Formalized methodology for data reuse exploration

for low-power hierarchical memory mappings
S. Wuytack, J.Ph. Diguet, F. Catthoor, and H. De Man

Abstract— Efficient use of an optimized custom memory
hierarchy to exploit temporal locality in the data accesses
can have a very large impact on the power consumption
in data dominated applications. In the past experiments
have demonstrated that this task is crucial in a complete
low-power memory management methodology. But effective
formalized techniques to deal with this specific task have not
been addressed yet. In this paper, the surprisingly large de-
sign freedom available for the basic problem is explored in-
depth and the outline of a systematic solution methodology
is proposed. The efficiency of the methodology is illustrated
on a real-life motion estimation application. The results ob-
tained for this application show power reductions of about
85% for the memory sub-system compared to the case with-
out a custom memory hierarchy. These large gains justify
that data reuse and memory hierarchy decisions should be
taken early in the design flow.
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I. INTRODUCTION

A large part of the power dissipation in data dominated
applications is due to data transfers and data storage. This
power component can often be reduced by introducing an
optimized custom memory hierarchy that exploits the tem-
poral locality in the data accesses. The impact of this can
be very large, as has been demonstrated by us on an H.263
video decoder [1] and a motion estimation application [2].

The idea of using a custom memory hierarchy to mini-
mize the power consumption is based on the fact that mem-
ory power consumption depends primarily on the access
frequency and the size of the memory. For on-chip memo-
ries, which are not very much partitioned, memory power
increases with the memory size. In practice, the relation
is between linear and logarithmic depending on the mem-
ory library. For off-chip memories, the power is much less
dependent on the size because they are internally heav-
ily partitioned. Still they consume more energy per ac-
cess than the smaller on-chip memories. Hence, power sav-
ings can be obtained by accessing heavily used data from
smaller memories instead of from large background memo-
ries. Such an optimization requires architectural transfor-
mations that consist of adding layers of smaller and smaller
memories to which frequently used data can be copied [3].
Memory hierarchy optimization introduces copies of data
from larger to smaller memories in the data flow graph.
This means that there is a trade-off involved here: on the
one hand, power consumption is decreased because data
is now read mostly from smaller memories, while on the
other hand, power consumption is increased because extra
memory transfers are introduced. The memory hierarchy
design task has to find the best solution for this trade-off.

Memory hierarchy design for power optimization is ba-

sically different from caching for performance optimiza-
tion [4]. The latter determines how to fill the cache such
that data has been loaded from main memory before it
is needed. Instead of minimizing the number of transfers,
the number of transfers is often increased to maximize the
chance of a cache hit, leading to wasted power by prefetch-
ing data that may never be needed.

Some custom memory hierarchy experiments on real-life
applications can be found in literature. What is not solved,
however, is how to decide on the optimal memory hierar-
chy. In this paper, we present a formalized methodology
for this decision and give an indication of how large the
search space really is. The latter is much larger than con-
ventionally exploited in state-of-the-art designs. For more
information on the context of this work we refer to [5].

The rest of the paper is organized as follows. Section II
discusses the related work. Section III defines the global
memory hierarchy problem. Section IV defines the data
reuse decision problem and points out important issues to-
wards a methodology. Section V presents our methodology
for solving the data reuse exploration and decision prob-
lem. Section VI discusses the results of the data reuse ex-
ploration experiment for a motion estimation application.
Section VII concludes the paper.

II. RELATED WORK

The main work related to data reuse exploration lies in
the parallel compiler area, especially related to the cache
hierarchy. Here, several papers have analyzed memory or-
ganization issues in processors [6]. This, however, has not
resulted yet in any formalizable method to guide the mem-
ory organization issues. In most work on parallel MIMD
processors, the emphasis in terms of storage hierarchy has
been on hardware mechanisms based on cache coherence
protocols [7]. Partitioning or blocking strategies for loops
to optimize the use of caches have been studied in several
contexts [4]. The main focus is on performance improve-
ment though and not on memory cost. Recently, also in a
system synthesis context, applying transformations to im-
prove the cache usage has been addressed [8], [9]. None
of these approaches determine the best memory hierarchy
organization for a given (set of) applications and only few
address the power cost. Only an analysis of memory hierar-
chy choices based on statistical information to reach a given
throughput expectation has been discussed recently [10]. In
the hardware realization context, much less work has been
performed, mainly oriented to memory allocation [11], [12],
[13]. This paper discusses how to decide on the optimal use
of the memory in a systematic way.



