
Conceptual Interface and Memory-Modeling for
Real-Time Image Processing Systems

IMEM: A tool for Modeling, Simulation and Design Parameter Extraction

Benny Thörnberg, Håkan Norell and Mattias O’Nils
Dept. of Information Technology and Media, Electronics Design Division

Mid Sweden University
Sweden

{bentho|hakan|mattias}@itm.mh.se

Abstract—Most operations invoked in video processing

systems are neighborhood oriented. For a video system designer,
this limited spatio-temporal collection of pixels represents a
natural abstraction. In this paper, we present a basic set of
object-oriented design entities. Entities, which can be combined
to capture an interface and memory model at a conceptual level,
with the neighborhood as an abstraction. These design entities,
called IMEM, are implemented as an extension to SystemC.
IMEM supports conceptual modeling that excludes
implementation details and has explicit data dependency built-in
to the model. This makes IMEM a very efficient starting point
for design-space exploration and system synthesis. We propose
two workflows. The first is a system development workflow,
where IMEM represents the starting point of a gradual
refinement process, supported by an automated design space
exploration step. The second workflow, based on direct mapping
of the interface and memory model is presented as being suitable
for rapid prototyping. A spatio-temporal noise-reduction filter is
selected as a test-vehicle in order to demonstrate the feasibility of
IMEM.

Keywords—Interface- and memory modeling, SystemC, video
systems, neighborhood, C++

I. INTRODUCTION
Typical image processing operations [5] such as

convolution, histogram, spatial and gray-level transforms,
erosion, dilation and component labeling are all 2-D
neighborhood oriented. The nlfilter function in Matlab [14] is
based on this fact. Consequently spatio-temporal Video
Processing Systems (VPS) will operate on a 3-D
neighborhood [1][10], thus increasing the system complexity.
From a VPS designer’s point of view, the today’s specification
methods lacks in abstraction. The stream oriented abstraction
chosen for the PHIDEO system [4] does not reveal the
neighborhood that naturally is common for most VPS
operations. Nested loops, such as in a DFL-specification [8],
need code pruning in order to analyze the data dependency
between neighborhood pixels. This pruning will separate the
spatial and temporal mapping from the functional mapping of
a video processing algorithm. VPS specifications written as
nested loops define how the neighborhood slides within a

spatial domain, which effects the sizes on input and output
buffers. This is implementation related information, which is
undesirable during early design exploration.

Real-time video processing systems are data dominated.
Typically the design bottleneck will be the memory data
transfers maintaining a spatio-temporal neighborhood.
Another closely related and also critical design parameter is
the large amount of background memory and the power
dissipation coming from the high-speed accesses. These
critical parameters have been addressed in [11] and an
implementation using a memory hierarchy to overcome the
memory access bottlenecks has been presented by Oelmann et
al. [12]. Wuytack et al. [6] presents a more general
methodology, where data reuse exploration is done by
introducing application-specific cache memory hierarchies.
Applied on realistic VPS applications, the system design
exploration-tool ATOMIUM has enabled power reduction of
about 90% [7]. ATOMIUM is based on both loop
transformations and memory organization decisions. Typically
this exploration is done early in the design process. The
ATOMIUM design entry is a DFL-specification [8], which
needs additional profiling in order to extract inter-pixel and
inter-frame data dependencies.

The evolution of object-oriented specification methods
based on class libraries has made language extensions possible
to implement without having to update the compilers or
simulators. Our previous research [13], indicates that the
object-oriented specification methods in SystemC [2] are a
good candidate for modeling VPS.

Although some research has been made in the area of
memory modeling and VPS, up until now, no research has
shown the potential of combining a video designer friendly
neighborhood abstraction, conceptual modeling and early
design space exploration methods into one homogeneous C++
system design environment. This is an environment that will
take a VPS all the way from specification down to
implementation. The reduction of time to market and the
implementation optimization serve as motivation for this and
future research in this area.

This paper presents an object-oriented approach to
conceptual memory- and interface modeling, called IMEM,

that targets real-time VPS. Basic modeling entities such as
input and output video stream-ports, frames, frame buffers and
sliding bodies, provide the VPS designer with a specification
method that can easily capture stream ports, spatial and
temporal mappings of video processing algorithms. The
proposed conceptual-level modeling excludes implementation
details and provides the designer with means for explicit data-
dependency modeling. Consequently, no additional pruning is
needed to extract the data dependency, as in the case of nested
loops. This will of course simplify the implementation of
design space exploration methods.

