
IMEM: An object-oriented memory- and interface modelling
approach for real-time video processing systems

Benny Thörnberg, Håkan Norell and Mattias O'Nils

Mid Sweden University, Dept. of Information Technology and Media, Sweden
Phone: +46 60 148600, E-mail:{bentho|hakan.norell|mattias}@itm.mh.se

Abstract
Most operations invoked in video processing systems are neighbourhood oriented. For a video system
designer, this limited spatio-temporal collection of pixels represents a natural abstraction. In this
paper, we present a basic set of object-oriented design entities. Entities, which can be combined to
capture an interface- and memory model at a conceptual level, with the neighbourhood as an
abstraction. These design entities, called IMEM, are implemented as an extension to SystemC. IMEM
supports conceptual modelling that excludes implementation details and has explicit data dependency
built-in to the model. This makes IMEM a very efficient starting point for design-space exploration
and system synthesis. A spatio-temporal noise-reduction filter is selected as a test-vehicle within a
case study. This filter is captured using both IMEM and a standard SystemC modelling-style. The
simulation performance and the modelling efficiency are compared. This comparison shows that
IMEM is about 50% more modelling efficient than a standard SystemC modelling-style. This
increased efficiency comes to the cost of a 23% increase in simulation time.

Keywords: Interface- and memory modelling, SystemC, video systems, neighbourhood,C++

1 INTRODUCTION
Typical image processing operations [5] such as convolution, histogram, spatial and grey-level
transforms, erosion, dilation and component labelling are all 2-D neighbourhood oriented.
Consequently spatio-temporal Video Processing Systems (VPS) will operate on a 3-D neighbourhood
[1][10], thus increasing the system complexity. From a VPS designer’s point of view, the today’s
specification methods lacks in abstraction. The stream oriented abstraction chosen for the PHIDEO
system [4] does not reveal the neighbourhood that naturally is common for most VPS operations.
Nested loops, such as in a DFL-specification [8], need processing in order to analyse the data
dependency between neighbourhood pixels. However, this analysis does not clearly separate the
spatial and temporal mapping from the functional mapping of a video processing algorithm. VPS
specifications written as nested loops define how the neighbourhood slides within a spatial domain.
This is implementation related information which is an undesirable input during early design
exploration.
Real-time video processing systems are data dominated. Typically the design bottleneck will be the
memory data transfers maintaining a spatio-temporal neighbourhood. Another closely related and also
critical design parameter is the large amount of background memory and the power dissipation coming
from the high-speed accesses. These critical parameters have been addressed in [11] and an
implementation using a memory hierarchy to overcome the memory access bottlenecks has been
presented by Oelmann et al. [12]. Wuytack et al. [6] presents a more general methodology, where data
reuse exploration is done by introducing application specific cache memory hierarchies. Applied on
realistic VPS applications, the system design exploration tool ATOMIUM has enabled power
reduction of about 90% [7]. ATOMIUM is based on both loop transformations and memory
organisation decisions. Typically this exploration is done early in the design process. The ATOMIUM
design entry is a DFL-specification [8], which needs additional profiling in order to extract inter-pixel
and inter-frame data dependencies. The evolution of object-oriented specification methods based on
class libraries has made language extensions possible to implement without having to update the

