifetimes can be
mapped to the same storage unit [Kurdahi and Parker 1987]. Techniques such as
clique partitioning are also exploited to group variables that can be mapped together
[Tseng and Siewiorek 1986]. In [Ohm et al. 1994], a lower bound for the register
count is found without the fixation of a schedule, through the use of As-Soon-As-
Possible and As-Late-As-Possible constraints on the operations. A lower bound on
the register cost can also be found at any stage of the scheduling process using
Force-Directed scheduling [Paulin and Knight 1989]. Integer Linear Programming
techniques are used in [Gebotys and Elmasry 1991] to find the optimal number
of memory locations during a simultaneous scheduling and allocation of functional
units, registers and busses. A thorough introduction to the scalar-based storage
unit estimation can be found in [Gajski et al. 1994]. Common to all scalar based
techniques is that they break down when used for large multi-dimensional arrays.
The problem is NP-hard and its complexity grows exponentially with the number of
scalars. When the multi-dimensional arrays present in the applications of our target
domain are flattened, they result in many thousands or even millions of scalars.

2.2 Estimation Techniques for Multi-Dimensional Arrays

To overcome the shortcomings of the scalar-based techniques, several research teams
have tried to split the arrays into suitable units before or as a part of the estima-
tion. Typically, each instance of array element accessing in the code is treated
separately. Due to the code’s loop structure, large parts of an array can be pro-
duced or consumed by the same code instance. This reduces the number of elements
the estimator must handle compared to the scalar approach.

In [Verbauwhede et al. 1994], a production time axis is created for each array.
This models the relative production and consumption time, or date, of the individ-
ual array accesses. The difference between these two dates equals the number of
array elements produced between them. The maximum difference found for any two
depending instances gives the storage requirement for this array. The total storage
requirement is the sum of the requirements for each array. An Integer Linear Pro-
gramming approach is used to find the date differences. To be able to generate the
production time axis and production and consumption dates, the execution order-
ing has to be fully fixed. Also, since each array is treated separately, only in-place
mapping internally to an array (intra-array in-place) is consider, not the possibility
of mapping arrays in-place of each other (inter-array in-place).

Another approach is taken in [Grun et al. 1998]. Assuming procedural execution
of the code, the data-dependency relations between the array references in the
code are used to find the number of array elements produced or consumed by
each assignment. The storage requirement at the end of a loop equals the storage
requirement at the beginning of the loop, plus the number of elements produced
within the loop, minus the number of elements consumed within the loop. The
upper bound for the occupied memory size within a loop is computed by producing
as many array elements as possible before any elements are consumed. The lower
bound is found with the opposite reasoning. From this, a memory trace of bounding
rectangles as a function of time is found. The total storage requirement equals the
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peak bounding rectangle. If the difference between the upper and lower bounds for
this critical rectangle is too large, better estimates can be achieved by splitting the
corresponding loop into two loops and rerunning the estimation. In the worst-case
situation, a full loop-unrolling is necessary to achieve a satisfactory estimate.

[Zhao and Malik 1999] describes a methodology for so-called exact memory size
estimation for array computation. It is based on live variable analysis and integer
point counting for intersection/union of mappings of parameterized polytopes. In
this context, as well as in our methodology, a polytope is the intersection of a finite
set of half-spaces and may be specified as the set of solutions to a system of linear
inequalities. It is shown that it is only necessary to find the number of live variables
for one statement in each innermost loop nest to get the minimum memory size
estimate. The live variable analysis is performed for each iteration of the loops
however, which makes it computationally hard for large multi-dimensional loop
nests.

In [Ramanujam et al. 2001], a reference window is used for each array in a per-
fectly nested loop. At any point during execution, the window contains array
elements that have already been referenced and will also be referenced in the fu-
ture. These elements are hence stored in local memory. The maximal window size
found gives the memory requirement for the array. The technique assumes a fully
fixed execution ordering. If multiple arrays exists, the maximum reference window
size equals the sum of the windows for individual arrays. Inter-array in-place is
consequently not considered.

In contrast to the methods described so far in this subsection, the storage require-
ment estimation technique presented in [Balasa et al. 1995] does not take execution
ordering into account at all. It starts with an extended data dependency analysis
resulting in a number of non-overlapping basic sets and the dependencies between
them. The basic sets and dependencies are described as polytopes, using linearly
bounded lattices (LBLs) of the form

x=Teit+ulAei>bh

where x € Z™ is the coordinate vector of an m-dimensional array, and i € Z" is the
vector of n loop iterators. The array index function is characterized by T' € Z™*"
and u € Z™, while the polytope defining the set of iterator vectors is characterized
by A € Z?™*™ and b € Z?". The basic set sizes, and the sizes of the dependencies,
are found using an efficient lattice point counting technique. The dependency size is
the number of elements from one basic set that is read while producing the depend-
ing basic set. The total storage requirement is found through a greedy traversal
of the corresponding data flow graph. The maximal combined size of simultane-
ously alive basic sets gives the storage requirement. Since no execution ordering
is taken into account, all elements of a basic set are assumed produced before the
first element is consumed. This gives rise to an overestimate compared to all but
the worst-case ordering.

In summary, all of the previous work on storage requirement entails a fully fixed
execution ordering to be determined prior to the estimation. The only exception
is the last methodology, which allows any ordering not prohibited by data depen-
dencies. None of the approaches permit the designer to specify partial ordering
constraints, which is really essential during the early exploration of the system
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level code transformation. In the next section we will present our new estimation
technique which allows a partially fixed execution ordering.

As will be demonstrated in Section 5, the main usage of storage requirement
estimation, is for optimization of an application’s overall memory size. Examples
of work in the field of memory size optimization through use of in-place mapping
include [Quillere and Rajopadhye 2000] [Lefebvre and Feautrier 1997] [De Greef
et al. 1997]. All of them require a fully fixed execution ordering. Much research
has also gone into estimation and optimization of size, performance and power
consumption of memory hierarchies in cache based systems. Examples of this are
[Chakrabarti 2001] [Kirovski et al. 1999] [Panda et al. 1999]. The parallel compiler
community also has much related work [Wolfe 1996]. Our memory size estimates
can be used by these compilers as additional guidance while comparing alternative
approaches for performance optimization. Further details are outside the scope of
this paper.