III. MEMORY HIERARCHY DESIGN

This section defines the memory hierarchy design task.
First, it shows that memory hierarchy design is about ex-
ploiting temporal locality. Then, it shows that memory
hierarchy design consists of two steps:data reuse decision,
which is the topic of this paper, and memory layer assign-
ment, which is left for a future paper.

A. Ezploiting temporal locality

Memory hierarchy design exploits data reuse local in
time to save power by copying data that is reused often
in a short time period to a smaller memory, from which
the data can then be accessed. Fig. 1 illustrates this for all
read operations to a given array.
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Fig. 1. Exploiting data reuse local in time to save power.

The horizontal axis is the time axis. It shows how the
data accesses are ordered relatively to each other in time.
The vertical axis shows the index of the array elements.
Every dot represents a memory read operation, scheduled
at a certain time and accessing a given array element. In
this example most values are read multiple times. Assum-
ing that the data is still needed later on, all of the array
elements have to be stored in a large background memory.
However, when we look at smaller time-frames (indicated
by the vertical dashed lines), we see that only part of the
data is needed in each time-frame, so this part of the data
would fit in a smaller, less power consuming memory. If
there is sufficient reuse of the data in that time-frame, it
can be advantageous to copy the data that is used fre-
quently in this time-frame to a smaller memory. Conse-
quently, the second time an array element has to be read,
it can be read from the smaller memory instead of the larger
memory. This leads to the following definitions.

Definition: time-frame

The execution time of an application can be subdivided into
a number of non-overlapping time-intervals, called level 1
time-frames. Fach level i time-frame can be subdivided fur-
ther into non-overlapping level ¢ + 1 time-frames.

Definition: copy-candidate

A copy-candidate corresponding to an array A and time-
frame TF; is a set of array elements of A that are read
in TF; and are considered for copying to a lower hierarchy
level.

During the data reuse task it will be decided which copy-
candidates are really worth to be copied in order to save

power. Once this decision is made, the transfers for mak-
ing the copies will be added to the application code and
the copy-candidates become real (partial) copies of their
corresponding arrays.

Data reuse is the result of intra-copy reuse and inter-
copy reuse (cfr. Fig. 1). Intra-copy reuse means that each
array element is read several times from its memory during
one time-frame. Inter-copy reuse means that advantage is
taken from the fact that part of the data needed in the
next time-frame could already be available in the memory
from the previous time-frame, and therefore does not have
to be copied again.
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Fig. 2. Possibility for multi-level hierarchy.

Taking full advantage of temporal locality for power, usu-
ally requires architectural transformations that consist of
adding several layers of memories (each corresponding to its
own time-frame level) between the large background mem-
ories and the small foreground memories (registers in the
data-path). Every layer in the memory hierarchy contains
smaller memories than the ones used in the layer above it.
An example of this is shown in Fig. 2. It shows time-frames
that are subdivided into smaller time-frames. Each level of
time-frames potentially corresponds to a memory layer in
the memory hierarchy.

B. Steps in memory hierarchy design

Two steps can be identified in memory hierarchy design:
1. The data reuse exploration and decision step decides
which intermediate copies have to made for accessing the
data in a power efficient way.

2. The memory layer assignment step decides for each ar-
ray and copy of an array on which layer in the common
custom memory hierarchy it will be stored.

After memory layer assignment, an optimal memory ar-
chitecture has to be derived for each layer. This is done
by the subsequent memory allocation and array-to-memory
assignment tasks in our Data Transfer and Storage Explo-
ration (DTSE) methodology [5]. This paper focuses on the
data reuse decision step only.

IV. DaTA REUSE DECISION

This section discusses the data reuse exploration and de-
cision step of memory hierarchy design. It points out im-
portant elements for a systematic methodology described
in the next section.