compilers or simulators. Our previous research [13] indicates that SystemC [2] is a good candidate for
modelling VPS.
Although some research has been made in the area of memory modelling and VPS, up until now, no
research has shown the potential of combining a video designer friendly neighbourhood abstraction,
conceptual modelling and early design space exploration methods into one homogeneous C++ system
design environment. An environment that will take a VPS all the way from specification down to
implementation. The reduction of time to market and the implementation optimisation serve as
motivation for this and future research in this area.
This paper presents an object-oriented approach to conceptual memory- and interface modelling,
called IMEM, that targets real-time VPS. Basic modelling entities such as input and output video
stream-ports, frames, frame buffers and sliding bodies, provide the VPS designer with a specification
method, that can easily capture stream ports, spatial and temporal mappings of video processing
algorithms. This conceptual-level modelling excludes implementation details and provides the
designer with means for explicit data-dependency modelling. Consequently, no additional analysis is
needed to extract the data dependency, as in the case of nested loops. This will of course simplify the
implementation of design space exploration methods. The entities are implemented in a SystemC
class-library-extension and can be simulated together with standard SystemC modules [2]. The
implementation of methods for early design exploration using loop transformations, data reuse
analysis and memory hierarchy mappings is left for future research and is no longer considered in this
paper.
The same test vehicle, a spatio-temporal median video-filter, as used in the SystemC-Ocapi
comparison [13], is used to compare the simulation performance and modelling efficiency for both a
standard SystemC modelling-style and using IMEM.
The rest of this paper is organised as follows. Section 2 explains how several IMEM modules can be
combined into a signal flow graph in order to capture a complex real-time video processing system.
Section 3 defines the basic design entities that can be combined to capture a memory and interface
model. Section 4 explains how the basic entities can be combined using the test vehicle as an example.
Section 5 summarises the results derived from a comparison of simulation performance and modelling
efficiency. Finally section 6 concludes this paper.

2 IMEM MODELLING
Figure 1 shows three IMEM modules, two input- and two output video streamers linked together in a
signal flow graph. The implementation of the connectivity for the simulation model for all these
modules conform with the semantics of the Remote Procedure Call that comes with the SystemC
Master-Slave Communication library [3]. The principles for denoting concurrent and slave processes
in Figure 1, also conform with [3]. The functionality of each single IMEM module is defined
according to the rules defined in section 3.

Istream 7
File: in2.avi

Ostream_R 4
 File: out1.avi

Clk

Istream 6
File: in1.avi

IMEM_R module 1

IMEM module 2 Ostream 5
 File: out2.avi

Clk

Repeater port

IMEM module 3

Repeater port

Ch1

Ch2

Ch3

Ch4

Ch5

Figure 1. Simulator implementation signal flow graph with IMEM modules.
There exist two versions of an IMEM module, IMEM and IMEM_R. The latter has a repeater port that
is used when one output video stream is feeding data to several input video master ports, thus it is used
to model parallel connectivity. This mechanism allows IMEM module 2 in Figure 1 to access both
input streaming modules the same way module 1 can. IMEM modules 2 and 3 are an example how

two modules can be connected in series. The output streamer module has also an optional repeater
port. The inter-module communication is based on an abstract protocol that provides the necessary
arbitration of multi-port connections. This way, a single channel and a single port, can carry several
inter-connecting video streams. The signal flow graph depicted in Figure 1 corresponds to the source
code shown in Figure 2. The source code is described using the line numbers that are shown to the left
in Figure 2. Line 3 instantiate the channels used for inter-module communication. The channels
transfer vtoken<int>, which is a structured data type, carrying video data of type int and the abstract
interconnecting protocol. Line 7 to 21 instantiate all modules. Every module is assigned its own
unique module number. Line 25 to 36 connects module input ports, output ports and repeater ports
together through channels. Line 42 to 46 initiates interconnecting video streams and 38 to 41,
input/output streams assigned to disc files for simulation. This connectivity mechanism is important in
order to support IP-component encapsulation, that is, the functionality of a single video processing
operation can be defined without knowing its external context.

 // Links

sc_link_mp<vtoken<int> > ch1,ch2,ch3,ch4,ch5; // Channels with abstract protocol vtoken<int>

// Component instantiation

ovstream_r vout4("Video_out1");
vout4 == 4;
ovstream vout5("Video_out2");
vout5 == 5;
ivstream vin6("Video_in1");
vin6 == 6;
ivstream vin7("Video_in2");
vin7 == 7;

op1<int> operation1("Operation1"); // Video processing operation 1
op1 == 1;
op2<int> operation2("Operation2"); // Video processing operation 2
op2 == 2;
op3<int> operation3("Operation3"); // Video processing operation 3
op3 == 3;