3. ESTIMATION WITH PARTIALLY FIXED EXECUTION ORDERING
3.1 Motivation and Context

The new estimation methodology employs the data flow graph generation presented
in [Balasa et al. 1995]. In this paper we mainly focus on data dependency size
estimation however, which can be utilized for most polyhedral dependency descrip-
tions. The main improvement compared to previous methods is the possibility to
avoid overestimates by taking whatever execution ordering information available
into account. Using an estimation methodology that requires a fully fixed ordering
necessitates a full exploration of all alternatives for the unfixed parts. The com-
plexity of investigating for example all loop interchange solutions for a loop nest
without any constraints is NI, where N is the number of dimensions in the loop
nest. For realistic examples, N can be as large as six even if the dimensionalities of
the individual arrays are smaller. Since it is the number of loop dimensions that
determine the complexity, a full exploration is very time consuming and hence not
feasible when the designer needs fast feedback regarding an application’s storage
requirement when the execution ordering is not fully fixed. Instead, our method-
ology presents precise upper and lower bounds to the designer as guidance during
the early high level design trajectory. Throughout the application code there may
be conflicting dependency considerations, so an automatic tool is needed to lead
the designer to a globally efficient solution.

Our algorithm is useful for a large class of applications. Certain restrictions exist
on the code that can be handled in the present version however, some of which
will be alleviated through future work. The main requirements are that the code is
single assignment and has affine array indexes. This is achievable by a good array
data flow analysis preprocessing, see [Feautrier 1991] and [Pugh and Wonnacott
1993]. Also the resulting Dependency Parts, see below, must be orthogonal, or made
orthogonal, as described in [Kjeldsberg et al. 2000b]. When in the sequel the words
upper and lower bounds are used, we mean the bounds after orthogonalization.
The lower bounds may not be factual, since some approximations tend to result in
overestimates so that realizations with lower storage requirements may exist. For
a large class of applications, where the Dependency Parts are already orthogonal,
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for i=0 to 5 {
for j=0to 5 {
for k=0 to 2 {
S.1  A[i][j][k] = f1( input );
2 >=1)4>=2) BN = 2 ALID2 )

Fig. 1. Code example for concept definitions.

iﬁ?&pppu____A(O): iteration

domain of S.1

B(0): iteration
domain of S.2

Dependency Part 60
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elsewhere

_.-¥ Dependency Vector

Dependency
Vector Polytope

Fig. 2. Iteration space and data-flow graph of example in Figure 1.

and when the generation of the best-case and worst-case common iteration space
is possible, both bounds are correct.

Let us take a look at the simple application code example shown in Figure 1.
Two statements, S.1 and S.2, produce elements of two arrays, A and B. Elements
from array A are consumed when elements of array B are produced. This gives rise
to a flow type data dependency between the statements [Banerjee 1988].

The loops around the statements define an iteration space, [Banerjee 1988], as
shown in Figure 2. Each node within this space represents one execution of the
statements inside the loop nest. For our example, at each of these iteration nodes
one A-array element and, when the if clause condition is true, one B-array element is
produced. These nodes also constitute the iteration domains of the two statements,
as indicated by the rectangles A(0) and B(0) in Figure 2. To avoid unnecessarily
complex figures, two-dimensional rectangles are used. All nodes within the two
rectangles are part of the corresponding iteration domains. Figure 2 also shows the
corresponding data-flow graph for the code example in Figure 1. The nodes are the
iteration domains, while the dependencies between them are the branches.

In general not all elements produced by one statement are read by a depending
statement. A Dependency Part (DP) is therefore defined containing the iteration
nodes for which elements are produced that are read by the depending statement.
A Dependency Vector (DV) is drawn from an iteration node in the DP producing
an array element to the iteration node producing the depending element. This
DV spans a Dependency Vector Polytope (DVP) and its dimensions are defined
as Spanning Dimensions (SD). Since the SD normally only comprises a subset of
the iterator space dimensions, the remaining dimensions are denoted Nonspanning
Dimensions (ND). The largest value for each dimension in the DVP is denoted
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1 0 O 0
u 100] ¢ _01 (1) g i _04
DPA(O)—B(O) v =010 ] 0 -1 0 ,7 2 _3
w 001]| |k 0o o0 1 k 0
0 0 -1 —2
1 00 0
u 100]T[é _01 (1) 8 i _01
DVPy)-Bo) |v| = (010 |Jj o —10l 7] 2|22
w 000]| |k o 0 0o k 0
0 0 0 0

Fig. 3. LBL description of DP and DVP for A(0) with respect to B(0) of example in Figure 1.

Spanning Value (SV) of that dimension. For the DVP in Figure 2, i and j are SDs
while £ is ND. Furthermore we have SV; =1 and SV; = 2.

The DP and DVP are important concepts, as they are used to estimate the upper
and lower bounds on the size of a dependency respectively. The following definition
is used for the dependency size.

DEFINITION 3.1. The size of a dependency between two iteration domains equals
the number of iteration nodes visited in the DP before the first depending iteration
node is visited.

Since one array element is produced at each iteration node in the DP, this size equals
the number of array elements produced before the first depending array element is
produced that potentially can be mapped in-place of the first array element. The
DVP will hold the iteration nodes that certainly will be visited before the first
depending iteration node, while the DP will hold the iteration nodes that in the
worst case may be visited. This is discussed in detail in Section 3.4.

The DP and DVP can be represented using an LBL description as shown in Figure
3. The vertical line in the LBLs divides the description into an array index function
and a restriction part. The restricted function for the u index of D Py4()_p(0) can
thus be read as u =i for 0 < i < 4. Note that for comparison with the DP a three-
dimensional LBL is used for the DVP, even though it only has two dimensions, i
and j.

In many cases, the end point of the DV falls outside the DP. This happens when
no overlap exists between the two depending iteration domains. The DVP is then
intersected with the DP.