A. Search space

The following assumptions allow to focus the data reuse
task, without really restricting the search space in practice:



e Only read operations have to be considered

The reason for this is that repeated reading of the same
data wvalue makes sense (i.e., repeatedly reading the same
memory location without intermediate writes to that mem-
ory location), whereas writing the same data value usually
does not make sense. So there is no need for creating a
memory hierarchy for repeatedly written data. The only
thing that has to be decided for write operations is in which
layer a certain (temporary) array will be written. This is
decided in the memory layer assignment step after data
reuse decisions are made.

e Only one array has to be considered at a time

Data reuse exploration can be tackled for each array sep-
arately. The main reason for this is that each copy in the
memory hierarchy has its own root array, i.e., the copies
form a tree where the root is the original array that is being
accessed. A copy cannot be obtained as the mix of different
arrays. We will also assume that the data reuse decision
can be taken for each array separately. As explained later
on, this limits the search space to some extent.

B. Data-reuse factor

The usefulness of memory hierarchy for saving power is
strongly related to the array’s data reusability, because this
is what determines the ratio between the number of read
operations from a copy of an array in a smaller memory,
and the number of read operations from the array in the
larger memory on the next hierarchical level.

The reuse factor of a group of data D stored in a memory
on layer 7 relative to layer i — 1, where layer 1 is the furthest
from the data paths, is defined as:

Ngr(M;, D)

FR(Z)D) = NR(Ml_l,D)

(1)
where Ng(M;, D) is the total number of times an element
from D is read from a memory at layer i. A reuse factor

larger than 1 is the result of intra-copy and inter-copy reuse
(cfr. Fig. 1).

C. Classification of data reuse

Fig. 3 presents a classification of four cases in which
data reuse can be exploited by means of memory hierar-
chy. These four cases are:
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Fig. 3. Classification of data reuse opportunities.

(a) No loops

In case there are no loops, there is no structured use of ar-
rays. In fact, each array element is treated independently
from the others similar to scalars. This case is not consid-
ered in our methodology. It is left for scalar methodologies
which are more suited for this.

(b) One read instruction in a (nested) loop

This is the basic case on which our methodology is based.
Both intra-copy and inter-copy reuse are possible here,
when the loop nesting (i.e., the order of the different nested
loops, and the direction in which the loops are traversed)
is fixed. Indeed, in this case, the ordering of the different
copies is known and every two consecutive copies can be
examined for overlap (i.e., inter-copy reuse).

(c) Multiple read instructions in a (nested) loop

Here it is assumed that each read instruction has a different
index expression, because otherwise they can be reduced to
the previous case by reading once from background mem-
ory and storing the result in a foreground register. When
the read instructions are accessing different parts of the
array, a different memory hierarchy can be constructed for
each of them. In practice, these memory hierarchies can
contain partly the same data, and are then best combined.
Determining which part of the memory hierarchy can be
shared, can be done with a geometrical data flow analysis.
(d) Read instructions in different loop nests

In this case, a memory hierarchy can be derived for each of
the loop nests separately. Because they are in different loop
nests, these memory hierarchies can be very different from
each other. Depending on the temporal locality (which is
only known when the ordering of all loop nests is already
fixed), it may be useful to copy the data that is common to
these loops to an extra memory layer. Again a polyhedral
analysis can be used to determine which part of the array is
used in common. Remark that when more than two loops
are involved, part of the array can be common to only a few
of the loops involved, making things much more complex.

V. PROPOSED METHODOLOGY

In this section, we propose a methodology for data reuse
exploration and decision based on a number of assumptions
to make the solution feasible for real-life applications.