// Connectivity description

vin6.ovport(ch1); // Channel 1 connects vin7 out, vin6 out and op1 input
vin7.ovport(ch1);
op1.ivport(ch1);
op2.ivport(ch2); // Channel 2 connects op1 repeater to op2 input
op1.rport(ch2);
op2.ovport(ch4); // Channel 4 connects op2 out, op3 in and vout repeater
op3.ivport(ch4);
vout4.rport(ch4);
vout4.ivport(ch3); // Channel 3 connects op1 output to vout in
op1.vout(ch3);
vout5.ivport(ch5); // Channel 4 connects op3 output to vout5 in
op3.ovport(ch5);

vout4.initStream(1,1,&ovideo1,NON_INTERLACED); // Op1, stream 1, is source for output stream ovideo1
vout5.initStream(3,1,&ovideo2,NON_INTERLACED); // Op3, stream 1, is source for output stream ovideo2
vin6.initStream(1,&ivideo1,NON_INTERLACED); // Istreamer 6, has ivideo1 as source for stream 1
vin7.initStream(1,&ivideo2,NON_INTERLACED); // Istreamer 7, has ivideo2 as source for stream 1
op1.initStream(1,6,1); // Istreamer 6, stream 1, is source for op1 input stream 1
op1.initStream(2,7,1); // Istreamer 7, stream 1, is source for op1 input stream 2
op2.initStream(1,7,1); // Istreamer 7, stream 1, is source for op2 input stream 1
op3.initStream(1,2,1); // Op2, stream 1, is source for op3 input stream 1
op3.initStream(2,1,1); // OP1, stream 1, is source for op3 input stream 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Figure 2. IMEM source-code.

3 IMEM module specification
An IMEM module specification typically specifies one video operation such as convolution, gray-
scale transformation, segmentation or morphological operations such as open and close [5]. All these
algorithms are neighbourhood oriented and can be divided into a spatio-temporal and a functional

mapping. The functional mapping specifies how one output pixel is determined given a certain
neighbourhood, that is, the description of the method that calculates the output pixel from a 3-
dimensional collection of pixels. The spatio-temporal mapping, on the other hand, is a specification of
that 3-dimensional neighbourhood and the spatial domain it is maintained on. An IMEM specification
also specifies the input- and output video streams that interface the video processing algorithm within
the same module.

3.1 Interface- and memory modelling using design entities
The IMEM UML class-diagram shown in Figure 3 shows how IMEM design entities can be
combined, in order to describe interfaces and spatio-temporal mapping of a video processing
algorithm.

1..*
0..1

IM SLIDING BODY(syncMode, syncSource)

IM IVPORT(index,videoMode,noOfReads,noOfWrites)

IM LAYER(index,semantics)

IM_IMOD(operation)

IM LINE(row,left,right)

IM FRAME(noOfRows,noOfColumns,syncRow,syncColumn)

IM OVPORT(index,videoMode)

IM BUFFER(noOfFrames) IM FRAME(noOfRows,noOfColumns)

IM LAYER(index,semantics)

1
1..*

1
1..*

1..*
0..1

1..*
1

1..*
1

1..*
1..*

1..*
1..*

1..*
1..*

IM BUFFER(noOfFrames)

1
1

imod

SystemC module

IM BODY(syncMode, syncSource)

Figure 3. UML class-diagram of IMEM modelling-constructs.

IM_SLIDING_BODY has two parameters, syncMode and syncSource. syncMode can be set to either
FREE_RUN or SYNC, depending on if the body and the output streams are synchronised with any of
the input streams. If set to SYNC, syncSource can have the stream index of any input stream.
IM_SLIDING_BODY inherits some of its behaviour from IM_BODY. An IM_SLIDING_BODY is
owned by an IM_IMOD(operation) template class, which is uniquely defined for each video
processing operation. Imod is the template class derived from a SystemC module. IM_IVPORT
corresponds to an input video stream and have the parameters index, videoMode, noOfReads and
noOfWrites. index is the stream index that has to be unique. videoMode is the sequence that pixels
appear at the input port: NON_INTERLACED, INTERLACED_ODD or INTERLACED_EVEN.
INTERLACED_EVEN means that even rows appear first, then odd rows. noOfReads and noOfWrites
are used to model a relative difference on the video stream data speed according to the equation:

noOfWrites
noOfReads

speedstreamoutput
speedstreaminput

=

noOfReads and noOfWrites should be interpreted as: during the time an output stream produces
noOWrites data elements, noOfReads data elements are read from the input stream. Output video
streams must always have the same data speed, but any input stream can have a relative data speed
difference with respect to the output streams. IM_OVPORT is the entity that corresponds to an output
video stream. number and videoMode have the same semantics as for IM_IVPORT. IM_BUFFER is
the entity that corresponds to buffering on output or input video streams. These buffers are needed
when the pixel sequence on a stream is changed, for instance from NON_INTERLACED to
INTERLACED_ODD, or any other combination. noOfFrames is the only parameter and must be set to
either exact size in number of frames, or to GENERIC, which means that the IMEM system is allowed
to determine the buffer size. The frame size of any input or output video stream is set by the entity
IM_FRAME and the parameters noOfRows, noOfColumns. syncRow and syncColumn is the spatial

position that the body enters at frame synchronisation. It is possible to model different colour space
models, such as Red-Green-Blue, or Hue-Saturation-Intensity, by mapping a colour model and its
components onto layers. IM_LAYER and its parameters index and semantics, are used to associate a
layer index with a string representing the semantics of a colour component such as RED. The order, in
which the layers are assigned to the IM_FRAME entity, corresponds directly to the order colour
components appear on the stream port. The first IM_LAYER assigned to IM_FRAME is also the first
colour component that appears on port at frame synchronisation.
A structure of IM_LINE entities is used to model a body. IM_LINE has three parameters, row, left and
right. Row is the relative row-axis position. Left and right corresponds to the number of pixels to the
left and to the right of the body centeriod. Figure 4 is divided into two parts a) a geometric graph of a
body and b) the corresponding UML class-diagram. The geometric graph also shows two examples of
how individual pixels are addressed. This body consists out of three slices, where one slice is a spatial
collection of pixels. The first slice, the oldest in the temporal dimension, is modelled with three
instances of IM_LINE, owned by IM_SLIDING_BODY. This slice is referenced as having the
relative frame number 0. The latest slice in this example has the relative frame address 2 and this part
of the IM_LINE structure is depicted rightmost in the UML class graph.

IM SLIDING BODY(FREE RUN)

IM LINE(0,1,1)

IM LINE(-1,1,1)

IM LINE(1,1,1)

IM LINE(0,2,2)

IM LINE(-1,1,1)

IM LINE(1,1,1)

IM LINE(2,0,0)

IM LINE(-2,0,0)

IM LINE(0,2,2)

IM LINE(-1,1,1)

IM LINE(1,1,1)

IM LINE(2,0,0)

IM LINE(-2,0,0)

P(frame=2,pixr=1,pixc=1)

P(0,-1,1)

row

column

frame

a slice

frame0 1 2

a) b)

Figure 4. How to specify a body in IMEM.

3.2 Functional mapping
The functional mapping of a video processing algorithm, that is how the output pixel is determined
from a 3-dimensional collection of pixels, is specified using a standard C++ programming style. All
the relative pixel positions are supplied to the functional mapping through a method interface,
getPixelData(int _stream, int _slice, int _row, int _column, int _layer).