When a dependency is not uniform, the DVs for different iteration nodes within
its DP can differ in both length and direction. The DVP is then generated using the
extreme DVs as introduced in [Danckaert 2001]. Figure 4 demonstrates the concept
using a small illustrative code example. The different DVs for each individual iter-
ation node are indicated in the left part of the Figure, while the resulting extreme
DV is shown to the right. Section 5.1.1 gives an example of a more complex DVP
generation. Use of the extreme DVs is a simple approach to uniformization suitable
for estimation when a short run time is required to give fast feedback to the de-
signer. The final implementation of an algorithm will often require a linear storage
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for i=0 to 3 {
for j=0to 5 {
S.1  Afi][j] = f1( input );
Sz >0 B = £ A

i i
3

=2

1

0

o =~ N W

01 2 3 4 5 1

Fig. 4. Uniformization using extreme DV.

order to avoid overly complex address generation. As for the overestimates induced
by orthogonalization, the possible overestimates resulting from our uniformization
will then actually give the correct storage requirement. Alternative techniques for
uniformization of affine dependency algorithms are presented in [Shang et al. 1996].
The complexity of these procedures is however much larger.

With the dependency size estimation methodology from [Balasa et al. 1995],
the size of the dependency between S.1 and S.2 in Figure 1 will be the number of
iteration nodes in the full DP, that is 60. This is an overestimate even for the worst-
case ordering since the basic sets are overlapping. Inside this overlap both A-array
elements and B-array elements are produced, and the B-array elements produced
by S.1 can thus be mapped in-place of the A-array elements consumed by S.2.
This overlap should therefore be removed, reducing the dependency size estimate
to 36. An even more accurate estimate can be achieved by also taking available
partially fixed execution ordering into account. The new estimation methodology
presented in this paper is able to do this, producing upper and lower bounds on
the dependency sizes and the overall storage requirement of an application. This
will be discussed in the next section.

3.2 Overall Estimation Strategy

The storage requirement estimation methodology can be divided into four steps as
shown in Figure 5. The first step uses the technique from [Balasa et al. 1995] to
generate a data-flow graph reflecting the data dependencies in the application code.
Any complete polyhedral dependency model can be used however, and work is in
progress to integrate the estimation methodology with the ATOMIUM tool, [IMEC
2003] [Bormans et al. 1999]. The second step places the DPs of the iteration domains
in a common iteration space to enable the global view of the fourth step. Best-
case and worst-case placements may be used to achieve lower and upper bounds
respectively. [Danckaert et al. 2000a; 2000b] describes work that can be utilized for
this step. The third step focuses on the size of individual dependencies between
the iteration domains in the common iteration space. The final step searches for
simultaneously alive dependencies in the common iteration space, and calculates
their maximal combined size.
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Generate data-flow graph reflecting data dependencies in the application code

J
Position DPs in a common iteration space according to their dependencies and
the partially fixed execution ordering

1

Estimate upper and lower bounds on the size of individual dependencies based
on the partially fixed execution ordering

1
Find simultaneously alive dependencies and their maximal combined size
=
Bounds on the application’s storage requirement

Fig. 5. Overall storage requirement estimation strategy.

The remainder of this Section will first give a short description of a simplified
technique for generation of a common iteration space. This is followed by a detailed
introduction to the principles of the third step. Finally, an overview of the last step
is presented. The main objective is to give the reader adequate understanding of
the techniques to follow the presentation of the prototype CAD tool in Section 4.
A more accurate methodology for the third step can be found in [Kjeldsberg et al.
2000a], with further details in [Kjeldsberg et al. 2003]. More information regarding
detection of simultaneously alive dependencies is presented in [Kjeldsberg et al.
2001].

3.3 Generation of Common lteration Space

In the original application code, an algorithm is typically described as a set of
imperfectly nested loops. At different design steps, parts of the execution ordering
of these loops are fixed. The execution ordering may include both the sequence
of separate loop nests, and the order and direction of the loops within nests. To
perform global estimation of the storage requirement, taking into account the overall
limitations and opportunities given by the partial execution ordering, a common
iteration space for the code is needed. A common iteration space can be regarded
as representing one loop nest surrounding the entire, or a given part of the code.
This is similar to the global loop reorganization described in [Danckaert et al.
2000b]. Figure 6 shows a simple example of the steps required for generation of
such a common iteration space. Note that even though it here includes rewriting
the application code, this is not necessary to perform the estimation. The common
iteration space can be generated directly using the PDG model of [Catthoor et al.
1998].

The introduction of the common iteration space opens for an aggressive in-place
mapping which may not be used in the final implementation. The placement of
the DPs in the common iteration space entails certain restrictions on the possible
execution ordering of the still unfixed parts of the code. The sizes of the individual
dependencies will hence be influenced by the placement of their DPs and depending
DPs in the common iteration space. To have realistic upper and lower bounds it
is therefore necessary to generate two common iteration spaces, one with a worst-
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Afi] = ... o
for (j=0; j<=3; j++) Original code
B[j] = f( A[j] );

for (t=0; t<=1; t++)

for (i=0; i<=5; i++)

if (t==0) A[i] = ...

for (t=0; t<=1; t++)

for (i=0; i<=5; i++)
if (t==1) & (i<=3) B[i] = f (A[i]);

Add outer pseudo-dimension
Add/enlarge dimensions and add if-
clauses to enable merging

Merge loops
for (t=0; t<=1; t++)

t
for (i=0; i<=5; i++) { Ao B
if (t==0) A[i] = ... 1 $00. ] ’//DPA
if (t==1) & (i<=3) Bli]= f( A[i] ); |  mHra=—ax ="
} 019999099 :
012345

Optimize placement

for (t=0; t<=1; t++)
for (i=0; i<=5; i++) {
if (t==0) A[i] = ...
}if (t==0) & (i<=3) Bli]= f( A[i] );

Fig. 6. Generation of Common Iteration Space.

case and one with a best-case placement, both taking into account the available
execution ordering and other realistic design constraints. [Danckaert et al. 2000Db]
presents techniques for placement that enable the designer to organize the data
accessing in such a way that aggressive in-place optimization can be employed.
The worst-case placement can be based on a full loop body split, so that each
statement is assigned individual iterator values in the pseudo #-dimension. For the
rest of this paper, optimal iteration spaces are assumed, but the methodologies
presented work equally well on alternative organizations of the iteration space.