Additionally, a system design workflow and a rapid
prototyping workflow are proposed. Both workflows use
IMEM as the common design entry for both the hardware and
the software parts of a system. The system design workflow
involves automated design space exploration and a rapid
prototyping workflow involves a direct mapping of the
interface and memory model. Design space exploration and
direct mapping are areas of research that we would like to
address in future. IMEM will serve as the basis for this
research.

II. SPATIO-TEMPORAL AND FUNCTIONAL MAPPING
A body is a 3-dimensional collection of pixels that serves

as an excellent abstraction for neighborhood oriented video
processing operations. This body is the mapping of an
algorithm onto the spatial and temporal domains. The
functional mapping defines how an output pixel is determined
from a body as input. Figure 1a) shows such a geometric
graph of a collection of pixels and Figure 1b) an UML class
diagram of the same body modeled with IMEM design
entities. The geometric graph also shows two examples of how
individual pixels are addressed.

Design entities are implemented in IMEM as C++ classes
which can be instantiated and connected together into a
structure.

P(frame=2,pixr=1,pixc=1)

P(0,-1,1)

column

a slice

row

frame

IM SLIDING BODY(FREE RUN)

IM LINE(0,1,1)

IM LINE(-1,1,1)

IM LINE(1,1,1)

IM LINE(0,2,2)

IM LINE(-1,1,1)

IM LINE(1,1,1)

IM LINE(2,0,0)

IM LINE(-2,0,0)

IM LINE(0,2,2)

IM LINE(-1,1,1)

IM LINE(1,1,1)

IM LINE(2,0,0)

IM LINE(-2,0,0)

frame0 1 2

a)

b)

Figure 1. How to specify a body in IMEM.

A structure of IM_LINE entities is used to model a body.
IM_LINE has three parameters, row, left and right. Row is the
relative row-axis position. Left and right corresponds to the
number of pixels to the left and to the right of the body
centeroid. This body consists out of three slices, where one
slice is a spatial collection of pixels. The first slice, the oldest
in the temporal dimension, is modeled with three instances of
IM_LINE, owned by IM_SLIDING_BODY. This slice is
referenced as having the relative frame number 0. The latest
slice in this example has the relative frame number 2 and this
part of the IM_LINE structure is depicted rightmost in the
UML class graph.

III. INTERFACE MODELING
Figure 2 depicts an example of how to use design entities

for interface modeling. Figure 2a) shows a structure that
captures an input video stream. The first two parameters of
IM_FRAME indicates that the frame size is 576x720 pixels.
The last two parameters defines the synchronization position
of the output frame at the spatial coordinates (50,50). The
smaller output frame has its origin positioned within the input
frame at the synchronization position. This cropping
mechanism is illustrated in Figure 2c). The first parameter of
IM_LAYER defines the layer number and the second its
semantic. This entity is in this example used to capture the
RGB color space model. The order of the IM_LAYER entities
defines the order they appear on the stream port. The topmost
entity appears first. The IM_BUFFER has one parameter that
defines the size in frames. The sequence of the input port is set
to INTERLACED_ODD by the IM_IVPORT entity. Figure
2b) shows a structure that defines the output stream. The
buffer in this case is set to GENERIC, which means that the
minimum size will be determined by IMEM. For example a
change in the pixel sequence would require the insertion of a
buffer. But the selection of sequence will also have a most
crucial effect on the systems memory bandwidth, [12].

IM OVPORT(1,NON INTERLACED)

IM LAYER(0,”RED”)

IM LAYER(1,”GREEN”)

IM LAYER(2,”BLUE”)

IM FRAME(144,180)
IM BUFFER(GENERIC)

IM IVPORT(1,INTERLACED ODD,1,1)

IM LAYER(0,”RED”)

IM LAYER(1,”GREEN”)

IM LAYER(2,”BLUE”)

IM FRAME(576,720,50,50)

IM BUFFER(1)

(0,0)

(575,719)

(50,50)

a) b)

c)

Figure 2. Interface modeling with IMEM.

IMEM
Conceptual Modelling

Simulation Input
Stimuli

Functional Simulation
Data Output 1

2

3

4

5

6

7

8

Design Refinement

Architecture
Implementation

Database/
Constraints

Implementation Architecture

Early Design
Space Exploration

HW RTL-descriptions
SW-code for
processors

Co-simulation/
verification

HW-synthesis

Early Power and
Area Estimation

Data

SW-code
optimazation

Interface and
Memory Model

Functional mapping of
algorithm

Figure 3. System design workflow.