3.3 Implementation of an IMEM model
Figure 5 shows how both the spatio-temporal and functional mapping can be specified in one single
source code file. The IM_IMOD-directive at line 1 denotes the start of an IMEM specification,
IM_EO_IMOD at line 72, denotes the end. IM_FUNCTIONAL at line 35, denotes the end of spatio-
temporal mapping and the start of functional mapping. This simple mean-filter algorithm has only a
five pixel spatial mapping, denoted at line 6-10. The double arrow operator << is used to assign a
design entity to another. An instance of a design entity must have a unique identifier, such as lnd at
line 6. The second pair of paranthesis encloses the design entity parameters. Line 3 instantiates an
IM_SLIDING_BODY and assigns it at line 4 to the current instance of the mean-filter. Line 12-16
specifies the colour space model. Line 17 and 29 specifies input- and output streams. Input- and output
frame format is specified at line 19 and 26. An IMEM specification is a template class with the data
type carrying video data as a template parameter. This parameter is accessed with the VIDEO macro at
line 37. SWITCH_STREAM, line 38, and SWITCH_LAYER, line 41 are macros used to select
current output component at the functional mapping. Line 44-49 shows how the red colour component
for output stream 1 is calculated as the mean value of a five pixel neighbourhood. The method
getPixelData(int _stream, int _slice, int _row, int _column, int _layer) is called in order to access pixel
positions relative to the current spatial body location.

 IM_IMOD(mean)

 IM_SLIDING_BODY(sbody)(FREE_RUN);
 *this << sbody;
// This is a simple single slice body
 IM_LINE(lnd)(-1,0,0); // __
 IM_LINE(lnu)(1,0,0); // __ | __| __
 IM_LINE(bd0)(0,1,1); // | __| __ | __|
 bd0 << lnu; // | __|
 bd0 << lnd; //

 IM_LAYER(pix0)(0,"RED"); // Pixel format
 IM_LAYER(pix1)(1,"GREEN");
 pix0 << pix1;
 IM_LAYER(pix2)(2,"BLUE");
 pix1 << pix2;
 IM_IVPORT(iport1)(1,INTERLACED_EVEN,1,1); // Input stream 1
 sbody << iport1;
 IM_FRAME(fri1)(119,199,0,0);
 fri1 << pix0; // Assign pixel format
 iport1 << fri1;
 iport1 << bd0; // Assign body
 IM_BUFFER(ibuf)(1);
 iport1 << ibuf;

 IM_FRAME(fro1)(119,199); // Output frame format
 fro1 << pix0; // Assign pixel format

 IM_OVPORT(oport1)(1,NON_INTERLACED); // Output stream 1
 sbody << oport1;
 IM_BUFFER(obuf1)(GENERIC);
 oport1 << obuf1;
 oport1 << fro1;

IM_FUNCTIONAL(mean)

 VIDEO vdt;
 SWITCH_STREAM
 {
 case 1:
 SWITCH_LAYER
 {
 case 0:
 vdt = getPixelData(1, 0, 0, 0, 0);
 vdt = vdt + getPixelData(1, 0, 1, 0, 0);
 vdt = vdt + getPixelData(1, 0, -1, 0, 0);
 vdt = vdt + getPixelData(1, 0, 0, 1, 0);
 vdt = vdt + getPixelData(1, 0, 0, -1, 0);
 vdt = (VIDEO)(vdt/5); // Mean value
 return(vdt);
 case 1:
 vdt = getPixelData(1, 0, 0, 0, 1);
 vdt = vdt + getPixelData(1, 0, 1, 0, 1);
 vdt = vdt + getPixelData(1, 0, -1, 0, 1);
 vdt = vdt + getPixelData(1, 0, 0, 1, 1);
 vdt = vdt + getPixelData(1, 0, 0, -1, 1);
 vdt = (VIDEO)(vdt/5); // Mean value
 return(vdt);
 case 2:
 vdt = getPixelData(1, 0, 0, 0, 2);
 vdt = vdt + getPixelData(1, 0, 1, 0, 2);
 vdt = vdt + getPixelData(1, 0, -1, 0, 2);
 vdt = vdt + getPixelData(1, 0, 0, 1, 2);
 vdt = vdt + getPixelData(1, 0, 0, -1, 2);
 vdt = (VIDEO)(vdt/5); // Mean value

 return(vdt);
 }
 break;
 };
 return(0);

IM_EO_IMOD

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Figure 5. IMEM-module source code.