3.4 Estimation of Individual Dependencies

Following Definition 3.1, the lower bound (LB) and upper bound (UB) on the
storage requirement of a dependency can be found from the DVP and DP sizes
respectively. As we will now see, these sizes may vary greatly with the chosen
execution ordering. With no execution ordering fixed, the LB and UB can be
estimated from the original DVP and DP. No matter what execution order is chosen
in the end, the iteration nodes of the DVP will always be visited before the first
depending iteration node. Similarly, no more than all iteration nodes, that is the
full DP, can be visited before the first depending iteration node. If overlap exists
between the DP/DVP and the depending iteration nodes, not all of their elements
will be produced before the first depending element that can potentially be mapped
in-place of the first DP/DVP element. The overlap can therefore be removed from
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DP

Upper Bound

DVP

Lower Bound

Fig. 7. DP and DVP and corresponding UB and LB for the dependency between A(0) and B(0)
of example in Figure 1 without any execution ordering fixed.

11

Table I. Main principles for treatment of fixed dimensions.

Fixation starts outermost Fixation starts innermost

SD Big expansion of DVP, small reduc- | Small expansion of DVP, big reduc-
tion of DP: tion of DP:
Expand all unfixed SDs of the DVP to the | If (not last SD): expand the current di-
boundary of the DP. Add all unfixed NDs | mension of the DVP to the boundary of
to the DVP. the DP. Remove from the DP elements
If (no SD fixed so far): remove from the | that for all unfixed SDs have values larger
DP elements that for the current dimen- | than their SV.
sion have values larger than its SV.
FElse: remove elements that will not be
visited from the DP

ND Unchanged DVP, reduced DP: Expanded DVP, unchanged DP:
If (no SD fixed so far): remove the dimen- | If (unfixed SDs still exist): add the di-
sion from the DP mension to the DVP
Else: remove elements that will not be
visited from the DP

the DP and DVP. The DP and DVP in Figure 2 thus give the following estimates
with no execution ordering fixed:

UB = size(DP) - size(D Pyyeriap) = 60 - 24 = 36

LB = size(DVP) - size(DV Pyyeriap) =6-1=15
The UB and LB are shown graphical in Figure 7.

Unless no overlap exists between the DP and the depending iteration nodes,
the bounds found using these simple principles cannot be reached. The detailed
description of a more accurate estimation technique, but which is still based on the
same principles, is given in [Kjeldsberg et al. 2003].

The execution ordering can be fixed through a fixation of dimensions starting with
the innermost or outermost nest levels. SDs and NDs must be treated differently.
Table I summarizes the estimation principles for each of these categories. The main
effects on the DVP and DP are written in bold. If an ND is fixed outermost, only
the DP changes, giving rise to a reduced upper bound and an unchanged lower
bound. A fixation of an ND innermost has the opposite effect, an unchanged upper
bound and an increased lower bound. If an SD is fixed outermost, both DVP and
DP changes, giving rise to a reduced upper bound and an increased lower bound.
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o =~ N W A~ O

Fig. 8. DP and DVP of the dependency between A(0) and B(0) of example in Figure 1 with SD
dimension j fixed innermost.

This is also the result if an SD is fixed innermost. In this last case however, the
change in the DVP only covers the fixed SDs, while the fixation of an SD outermost
effects all unfixed dimensions. The increase in the lower bound is therefore in most
cases much smaller if the SD is fixed innermost. Note that there are many special
cases that Table I does not explain fully, partly covered by the Else clauses. They
are all handled by the more detailed methodology presented in [Kjeldsberg et al.
2003]. The methodology presented there also removes the requirement of fixation
starting at the innermost or outermost nest level.

The main principles will now be demonstrated using the example code from
Figure 1. Assume first that SD j has been fixed at the innermost nest level. The
j dimension of the DVP is then extended to the boundary of the DP since these
iteration nodes will now certainly be visited before the first depending iteration
node. All iteration nodes of the DP with values in the ¢ dimension larger then the
SV; (that is > 1) can be removed, since they are now certainly not visited before the
first depending iteration node. The resulting DP and DVP are given in Figure 8.
For enhanced readability the corresponding UB and LB are not drawn. As before,
they are found through a removal of the overlap with the depending iteration nodes.
The estimated bounds are now:

UB = size(DP) - size(D Ppyeriap) = 24 - 6 = 18

LB = size(DVP) - size(DV Poyeriap) = 8-2 =06
Alternatively, ND k can be fixed innermost. The k dimension is then added to the
DVP, while the DP is unchanged. Figure 9 shows the DP and DVP for this partial
ordering. The estimated bounds are now:

UB = size(DP) - size(D Ppyeriap) = 60 - 24 = 36

LB = size(DVP) - size(DV Poyeriap) = 18 -3 =15

The nonspanning k dimension can instead be fixed at the outermost nest level.
It is then removed from the DP, while the DVP remains unchanged as shown in
Figure 10. The estimated bounds are now:

UB = size(DP) - size(D Ppyeriap) = 20 - 8 = 12
LB = size(DVP) - size(DV Poyeriap) =6-1=15

When one dimension is fixed either innermost or outermost the estimation can

continue similarly for any additionally fixed dimension. Assume for instance that
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Dp

DVP

Fig. 9. DP and DVP of the dependency between A(0) and B(0) of example in Figure 1 with
dimension k fixed innermost.

