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Abstract—Most operations invoked in video processing 

systems are neighborhood oriented. For a video system designer, 
this limited spatio-temporal collection of pixels represents a 
natural abstraction. In this paper, we present a basic set of 
object-oriented design entities. Entities, which can be combined 
to capture an interface and memory model at a conceptual level, 
with the neighborhood as an abstraction. These design entities, 
called IMEM, are implemented as an extension to SystemC. 
IMEM supports conceptual modeling that excludes 
implementation details and has explicit data dependency built-in 
to the model. This makes IMEM a very efficient starting point 
for design-space exploration and system synthesis. We propose 
two workflows.  The first is a system development workflow, 
where IMEM represents the starting point of a gradual 
refinement process, supported by an automated design space 
exploration step. The second workflow, based on direct mapping 
of the interface and memory model is presented as being suitable 
for rapid prototyping. A spatio-temporal noise-reduction filter is 
selected as a test-vehicle in order to demonstrate the feasibility of 
IMEM.  

Keywords—Interface- and memory modeling, SystemC, video 
systems, neighborhood, C++ 

I. INTRODUCTION 
Typical image processing operations [5] such as 

convolution, histogram, spatial and gray-level transforms, 
erosion, dilation and component labeling are all 2-D 
neighborhood oriented. The nlfilter function in Matlab [14] is 
based on this fact. Consequently spatio-temporal Video 
Processing Systems (VPS) will operate on a 3-D 
neighborhood [1][10], thus increasing the system complexity. 
From a VPS designer’s point of view, the today’s specification 
methods lacks in abstraction. The stream oriented abstraction 
chosen for the PHIDEO system [4] does not reveal the 
neighborhood that naturally is common for most VPS 
operations. Nested loops, such as in a DFL-specification [8], 
need code pruning in order to analyze the data dependency 
between neighborhood pixels. This pruning will separate the 
spatial and temporal mapping from the functional mapping of 
a video processing algorithm. VPS specifications written as 
nested loops define how the neighborhood slides within a 

spatial domain, which effects the sizes on input and output 
buffers. This is implementation related information, which is 
undesirable during early design exploration. 

Real-time video processing systems are data dominated. 
Typically the design bottleneck will be the memory data 
transfers maintaining a spatio-temporal neighborhood. 
Another closely related and also critical design parameter is 
the large amount of background memory and the power 
dissipation coming from the high-speed accesses. These 
critical parameters have been addressed in [11] and an 
implementation using a memory hierarchy to overcome the 
memory access bottlenecks has been presented by Oelmann et 
al. [12].  Wuytack et al. [6] presents a more general 
methodology, where data reuse exploration is done by 
introducing application-specific cache memory hierarchies. 
Applied on realistic VPS applications, the system design 
exploration-tool ATOMIUM has enabled power reduction of 
about 90% [7]. ATOMIUM is based on both loop 
transformations and memory organization decisions. Typically 
this exploration is done early in the design process. The 
ATOMIUM design entry is a DFL-specification [8], which 
needs additional profiling in order to extract inter-pixel and 
inter-frame data dependencies. 

The evolution of object-oriented specification methods 
based on class libraries has made language extensions possible 
to implement without having to update the compilers or 
simulators. Our previous research [13], indicates that the 
object-oriented specification methods in SystemC [2] are a 
good candidate for modeling VPS. 

Although some research has been made in the area of 
memory modeling and VPS, up until now, no research has 
shown the potential of combining a video designer friendly 
neighborhood abstraction, conceptual modeling and early 
design space exploration methods into one homogeneous C++ 
system design environment. This is an environment that will 
take a VPS all the way from specification down to 
implementation. The reduction of time to market and the 
implementation optimization serve as motivation for this and 
future research in this area. 

This paper presents an object-oriented approach to 
conceptual memory- and interface modeling, called IMEM, 



that targets real-time VPS. Basic modeling entities such as 
input and output video stream-ports, frames, frame buffers and 
sliding bodies, provide the VPS designer with a specification 
method that can easily capture stream ports, spatial and 
temporal mappings of video processing algorithms. The 
proposed conceptual-level modeling excludes implementation 
details and provides the designer with means for explicit data-
dependency modeling. Consequently, no additional pruning is 
needed to extract the data dependency, as in the case of nested 
loops. This will of course simplify the implementation of 
design space exploration methods.  