4 A DESIGN EXAMPLE
A spatio-temporal noise reduction filter is captured using both IMEM and a standard SystemC
modelling style. The simulation set-up, based on three different modules, is the same in both cases, see
Figure 6. Istream (1), an input video streamer module, which serves as a part of the test-bench,
providing the captured filter model with video data. Noise reduction filter (2), is the filter model and
Ostream (3), is a part of the test-bench that will store filtered pixels onto disc. The output streamer
object is also the only concurrent process, which will invoke the filter slave process through the
Remote Procedure Call, provided in SystemC. The functionality of the filter slave process is
alternatively captured using IMEM or SystemC standard style. Modelling- and simulation
performance is then compared for the two cases.

Noise reduction
filter Istream

 Ostream

Clk
Figure 6. Simulation of the design example.

4.1 Filter description
The task of the noise reduction algorithm can be divided into two main sub-tasks: (A) to detect a part
of the image and determine whether this is a part of a moving image, that is called local scene-change
detection, (B) to filter out noise with local scene-change taken into account. A block diagram of the
filter is depicted in Figure 7.

Average Luminance Computation for slices

Median-7 filter with adjustable size

Local Scene Change Detection

T(i0,j0,n0)

R(n0-3) … R(n0+3)
G(n0-3) … G(n0+3)
B(n0-3) … B(n0+3)

P(i0,j0,n0+3)

S(i0,j0,n0+3)

Y(i0,j0,n0-3) Y(i0,j0,n0+3)

δ0

n~

MUX

3)(Y −

)n,j,(iP~ 000

2)(Y − 1)(Y −)0(Y)1(Y)2(Y)3(Y

A

B

Figure 7. Block diagram for the spatio-temporal video filter.

The notation and definition used in the algorithm description are: A frame F(n),

)}(),(),({)(nBnGnRnF = ,

is a matrix of RGB-values (colour components) in the n:th frame. A pixel P(i, j, n),
)()},,(),,,(),,,({),,(nFnjiBnjiGnjiRnjiP ∈= ,

is an element in F(n) with the spatial position (i, j). A slice,

)(),,(0000 nFnjiS ⊂ ,

positioned at (i0, j0) in the n:th frame includes the pixel p0(i0,j0,n) and a portion of the n:th frame that
surrounds the pixel p0. A tube,

)}3()3(|),,({),,(000000 +≤≤−= nnnnjiSnjiT ,

is a set of slices with same (i, j) but located in consecutive frames.

4.2 Algorithm
This section outlines the behaviour of the filter algorithm. The first step of the algorithm is to calculate
the average luminance for each slice in a tube.

{ }







⋅= ∑

∈
+≤≤− ,n),j S(i[i,j] dnndn

njiPnY
00

00
),,(luminance

5
1)(

Using the average luminance for a slice and the blue colour component between two in time adjacent
pixels, the differences between these two pixels are calculated. If either of the differences is higher
than a certain threshold level (Ty and Tb), a scene change is indicated in a vector, I.



 >−−∨>−−

=−
otherwise

TnjiBnjiBTnYnYif
nnI by

0
)1,,(),,()1()(1

)1,(0000

From the scene change vector, I, the length, δ0, from a scene change to the centre pixel determines the
length used by the median filter. The luminance from the centre pixel in the tube and the median filter
width, δ0, are the inputs to the median filter.

}),,({)~,,(
00000000 δδ +≤≤−= nnnnjiYMediannjiY

The filter output is selected from the centre pixel's original RGB-values in frame number ñ.

4.3 IMEM model of the filter
The body model diagram, depicted in Figure 8, shows a collection of pixels that represents the
spatio-temporal mapping of the noise reduction filter. Seven consecutive slices, each one of
them consisting out of five adjacent pixels, form a three dimensional body. The object-
relation diagram in Figure 9 shows how the design entities in IMEM are used to capture the
neighbourhood and the stream port interfaces. 21 objects of the IM_LINE entity, connected in
a structure, represents the neighbourhood depicted in Figure 8.