()

o =~ N W b

Fig. 10. DP and DVP of the dependency between A(0) and B(0) of example in Figure 1 with
dimension k fixed outermost.

after the fixation of the k£ dimension outermost, SD 4 is fixed second outermost.
According to the principle outlined in Table I, all remaining SDs in the DVP, only
jin this example, are extended to the boundary of the DP. This fixation also result
in removal of DP-elements with i dimension values larger than SV;. The resulting
DP and DVP are shown in Figure 11 and the estimated bounds are now:

UB = size(DP) - size(D Poyeriap) =8-2 =06

LB = size(DVP) - size(DV Pyyeriap) = 8-2 =6

For the execution orderings used in the illustrations above, the simple estimation

principles outlined in Table I end up with converging and true upper and lower
bounds. This is however not always the case. [Kjeldsberg et al. 2003] presents
more complex, but still not computationally hard, calculation techniques required
to ensure converging and true bounds. These techniques use a number of guiding
principles that have been derived for the best-case and worst-case ordering of the
unfixed dimensions. If the main goal is to reduce the storage requirement through
optimization of the in-place mapping opportunity, SDs should for example be fixed
innermost while NDs are fixed outermost. More complex mathematical reasoning
lies behind similar rules for the internal ordering among SDs. The best case and
worst-case execution orderings found with these guiding principles are then used to
calculate the lower and upper bounds on the dependency’s storage requirement re-
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Fig. 11. DP and DVP for the dependency between A(0) and B(0) of example in Figure 1 with
dimension k fixed outermost and 1 fixed second outermost.

spectively. When a few major dependencies determine the total storage requirement
of an application, the guiding principles can also be used directly to determine the
optimal execution ordering. For the more general case with multiple and possibly
contending optimal orderings, an automated tool based on the estimation results
is required. Such a tool will be presented in Section 4. The details and proofs of
the guiding principles can be found in [Kjeldsberg 2001]. They are not the main
focus of this paper however. More information will be presented in a future journal
submission.

3.5 Estimation of global storage requirement

After having found the upper and lower bounds on the size of each dependency in
the common iteration space, it is necessary to detect which of the dependencies that
are alive simultaneously. Their combined size gives the current storage requirement
at any point during the execution of the application.

DEFINITION 3.2. The mazximal combined size of simultaneously alive dependen-
cies over the lifetime of an application, gives the total storage requirement of the
application.

Two dependencies can potentially be alive simultaneously if their DPs overlap in
one or more dimensions in the common iteration space. Depending on whether the
overlap occurs only for NDs, for a subset of the dimensions including at least one
SD, or for all dimensions, they will alternate in being alive, be alive simultaneously
for certain execution orderings, or be alive simultaneously regardless of the chosen
execution ordering. Similar reasoning can be made for groups of multiple depen-
dencies. The estimation methodology uses a two-step procedure. First, groups of
potentially simultaneously alive dependencies are detected, followed by an inspec-
tion to reveal which dependencies that are actually simultaneously alive for a given
partially fixed execution ordering. When multiple dependencies cover the same ar-
ray elements, this is taken into account during the calculation of the combined size
of the dependencies found to be alive simultaneously. Details regarding this part of
the methodology are presented in [Kjeldsberg et al. 2001]. It will not be elaborated
further in this paper.
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4. PROTOTYPE TOOL FOR STORAGE REQUIREMENT ESTIMATION AND OP-
TIMIZATION

A prototype CAD tool, STOREQ), for STOrage REQuirement estimation and op-
timization, has been developed to prove the feasibility and usability of the method-
ology. The current version has been developed using MATLAB [The Math Works
Inc. 1999], and must be run on the MATLAB platform. The plans for future work
include a tighter integration of the STOREQ functionality into the ATOMIUM tool
set on top of the ATOMIUM Polyhedral Dependency Graph kernel. A first proto-
type of an interface between ATOMIUM and STOREQ has already been developed
at IMEC. This section gives a short description of the functionality of the tool, and
presents some experimental results demonstrating the run time complexity. Section
5 gives examples of how the tool has been used during data transfer and storage
exploration on real life applications.

4.1 STOREQ Functionality

The STOREQ program performs storage requirement estimation and optimization
given a polyhedral description of a data intensive application, and a possibly par-
tially fixed execution ordering. The implemented methodologies are based on the
principles presented in Section 3, but also include the more advanced calculation
technique presented in [Kjeldsberg et al. 2003].

The main input to STOREQ is two matrixes defined using a simple text format.
One matrix defines the polytopes in the common iteration space in which the state-
ments of the application produce array elements. That is, their iteration domains.
This matrix is denoted the Set Of Statement Polytopes (SetOfSP). The second ma-
trix defines the dependencies between these polytopes and is denoted the Set Of
Dependencies (SetOfDep). Figure 12 gives examples of the format of these matrixes.
In addition, two more input matrixes are automatically generated by the program,
which can afterwards be changed by the user before parts of STOREQ is rerun.
These matrixes are the Fized Dimensions (FD) matrix and the Ignore Dependency
(IgnoreDep) matrix. The main output from STOREQ is formed by two matrixes.
One presents the estimated upper and lower bounds on the storage requirement for
each dependency. This matrix is denoted the Set Of Bounds (SetOfBounds). The
second matrix presents the optimal ordering of dimensions for each dependency as
found by the program, and is denoted the Set Of Fized Dimensions Best Case Or-
dering (SetOfFDBC). In addition, the program provides guiding hints to the user
regarding how to organize the dimensions legally for negative dependencies, and a
suggestion for the next FD to use.

As can be seen from the input and output description, the estimation part of the
current tool version focuses on individual dependencies. Detection of simultane-
ously alive dependencies is not included and a total storage requirement estimate
is not produced. The optimization part of the tool has a more global view. When
the suggestion for the next FD to use is selected, all dependencies are taken into
account in the following way:

— Detect dimensions that are NDs for all dependencies. These dimensions should
be fixed outermost.
— For each dimension, count the number of dependencies for which it is an SD.
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for (i=0; i<=T; i++)
for (j=0; j<=7; j++) {
Afi][j] = f1( in );
if (i >= 1) Cli[j][k] = B[] = f2( A[i-1][i] );

}
SetOfSP = [0-7 0-T; ...
1-7 0-7];
SetOfDep = [121 0-1 0-0];

Fig. 12. Reference application code and input matrices for STOREQ tool.

The dimension(s) with the highest numbers should be fixed innermost.

— For each nest level starting innermost, find the dimension that is an SD for most
dependencies at the current or at lower nest levels, and that has not been fixed
so far. This dimension should be fixed at the current nest level.

It is possible for the designer to interactively exclude dependencies from the search
for the next FD to use. If, for example, the code is decided split into two loop nests,
the ordering of each should be optimized without considering the dependencies of
the other. This is done using the IgnoreDep matrix, where the designer specifies
the dependencies to be ignored.