IV. SYSTEM-DESIGN WORK FLOW
Figure 3 depicts the workflow we propose to be used

together with IMEM. The workflow runs along eight levels
defined at the left-side axis. The video processing algorithm is
developed by using IMEM at level 1 for conceptual modeling.
This means that the developed algorithm is captured without
adding any implementation related information. The model
can be verified through functional simulation. Data
dependency information such as frame size, composition of
the 3-dimensional neighborhood and color space model
mapping is exported into an interface and memory model at
level 2. A database of devices belonging to the selected design
space to be searched is added at level 3. Power/area trade of
constraints are processed together with the database in order to
derive a near optimal implementation architecture. The output
from this design space exploration is cash levels and sizes,
background memory configuration and organization,
processing sequences, buffers and bus coding. An estimation
of power and area is also generated. The implementation
architecture is the input to a manual design refinement step at
level 5. The output from this refinement can be hardware
RTL-descriptions and/or software source code at level 6. The
complete system can be co-simulated at level 7. Hardware
descriptions are synthesized and software modules are
optimized at level 8 to reach the final implementation.

V. RAPID-PROTOTYPING WORKFLOW
The time from algorithm to implementation is the most

important constraint for a rapid prototyping environment. Less
attention is paid to optimization. We propose the workflow
depicted in Figure 4 as suitable for rapid prototyping. This
workflow is defined at six different levels along the left-side
axis. The video-processing algorithm is developed and
simulated using IMEM at level 1. This initial step is equal as
for the system design workflow. The memory and interface
model at level 2 is the input to a direct mapping process at
level 3. The output from this direct mapping is either source

Interface and
Memory Model

Simulation Input
Stimuli

Functional Simulation
Data Output

1

2

3

4

5

6

Automated direct
mapping of Interface
and Memory Model

Source code for
FPGA plattform

Functional mapping of
algorithm

Source code for
DSP plattform

DSP compiler FPGA logic compiler

FPGA based rapid
prototyping platform

DSP based rapid
prototyping platform

IMEM
Conceptual Modelling

Figure 4. Rapid prototyping workflow.

code targeted for a field programmable gate array, FPGA, or a
digital signal processor, DSP. The source code can be
generated by mapping the IMEM interface and memory model
with a parameterized and generic target specific model. This
is what we call direct mapping. The functional mapping of an
algorithm can then interface directly with the generated
interface and memory model and be compiled at level 5. Level
6 corresponds to either a FPGA- or DSP-based prototyping
platform.

VI. SELECTED FILTER ALGORITHM
We have selected an adaptive median noise reduction filter

as test vehicle. This algorithm can be divided into two main
sub-tasks:

1) To detect a part of the image and determine
whether this is a part of a moving image, that is
called local scene-change detection.

2) To filter out noise with local scene-change taken
into account.

A block diagram of the filter is depicted in Figure 5. The
notation and definition used in the algorithm description are:
A frame F(n),

)}(),(),({)(nBnGnRnF =
is a matrix of RGB-values (color components) in the n:th
frame. A pixel P(i, j, n),

)()},,(),,,(),,,({),,(nFnjiBnjiGnjiRnjiP ∈=
is an element in F(n) with the spatial position (i, j). A slice,

)0()0,0,0(nFnjiS ⊂
positioned at (i0, j0) in the n0:th frame includes the pixel
p(i0,j0,n0) and a portion of the n0:th frame that surrounds the
pixel p0. A tube,

)}0()0(|),0,0({)0,0,0(dnndnnjiSnjiT +≤≤−=

)30(,)30(−− nYnB

S
C
E
N
E

C
H
A
N
G
E

I
N
D
I
C
A
T
I
O
N

Median 0δ

MUX

Output
Pixel

YTBT ,
Thresholds

n~

)20(,)20(−− nYnB

)10(,)10(−− nYnB

)0(,)0(nYnB

)10(,)10(++ nYnB

)20(,)20(++ nYnB

)30(,)30(++ nYnB

)0,0,0(~ njiP

)0,0,0(njiP

Figure 5. Block-diagram of selected filter.

is a set of slices with same (i, j) but located in consecutive
frames, where the number of frames is defined as 12 +⋅d .
d frames surround the center frame in time. For our case study
d is set to 3. The first step of the algorithm is to calculate the
average luminance for each slice in a tube)(nY .

The average luminance for two adjacent slices and the blue
color component of two pixels belonging to the same slices
are used to calculate the luminance and blue color differences.
If either of the differences is higher than a certain threshold
level (Ty and Tb), a scene change is indicated in a vector,

)1,(−nnI .
From the scene change vector I, the length, δ0, from a

scene change to the center pixel determine the length used by
the median filter. The luminance from the center pixel in a
tube and the median filter width, δ0, are the inputs to the
median filter. The filter output is selected from the center
pixel's original RGB-values in frame number ñ.