Body model

frame

0
1

2
3

4
5

6

Figure 8. The 3-dimensional neighbourhood of pixels that the filter operates on.
Both input and output frame sizes are 576 x 720 pixels, as being set by the IM_FRAME objects.
Colour components are mapped onto layer one, two and three, which is the same order they appear
on the video streams. The input stream has one buffer with the size of a single frame assigned
to it. The output stream is not synchronized with the input stream. This is defined by the
IM_SLIDING_BODY object and the parameter value FREE_RUN. The functional mapping of
this adaptive median filter is mainly specified within a separate standard C++ class. This reusable
software component is then equally invoked within both the IMEM specification as well as the
standard SystemC Master-Slave module.

IM SLIDING BODY(FREE RUN)

IM IVPORT(1,INTERLACED ODD,1,1)

IM LAYER(0,”RED”)

IM LAYER(1,”GREEN”)

IM LAYER(2,”BLUE”)

IM IMOD(median)

IM FRAME(576,720,0,0)

IM OVPORT(1,INTERLACED ODD)

IM BUFFER(1)

IM LINE(0,1,1)

IM LINE(-1,0,0)

IM LINE(1,0,0)

IM LINE(0,1,1)

IM LINE(-1,0,0)

IM LINE(1,0,0)

IM LINE(0,1,1)

IM LINE(-1,0,0)

IM LINE(1,0,0)

IM LINE(0,1,1)

IM LINE(-1,0,0)

IM LINE(1,0,0)

IM LINE(0,1,1)

IM LINE(-1,0,0)

IM LINE(1,0,0)

IM LINE(0,1,1)

IM LINE(-1,0,0)

IM LINE(1,0,0)

IM LINE(0,1,1)

IM LINE(-1,0,0)

IM LINE(1,0,0)

IM LAYER(0,”RED”)

IM LAYER(1,”GREEN”)

IM LAYER(2,”BLUE”)

IM FRAME(576,720,0,0)

Figure 9. IMEM object-relation diagram for the noise reduction filter.

5 RESULT
This section presents the results from the comparison between IMEM and SystemC Master-Slave
Communication Library (version 2.0 Beta-3) using the video filter design as test case. The comparison
was made on a Pentium III (800MHz) computer running Windows 2000. We have used the number of
source code lines as a measure of the modelling efficiency, see Table 1. The IMEM model is separated
on three code blocks, (1) the sc_main routine, (2) the filter kernel and (3), the filter component
description. The standard SystemC Un-Timed Functional model is captured on four different code
blocks, (1) the sc_main routine, (2) the frame memory model, (3) the filter kernel and (4), the filter
component description. The filter kernel, captured as a standard C++ class is the same for both
models. The sc_main routine only differs at the kind of filter model that was invoked, IMEM or
standard SystemC. The frame memory module that was only used for the standard SystemC model is a
generic frame memory model that can be packaged into a library for later reuse. For that reason, the
most realistic numbers to compare is the line representing the two different component descriptions,
145 versus 264 lines.

PARAMETER IMEM SYSTEMC UTF MODELLING
Simulation speed 13.1 seconds/frame 10.6 seconds/frame
Lines of code
 frame memory module 652
 main 115 115
 filter kernel module 290 290
 filter component description 145 264
Total number of lines 550 1321
Extraction of data dependency Built into the model Simulation and data profiling

Table 1. Comparison of modelling- and simulation performance.
The numbers in Table 1 clearly indicates that IMEM as a specification method, reduces the number of
source code lines needed to capture our spatio-temporal noise reduction filter by 45%, but to the cost
of an 23% increase of simulation time. The simulation mechanism in IMEM is generalised for any
neighbourhood oriented video processing operation which interfaces with any number of input and
output video-streams. We have selected an object-oriented and highly modular implementation to
make IMEM general. The use of modularity, polymorphism and virtual methods explains the
simulation performance degradation. As indicated on the last row of Table 1, the IMEM filter module

specification has an explicit built-in data dependency model. Extracting the same data dependency
from the standard SystemC model would require some additional profiling.