Additionally, a system design workflow and a rapid 
prototyping workflow are proposed. Both workflows use 
IMEM as the common design entry for both the hardware and 
the software parts of a system. The system design workflow 
involves automated design space exploration and a rapid 
prototyping workflow involves a direct mapping of the 
interface and memory model. Design space exploration and 
direct mapping are areas of research that we would like to 
address in future. IMEM will serve as the basis for this 
research. 

II. SPATIO-TEMPORAL AND FUNCTIONAL MAPPING 
A body is a 3-dimensional collection of pixels that serves 

as an excellent abstraction for neighborhood oriented video 
processing operations. This body is the mapping of an 
algorithm onto the spatial and temporal domains. The 
functional mapping defines how an output pixel is determined 
from a body as input. Figure 1a) shows such a geometric 
graph of a collection of pixels and Figure 1b) an UML class 
diagram of the same body modeled with IMEM design 
entities. The geometric graph also shows two examples of how 
individual pixels are addressed.  

Design entities are implemented in IMEM as C++ classes 
which can be instantiated and connected together into a 
structure. 
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Figure 1.  How to specify a body in IMEM. 

A structure of IM_LINE entities is used to model a body. 
IM_LINE has three parameters, row, left and right. Row is the 
relative row-axis position. Left and right corresponds to the 
number of pixels to the left and to the right of the body 
centeroid. This body consists out of three slices, where one 
slice is a spatial collection of pixels. The first slice, the oldest 
in the temporal dimension, is modeled with three instances of 
IM_LINE, owned by IM_SLIDING_BODY. This slice is 
referenced as having the relative frame number 0. The latest 
slice in this example has the relative frame number 2 and this 
part of the IM_LINE structure is depicted rightmost in the 
UML class graph.  

III. INTERFACE MODELING 
Figure 2 depicts an example of how to use design entities 

for interface modeling. Figure 2a) shows a structure that 
captures an input video stream. The first two parameters of 
IM_FRAME indicates that the frame size is 576x720 pixels. 
The last two parameters defines the synchronization position 
of the output frame at the spatial coordinates (50,50). The 
smaller output frame has its origin positioned within the input 
frame at the synchronization position. This cropping 
mechanism is illustrated in Figure 2c). The first parameter of 
IM_LAYER defines the layer number and the second its 
semantic. This entity is in this example used to capture the 
RGB color space model. The order of the IM_LAYER entities 
defines the order they appear on the stream port. The topmost 
entity appears first. The IM_BUFFER has one parameter that 
defines the size in frames. The sequence of the input port is set 
to INTERLACED_ODD by the IM_IVPORT entity. Figure 
2b) shows a structure that defines the output stream. The 
buffer in this case is set to GENERIC, which means that the 
minimum size will be determined by IMEM. For example a 
change in the pixel sequence would require the insertion of a 
buffer. But the selection of sequence will also have a most 
crucial effect on the systems memory bandwidth, [12]. 
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Figure 2.  Interface modeling with IMEM. 
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Figure 3. System design workflow. 

IV. SYSTEM-DESIGN WORK FLOW 
Figure 3 depicts the workflow we propose to be used 

together with IMEM. The workflow runs along eight levels 
defined at the left-side axis. The video processing algorithm is 
developed by using IMEM at level 1 for conceptual modeling. 
This means that the developed algorithm is captured without 
adding any implementation related information. The model 
can be verified through functional simulation. Data 
dependency information such as frame size, composition of 
the 3-dimensional neighborhood and color space model 
mapping is exported into an interface and memory model at 
level 2. A database of devices belonging to the selected design 
space to be searched is added at level 3. Power/area trade of 
constraints are processed together with the database in order to 
derive a near optimal implementation architecture. The output 
from this design space exploration is cash levels and sizes, 
background memory configuration and organization, 
processing sequences, buffers and bus coding. An estimation 
of power and area is also generated. The implementation 
architecture is the input to a manual design refinement step at 
level 5. The output from this refinement can be hardware 
RTL-descriptions and/or software source code at level 6. The 
complete system can be co-simulated at level 7. Hardware 
descriptions are synthesized and software modules are 
optimized at level 8 to reach the final implementation.  