The execution of STOREQ is split into two parts. First, an initialization script
is run that reads the input and detects negative dependencies in the code. The FD
and IgnoreDep matrixes are also initialized. This is followed by the main run of
STOREQ that performs the actual estimation. The main run can then be repeated
with alternative combinations of dimensions fixed in the FD and/or ignored using
IgnoreDep. As shown in Section 5, this approach guides the designer towards an
optimized end result. More work is still needed to include the remainder of the
estimation and optimization methodology into the STOREQ tool.

4.2 Run Time Experiments

A number of experiments have been performed to determine the run time com-
plexity of the STOREQ tool. The FLOPS function and the CPUTIME function
of MATLAB are used to evaluate the run time complexity. FLOPS is a floating
point operation count returning the cumulative number of floating point operations.
CPUTIME returns the CPU time in seconds that has been used by MATLAB since
MATLAB was started. A very simple application that is partly parameterizable is
used as reference for the more complex experiments. The common iteration space
of this application has two dimensions (each running from 0 to 7), one Spanning
Dimension (SD), and no fixed dimensions. The application code and the corre-
sponding input matrixes are shown in Figure 12. Each row of SetOfSP defines the
iteration domain (or statement polytope) of one statement. Each row of SetOfDep
defines one dependency where the first two columns define between which two rows
in SetOfSP the dependency runs. The third column defines the number of De-
pendency Vectors (DVs) in the dependency, while the remaining columns contain
the actual DVs. More than one DV is needed to represent all extreme DVs if the
dependency is non-uniform.
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Table II lists the FLOPS and CPUTIME results for a number of different experi-
ments performed on a 200MHz HP K-370 machine with PA-RISK 8200 processors,
4MB cache, and 3GB RAM. The columns of the table should be understood as
follows:

#Dim is the number of dimensions in the common iteration space, and for these
experiments also the number of dimensions in each dependency.

Max iter value is the maximal iterator value for the dimensions. It thus defines the
size of the iteration space.

#Dep is the number of dependencies in the iteration space.

Length DV is the length of the Dependency Vector (DV) of the dependencies.
#SD is the number of Spanning Dimensions (SDs) in the dependencies.

#FD is the number of fixed dimensions.

#FLOPS / CPUTIME[s] Init is the number of flops and the cpu time reported by
MATLAB while running the initialization part of STOREQ.

#FLOPS / CPUTIME][s] Run is the number of flops and the cpu time reported by
MATLAB while running the main body of STOREQ.

A number of interesting results can be read from Table II. Experiment c) shows
that the run time is unaffected by the size of the common iteration space. This
is important, since the common iteration space may be very large, especially for
multi-media applications. Experiment e) shows that the length of the DV does not
influence the run time either, while b) shows that the runtime is less than linearly
dependent on the number of dimensions. A linear dependency would be expected
in b), but due to overhead not related to the number of dimensions, this is not
s0. As experiment f) shows, the run time is more affected by the number of SDs
since they require a more complex calculation for their internal ordering so that
the non-dimensional overhead is less dominant. Experiment d) shows that the run
time is only linearly dependent on the number of dependencies in the common
iteration space. This is also the case when the number of SDs is increased, as
illustrated in Experiment f). Experiment h) and j) demonstrate how the number of
fixed dimensions is important since it requires a somewhat more complex handling
than unfixed dimensions. The complexity is still polynomial with respect to the
combination of dependencies, SDs and fixed dimensions. This is important to avoid
an explosion of the time complexity as the number of dependencies increase.

In general, the experiments show run times in accordance with theoretical time
complexity for the estimation methodology discussed in [Kjeldsberg 2001]. The
actual cpu time used for each experiment is not important, except for comparisons
between the examples. Even though all experiments already have cpu times of less
than one second, these times will be even further decreased when a stand alone and
optimized final tool is built instead of using a prototype that runs on the MATLAB
platform. With these runtimes the estimation techniques can easily be included
in the core of other optimization tools. This is crucial because many system-level
transformation steering engines require such early estimates on bounds. See e.g.
[Catthoor et al. 1998] for examples of memory related optimization steps.
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Table II. Run time complexity of STOREQ tool.

Max #FLOPS/  #FLOPS/
iter Length CPUTIME[s] CPUTIME][s]
#Dim  value #Dep DV #SD #FD Init Run

a) 2 7 1 1 1 0 27/0.00 213/0.03
b) 6 7 1 1 1 0 79/0.00 425/0.04
<) 2 1023 1 1 1 0 27/0.00 213/0.03
d) 2 7 10 1 1 0 261/0.01 2121/0.23
e) 2 7 1 3 1 0 27/0.00 213/0.03
f) 6 7 1 1 4 0 79/0.00 638/0.05
g) 2 7 1 1 1 2 27/0.00 277/0.05
h) 6 7 1 1 4 6 79/0.00 825/0.09
i) 6 7 10 1 4 0 781/0.01 6371/0.37
i) 6 7 10 1 4 6 781/0.01 8511/0.84

5. ESTIMATION ON REAL LIFE APPLICATION DEMONSTRATORS

In this Section the usefulness and feasibility of the estimation methodology and the
STOREQ CAD tool is demonstrated using real life applications.

5.1 Cavity detection algorithm

5.1.1 Code description. The estimation methodology has been applied to a cav-
ity detection algorithm used for detection of cavity perimeters in medical imaging.
Figure 13 shows the important parts of the code. A pseudo t dimension is inserted
to generate a common iteration space. As a starting point, the pseudo ¢ dimension
is defined so that statements placed in separate loop nests in the original code are
executed sequentially. The corresponding data flow graph is given in Figure 14.
Each node depicts the iteration domain (ID) of a statement (also called statement
polytope). The edges represent dependencies between the IDs. The dependencies
are enumerated to ease the following discussion. The vertical lines divide the IDs
into groups that are executed at different iterator values of the ¢ dimension. The
t dimension opens for transformations such as loop merging. The storage require-
ment of the transformed code with alternative placements and orderings can thus
be compared to the storage requirement of the original ordering. In this example,
the focus is on parts with major impact on the storage requirement, so boundary
conditions are ignored. It is assumed that the input image can be presented at the
input of the application in any order.