VII. RESULTS
The selected filter algorithm was captured using the IMEM

design entities. A sequence of 576*720 sized frames where
used as input stimuli. 1000 frames where processed on a
Pentium III (800MHz) computer running Windows 2000
which resulted in an elapsed simulation time of 3h, 29 min and
8 s. Hence it took about 12.5 seconds to process one frame.
The purpose of this simulation run is to demonstrate that
IMEM can be used in practice for modeling and simulation.

Design parameters extracted from the IMEM-model of the
filter are the selected frame size, the composition of the 3-
dimensional neighborhood, see Figure 5, the constraints for an
input buffer, the input and output stream pixel sequences and
the RGB color space model mapping.

VIII. CONCLUSION
In this paper, we have shown that a 3-dimensional

collection of pixels is a natural and modeling efficient
abstraction for video processing operations. To support this
abstraction, an object-oriented specification method, IMEM

was presented. What is even more important, is that the
structure of design entities, being a conceptual memory and
interface model, explicitly reveals data dependency
information and buffer constraints. This information can then
be exported into a design exploration tool or an automatic
synthesis tool. We have proposed how this conceptual
modeling and design exploration can be used in a system
design flow. Additionally we have presented a path to rapid
prototyping from the IMEM model. These are areas of
interesting and challenging research that we will address in
future. The higher abstraction in IMEM will serve as an
excellent extension to the already well-known SystemC
workflow. We believe that the IMEM concept will be most
applicable for prototyping systems or any real-time video
processing system that needs to be optimized for power and
production cost and were the time to market is important.
Battery powered consumer electronic devices, such as
camcorders or video telephones are examples of envisioned
applications.

REFERENCES
[1] S.J. Hill, D. Crookes and A. Bouridane, “The use of high level tools for

developing volume graphic and video sequence processing
applications”, Proceedings of 7th international congress on image
processing and its applications, IEE 1999, (Conf. Publ. No.465).

[2] SystemC User's Guide, Version 2.0, http://www.systemc.org
[3] Master-slave communication library user’s guide, version 2.0 beta-3,

http://www.systemc.org
[4] W.F.J. Verhaegh, P.E.R. Lippens, E.H.L. Aarts, J.L. van Meerbergen,

and A. van der Werf, “Modelling Periodicity by PHIDEO Streams”,
Proceedings of 6th International Workshop on High-Level Synthesis, pp.
256-266, 1992.

[5] Digital image processing, R.C. Gonzales and R.E. Woods, Addison
Wesley 1993.

[6] S. Wuytack, J.Ph. Diguet, F.Catthoor and H. De Man, “Formalized
methodology for data reuse exploration for low-power hierarchical
memory mappings”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol.6, no.4, 1998.

[7] L. Nachtergaele, F. Catthoor, F.Balasa, F. Franssen, E. De Greef, H.
Samsom and H. De Man, ”Optimization of memory organization and
hierarchy for decreased size and power in video and image processing
systems”, Records of the 1995 IEEE international workshop on memory
technology, design and testing, 1995.

[8] C.A Dace. “An applicative high-level language for dsp system design”,
IEE Colloquium on General-Purpose Signal-Processing Devices (Digest
No.085) 1993

[9] K. Wiatr, “Dedicated hardware processors for real-time image data pre-
processing implemented in FPGA structure”, Proceedings of ICIAP 97.
9th International Conference on Image Analysis and Processing, vol.2,
pp 69-76.

[10] L. L. Nozal, G. Aranguren, J. L. Martín and J. Ezquerra, “Moving
images time gradient implementation using RAM-based FPGA”,
Proceedings of the SPIE - The International Society for Optical
Engineering 1997, vol.3028, pp.108-116.

[11] B. Taylor, “DSP filters in FPGAs for image processing applications”,
Proceedings of the SPIE - The International Society for Optical
Engineering 1996, vol.2914, pp.100-109.

[12] B. Oelmann, H. Norell, R. Andersson, Y. Xu, "Design of real-time
signal processing ASIC for noise reduction in moving video images",
Proceeding of IEEE Norchip Conference 1999, pp.228-33.

[13] B. Thörnberg and M. O´Nils, “Analysis of modeling and simulation
capabilities in SystemC and Ocapi using a video filter design”,
Proceeding of ECSI forum on design languages 2001

[14] Matlab user’s manual, http://www.mathworks.com