6 CONCLUSION
In this paper, we have shown that a 3-dimensional collection of pixels is a natural and modelling
efficient abstraction for video processing operations. To support this abstraction, an object-oriented
specification method, IMEM was presented. This method was evaluated and compared with a
SystemC Un-Timed Functional specification, exposed on a realistic test-vehicle. IMEM was found to
be most modelling efficient in terms of number of source code lines, although to the cost of a decrease
in simulation speed. The benefits of using IMEM would probably have been even greater if the test-
vehicle would have been more complex and if the designer’s modelling- and debugging time would
have been taken into account. What is even more important, is that the structure of design entities,
being a conceptual memory and interface model, explicitly reveals data dependency information,
which is important input to high-level synthesis, rapid prototyping, data reuse and loop transformation
analysis. These are areas of interesting and challenging research that we will address in future. The
data dependency modelling and the higher abstraction in IMEM will serve as an excellent extension to
the already well known SystemC workflow. Adding more modelling- and analysis capabilities to this
single environment workflow, will definitely help video systems designers to reduce the time to
market.

Acknowledgements
The Mid-Sweden University in Sundsvall, Sweden and the KK-Foundation, Sweden are gratefully
acknowledged for their financial support.

References
[1] S.J. Hill, D. Crookes and A. Bouridane, “The use of high level tools for developing volume graphic and

video sequence processing applications”, Proceedings of 7th international congress on image
processing and its applications, IEE 1999, (Conf. Publ. No.465).

[2] SystemC User's Guide, Version 2.0, http://www.systemc.org
[3] Master-Slave Communication library User’s Guide, Version 2.0 Beta-3, http://www.systemc.org
[4] W.F.J. Verhaegh, P.E.R. Lippens, E.H.L. Aarts, J.L. van Meerbergen and A. van der Werf, “Modelling

Periodicity by PHIDEO Streams”, Proceedings of 6th International Workshop on High-Level Synthesis,
pp. 256-266, 1992.

[5] Digital Image Processing, R.C. Gonzales and R.E. Woods, Addison Wesley 1993.
[6] S. Wuytack, J.Ph. Diguet, F.Catthoor and H. De Man, “Formalized methodology for data reuse

exploration for low-power hierarchical memory mappings”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol.6, no.4, 1998.

[7] L. Nachtergaele, F. Catthoor, F.Balasa, F. Franssen, E. De Greef, H. Samsom and H. De Man,
”Optimization of memory organization and hierarchy for decreased size and power in video and image
processing systems”, Records of the 1995 IEEE international workshop on memory technology, design
and testing, 1995.

[8] Dace C.A. “An applicative high-level language for dsp system design”, IEE Colloquium on General-
Purpose Signal-Processing Devices (Digest No.085) 1993

[9] Kazimierz Wiatr, “Dedicated hardware processors for real-time image data pre-processing implemented
in FPGA structure”, Proceedings of ICIAP 97. 9th International Conference on Image Analysis and
Processing, vol.2, pp 69-76.

[10] Luis L. Nozal, Gerardo Aranguren, José Luis Martín and Joseba Ezquerra, “Moving images time
gradient implementation using RAM-based FPGA”, Proceedings of the SPIE - The International
Society for Optical Engineering 1997, vol.3028, pp.108-116.

[11] Brad Taylor, “DSP filters in FPGAs for image processing applications”, Proceedings of the SPIE - The
International Society for Optical Engineering 1996, vol.2914, pp.100-109.

[12] B. Oelmann, H. Norell, R. Andersson, Y. Xu, "Design of Real-Time Signal Processing ASIC for Noise
Reduction in Moving Video Images", Proceeding of IEEE Norchip Conference 1999, pp.228-33.

[13] B. Thörnberg and M. O´Nils, “Analysis of modeling and simulation capabilities in SystemC and Ocapi
using a video filter design”, Proceeding of ECSI forum on design languages 2001.