The STOREQ CAD tool has been used extensively during the exploration of the
cavity detection algorithm. As allowed by the tool, some of the dependencies in the
code are non-uniform. Up to four extreme DVs are needed for their description.
Statement S.3 has for example a non-uniform accessing of array gauss_x_image.
Depending on the k value, an array element is accessed that was produced at an
iteration point with a y value smaller, equal, or larger than the current y value.
This gives rise to two extreme DVs, one in each direction along the y dimension
and with different lengths in the k dimension. Furthermore, a number of nega-
tive dependencies exist in the code. Table III summarizes the negative dimensions,
the SDs, and the NDs for each DV of the dependencies. This information is au-
tomatically dumped from the STOREQ tool. The dependency enumeration is in
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#tdefine GB 1
#define TOT (2*GB)+1
#define NB 8
##define N 480
#define M 640
int x_offset[NB]={1,1,1,0,0,-1,-1,-1};
int y_offset[NB]={1,0,-1,1,-1,1,0,-1};
for (t=0; t<=5; t++)/* Dimension 1 */
for (x=0; x<=N-1; x++) /* Dimension 2 */
for (y=0; y<=M-1; y++) /* Dimension 3 */
for (k=0; k<=NB-1; k++) { /* Dimension 4 */

if (t==0 & x>=GB & x<=N-1-GB & y>=GB & y<=M-1-GB & k<=TOT-1)

S.1 gauss_x_compute[x][y][k+1] = fl(gauss_x_compute[x][y][k], image_in[x+k-1][y]);

if (t==0 & k==TOT-1 & x>=GB & x<=N-1-GB & y>=GB & y<=M-1-GB)
S.2 gauss_x_image[x][y] = f2(gauss_x_compute[x][y][TOT]);

if (t==1 & x>=GB & x<=N-1-GB & y>=GB & y<=M-1-GB & k<=TOT-1)
S.3 gauss_xy_compute[x][y][k+1] = £3(gauss_xy_compute[x][y][k],
gauss_x_image[x]|[y+k-1]);

if (t==1 & k==TOT-1 & x>=GB & x<=N-1-GB & y>=GB & y<=M-1-GB)
S.4 gauss_xy-image[x][y] = f4(gauss_xy_compute[x][y][TOT]);

if (t==2 & x>=GB & x<=N-1-GB & y>=GB & y<=M-1-GB)
S.5 maxdiff_compute[x][y][k+1] = f5(gauss_xy_image[x+x_offset[k]][y+y_offset[k]],
gauss_xy-image[x|[y], maxdiff_compute[x][y][k]);

if (t==2 & k==NB-1 & x>=GB & x<=N-1-GB & y>=GB & y<=M-1-GB)
S.6 comp_edge_image[x][y] = f6(maxdiff_compute[x][y][NB]);

if (t==3 & x>=GB & x<=N-1-GB & y>=GB & y<=M-1-GB)
S.7 out_compute[x][y][k+1] = f7(comp_edge_image[x+x_offset[k]|[y+y -offset[k]],
comp_edge_image[x][y], out_compute[x][y][k]);

if (t==3 & k==NB-1 & x>=GB & x<=N-1-GB & y>=GB & y<=M-1-GB)
S.8 image_out[x][y] = f8(out_compute[x][y][NB]);

Fig. 13. Code for Cavity Detection example.

Fig. 14. Data-flow graph for Cavity Detection example.
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Table ITI. NDs (indicated with - ), SDs, and negative dimensions (underlined)
for each DV of the dependencies in the cavity detection code.
DV1 DV2 DV3 DV4

-t -x-y k
-t -x -y -k
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accordance with Figure 14.

5.1.2  Storage requirement estimation and optimization. It will now be shown
how the STOREQ tool can be used to rearrange the common loop nest and to
determine an execution ordering that gives an optimized storage requirement for
the application. The first run of STOREQ without any ordering fixed shows that
all dependencies that do not cross a vertical #line in Figure 14, has the k¥ dimension
placed innermost in its optimal ordering. This is due to the fact that all other
dimensions are NDs for these dependencies. They should hence be fixed outside
the k dimension according to the guiding principles outlined in the last paragraph
of Section 3.4.

For dependencies with ¢ as an SD, that is all dependencies crossing a t-line in
Figure 14, the upper and lower bounds converge at the previous upper bound
if ¢ is fixed outermost. This is again in accordance with the guiding principles
which indicate a large penalty on placing SDs outermost. Due to the loop splitting
caused by the ¢t dimension, none of these dependencies is alive simultaneously if ¢
is fixed outermost. Their individual sizes are hence determining the overall storage
requirement. Since the t dimension is an artifical dimension used for generation
of a common loop nest, it must always be fixed outermost. To reduce the storage
requirement, the common iteration space must therefore be rearranged so that the
dependencies do not have ¢ as an SD (do not cross a #line). The removal of the
t dimension from the set of SDs for dependencies corresponds to a loop merging.
This may cause dependencies to be alive simultaneously, so that their combined
sizes determine the global storage requirement.

The first objective is to reposition statement S.3 in the common iteration space so
that the ¢ dimension becomes an ND for dependency 3. This corresponds to a loop
merging between the first and second loop nest in the original code. Dependency
3 has two extreme DVs, as seen in Table III. Employing techniques from the Data
Transfer and Storage Exploration methodology formalized in [Catthoor et al. 1998],
it can be found that a legal loop merging can be performed if the y dimension is
fixed outside the k dimension in the merged loop nest. In addition, the ID of S.3
must be moved one iteration node up along the y dimension to make it non-negative
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if(t==0 & x>=GB & x<=N-1-GB & y>=GB+1 & y<=M-1-GB+1 &
k<=TOT-1)
S.3 gauss_xy_compute[x][y-1][k+1] = f3(gauss_xy_compute[x][y-1][k],
gauss_x_image[x][y-1+k-1]);

Fig. 15. Statement S.3 after transformation.