V. RAPID-PROTOTYPING WORKFLOW 
The time from algorithm to implementation is the most 

important constraint for a rapid prototyping environment. Less 
attention is paid to optimization. We propose the workflow 
depicted in Figure 4 as suitable for rapid prototyping. This 
workflow is defined at six different levels along the left-side 
axis. The video-processing algorithm is developed and 
simulated using IMEM at level 1. This initial step is equal as 
for the system design workflow. The memory and interface 
model at level 2 is the input to a direct mapping process at 
level 3. The output from this direct mapping is either source  
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Figure 4.  Rapid prototyping workflow. 

code targeted for a field programmable gate array, FPGA, or a 
digital signal processor, DSP. The source code can be 
generated by mapping the IMEM interface and memory model 
with a parameterized  and generic target specific model. This 
is what we call direct mapping. The functional mapping of an 
algorithm can then interface directly with the generated 
interface and memory model and be compiled at level 5. Level 
6 corresponds to either a FPGA- or DSP-based prototyping 
platform. 

VI. SELECTED FILTER ALGORITHM 
We have selected an adaptive median noise reduction filter 

as test vehicle. This algorithm can be divided into two main 
sub-tasks:  

1) To detect a part of the image and determine 
whether this is a part of a moving image, that is 
called local scene-change detection.  

2) To filter out noise with local scene-change taken 
into account.  

A block diagram of the filter is depicted in Figure 5. The 
notation and definition used in the algorithm description are: 
A frame F(n), 

)}(),(),({)( nBnGnRnF =  
is a matrix of RGB-values (color components) in the n:th 
frame.  A pixel P(i, j, n), 

)()},,(),,,(),,,({),,( nFnjiBnjiGnjiRnjiP ∈=  
is an element in F(n) with the spatial position (i, j). A slice,  

)0()0,0,0( nFnjiS ⊂  
positioned at (i0, j0) in the n0:th frame includes the pixel 
p(i0,j0,n0) and a portion of the n0:th frame that surrounds the 
pixel p0. A tube,  
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Figure 5.  Block-diagram of selected filter. 

is a set of slices with same (i, j) but located in consecutive 
frames, where the number of frames is defined as 12 +⋅d . 
d frames surround the center frame in time. For our case study 
d is set to 3. The first step of the algorithm is to calculate the 
average luminance for each slice in a tube )(nY . 

The average luminance for two adjacent slices and the blue 
color component of two pixels belonging to the same slices 
are used to calculate the luminance and blue color differences. 
If either of the differences is higher than a certain threshold 
level (Ty and Tb), a scene change is indicated in a vector, 

)1,( −nnI . 
From the scene change vector I, the length, δ0, from a 

scene change to the center pixel determine the length used by 
the median filter. The luminance from the center pixel in a 
tube and the median filter width, δ0, are the inputs to the 
median filter. The filter output is selected from the center 
pixel's original RGB-values in frame number ñ. 

VII. RESULTS 
The selected filter algorithm was captured using the IMEM 

design entities. A sequence of 576*720 sized frames where 
used as input stimuli. 1000 frames where processed on a 
Pentium III (800MHz) computer running Windows 2000 
which resulted in an elapsed simulation time of 3h, 29 min and 
8 s. Hence it took about 12.5 seconds to process one frame. 
The purpose of this simulation run is to demonstrate that 
IMEM can be used in practice for modeling and simulation. 

Design parameters extracted from the IMEM-model of the 
filter are the selected frame size, the composition of the 3-
dimensional neighborhood, see Figure 5, the constraints for an 
input buffer, the input and output stream pixel sequences and 
the RGB color space model mapping. 

VIII. CONCLUSION 
In this paper, we have shown that a 3-dimensional 

collection of pixels is a natural and modeling efficient 
abstraction for video processing operations. To support this 
abstraction, an object-oriented specification method, IMEM 

was presented. What is even more important, is that the 
structure of design entities, being a conceptual memory and 
interface model, explicitly reveals data dependency 
information and buffer constraints. This information can then 
be exported into a design exploration tool or an automatic 
synthesis tool. We have proposed how this conceptual 
modeling and design exploration can be used in a system 
design flow. Additionally we have presented a path to rapid 
prototyping from the IMEM model. These are areas of 
interesting and challenging research that we will address in 
future. The higher abstraction in IMEM will serve as an 
excellent extension to the already well-known SystemC 
workflow. We believe that the IMEM concept will be most 
applicable for prototyping systems or any real-time video 
processing system that needs to be optimized for power and 
production cost and were the time to market is important. 
Battery powered consumer electronic devices, such as 
camcorders or video telephones are examples of envisioned 
applications. 
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