Table IV. Estimated dependency sizes resulting from alternative transformations (N =
480, M = 640). UB = LB where only one number is reported.
Dep. 3 Dep. 7 Dep. 11 Combined

a) Original code (FD = [1 X X X]) 304964 304964 304964 304964

b) y positive (FD = [1 3 2 4]) 956 1435 1435 3826

¢)  x positive (FD = [1 2 3 4]) 2 1915 1915 3832
No neg. dim. (FD = [L X X 4]) _ 2/956  959/1279 959/1279  1920/3514

d) No neg. dim. (FD = [1 3 2 4]) 956 959 959 2874

e) No neg. dim. (FD = [1 2 3 4)) 2 1279 1279 2560

in DV2 of dependency 3. A form of skewing [Kulkarni and Stumm 1993] is used,
and the corresponding statement after the move is given in Figure 15. Running
STOREQ reveals that the lower bound of dependency 3 is now increased from 1 to
2 while the upper bound is reduced from 304964 to 956 since the DP of S.2 and its
depending iteration nodes are now partially overlapping.

The remaining dependencies with ¢ as SD are dependencies 6, 7, 10, and 11. A
number of transformations exist that fulfills the requirements of a legal full loop
merging. Each of these has different effects on the size of these and other depen-
dencies. The STOREQ tool has been used to evaluate the global consequences of a
number of these alternative transformations. In addition to fixation of dimensions
in a given order in the merged loop nest, the IDs have been repositioned through
skewing in a similar way as discussed above. Table IV presents the STOREQ esti-
mation results for dependencies 3, 7, and 11. The elements carried by dependency
6 (10) is a subset of those carried by dependency 7 (11), so only dependency 7 (11)
needs to be included in the combined size. Each row shows the estimated storage
requirement for alternative legal placements and execution orderings in this new
common iteration space. The storage requirement of the original code without loop
merging is shown for comparison in the first row. Row e) holds the globally best
solution. It has a storage requirement over two orders of magnitude lower than the
original solution, and substantially lower than the other alternatives.

If the same experiment is performed using a different image format, for instance
the panoramic format of the Advanced Photo System, the conclusion turns out to be
somewhat different. The previously best solution is now second to worst as shown
in Table V and Figure 16. The storage required for buffering full image lines along
the y dimension for dependency 7 and 11 are now larger than that of buffering full
image lines along the z dimension for dependency 3. These somewhat surprising
results demonstrate how important the storage requirement estimation tool is for
the optimization of the memory usage.
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Table V. Estimated dependency sizes resulting from alternative transformations for an-
other image size (N = 480, M = 1380). UB = LB where only one number is reported.

Dep. 3 Dep. 7 Dep. 11 Combined

a) Original code (FD = [1 X X X]) 658684 658684 658684 658684
b) y positive (FD = [1 3 2 4]) 956 1435 1435 3826
c) x positive (FD = [1 2 3 4]) 2 4135 4135 8272
No neg. dim. (FD = [1 X X 4]) 2/956 959/2759  959/2759  1920/6474
d) No neg. dim. (FD = [1 3 2 4]) 956 959 959 2874
e) No neg. dim. (FD = [1 2 3 4]) 2 2759 2759 5520
A
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Fig. 16. Combined storage requirement for alternative cavity detection implementations. Nor-
malized to best solution for each image size. Transformations as in Table V.

5.2 MPEG-4 motion estimation kernel

MPEG-4 is a standard from the Moving Picture Ezperts Group for the format of
multi-media data-streams in which audio and video objects can be used and pre-
sented in a highly flexible manner [The ISO/IEC Moving Picture Experts Group
2003; Sikora 1997]. An important part of the coding of this data-stream is the mo-
tion estimation of moving objects. See [Brockmeyer et al. 1999] for a more detailed
description of the motion estimation part of the standard. Figure 17 summarizes
the estimation results found using the STOREQ tool during the early steps of the
design trajectory. More details can be found in [Kjeldsberg et al. 2001].

The leftmost column shows the combined declared size of the two most important
arrays in this part of the code. This is the memory size (262400) the designer would
have to assume if no estimation and optimization tools were available. The next
column shows the result found using the estimation technique described in [Balasa
et al. 1995] (45296). This result will be the same independently of the execution
ordering. Finally the columns marked a) through e) show the size estimates found
for a number of partially fixed execution orderings using the methodology presented
in this paper. Both results for the combined size of individual dependencies and the
size of simultaneously alive dependencies are reported. With no execution ordering
fixed, the UB on the combined size of individual dependencies is 51457 while the
simultaneously alive dependencies have an UB on the combined size of 15616. This
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Fig. 17. Estimation results for MPEG-4 motion estimation using various techniques and partially
fixed execution orderings. a) No ordering, b) y_p outermost, c) y_s outermost, d) z_s second
outermost, €) y_p third outermost (fully fixed).

shows the importance of both steps in the estimation methodology. In Figure 17 b)
one dimension is fixed outermost while the remaining dimensions are still unfixed.
This results in a decrease in the upper bound (combined size 1280) and an increase
in the lower bound (combined size 1025) compared to the fully unfixed ordering in
a). In c) an alternative dimension is fixed outermost. This results in a much larger
decrease in the upper bound (combined size 736) while the increase in the lower
bound is much smaller (combined size 257). Even with such limited information
available it is possible for the designer to conclude that the outer dimension used
in ¢) is better than the one used in b). Using the guiding principles and feedback
from the estimation tool, the designer is finally able to reach a storage requirement
of 257 when the full execution ordering is fixed.

6. CONCLUSION

We have presented a storage requirement estimation methodology to be used dur-
ing the early system design steps. The execution ordering is at this point typically
partially fixed, and this is taken into account to produce upper and lower bounds on
the storage requirement of the final implementation. The methodology is divided
into four steps. In the first step, a data-flow graph is generated that reflects the
data dependencies in the application code. The second step places the polyhedral
descriptions of the array accesses and their dependencies in a so-called common
iteration space. The third step estimates the upper and lower bounds on the stor-
age requirement of individual data dependencies in the code, taking into account
the available execution ordering. As the execution ordering is gradually fixed, the
upper and lower bounds on the data dependencies converge. This is a very useful
and unique property of the methodology. Finally, simultaneously alive data depen-
dencies are detected. Their maximal combined size at any time during execution
equals the total storage requirement of the application. A new prototype CAD tool
has been presented that includes major parts of the storage requirement estimation
and optimization methodology. Using manually generated and real life design ex-
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amples the tool proves the feasibility of the techniques and in particular shows that
run times on computers will be short, in the order of seconds even for substantial
applications.
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