A. Assumptions

The following is assumed in our methodology:
o Nesting order and direction of nested loops is fixed
The fixed nesting order is required to determine the time-
frames and copy-candidates corresponding to each read in-
struction in the loop nest. The fixed iteration direction is
required to determine the overlap for estimating the inter-
copy reuse.
e Time-frames are determined by loop boundaries
Finding an optimal time-frame hierarchy is a very complex
problem. However, we believe that the optimal time-frame
boundaries are likely to coincide with the loop boundaries
of loop nests. Therefore, we use as a heuristic that the loop
boundaries correspond to time-frame boundaries, instead
of trying to find globally optimal time-frame boundaries.



o A copy-candidate contains all data read in its time-frame
It is assumed that all data being accessed by a certain
read instruction in a certain time-frame will be copied to
a copy-candidate, such that all data required by the read
instruction can be found inside the copy-candidate. Ide-
ally, only part of the data that is accessed more than once
should be copied. The loss due to this restriction is small
in practice.

o Copy-candidates of a time-frame level are stored in-place
It is assumed that at the end of a time-frame, the data
copied into the intermediate memory is not needed any-
more, and will be overwritten by the data needed in the
next time-frame. Therefore the size of the copy-candidate
corresponding to a certain time-frame level is determined
by the time-frame leading to the largest copy-candidate.

o Copy-candidates are stored in perfectly fitting memories
It is assumed that a copy-candidate will be stored in a
memory with word depth and bit width equal to those of
the copy-candidate. In general, this assumption leads to an
underestimation of the power cost, as usually several copy-
candidates will have to share a memory. This real memory
size is only known until after array-to-memory assignment
and can therefore not be taken into account.

e Inter-copy reuse is fully exploited

It is assumed that inter-copy reuse will be fully exploited.
This means that data that is already present in the smaller
memory from the previous copy will not be copied again.
Only data that is not yet present has to be copied over
the data of the previous copy that is not needed anymore.
This affects the number of accesses to each of the copy-
candidates. The size of the copy-candidates is unaffected.

B. Data reuse exploration

Based on the assumptions listed in the previous sub-
section, we propose a systematic data reuse exploration
methodology. Fig. 4 illustrates the different steps for a
small example.
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Fig. 4. Data reuse exploration methodology: example.

Copy-candidate chains

For each read instruction inside a loop nest, a copy-
candidate chain can be determined in the following way.
The first copy-candidate in the chain contains all array el-
ements accessed by the given read instruction during the
execution of the loop nest. The second copy-candidate
in the chain is associated with the iterations of the outer
loop. Each iteration has a corresponding time frame. All
array elements that are accessed by the read instruction
during a given time frame are stored in the corresponding
copy-candidate. The storage space of the copy-candidate is
shared among the different iterations of the loop. In case
the number of elements accessed by the read instruction
varies between iterations, the size of the copy-candidate is
determined by the iteration that accesses the most array
elements. This can be repeated for each of the remaining
loop nest levels. Together these copy-candidates form the
copy-candidate chain for the considered read instruction.
Such a chain represents the maximal exploitation of data
reuse of type (b) in Fig. 3.

Copy-candidate trees

Copy-candidate chains of different read instructions ac-
cessing the same array can be combined into a copy-
candidate tree for that array:

1. Read instructions belonging to the same loop nest
Often, the copy-candidates of read instructions belonging
to the same loop nest contain the same data. If this
is the case for all iterations, the copy-candidate can be
shared between the read instructions. Moreover, if a copy-
candidate can be shared, also the copy-candidates before
it in the chain can be shared. Because the first copy-
candidate, which is the array itself, can always be shared,
the copy-candidate chains can always be combined into a
copy-candidate tree. Such a tree represents the maximal
exploitation of data reuse of type (b) and (c) in Fig. 3.

2. Read instructions belonging to different loop nests
Copy-candidates that cannot be combined in the previ-
ous way because they belong to different loop nests (cfr.
Fig. 3(d)), can still share the same data. In this case, an
extra intermediate copy-candidate can be inserted in the
copy-candidate tree to exploit this data reuse opportunity.
When more than two copy-candidates share data in this
way, the search space grows quickly: for every possible sub-
set of them an extra copy-candidate could be introduced.
This freedom will be explored in future research and will
not be considered further in this paper. So we will treat
the read instructions as operating on independent arrays.
Two simple rules can be applied to prune copy-candidates
from copy-candidate trees because they will never occur
in an optimal memory hierarchy: the size of the copy-
candidates must decrease from one layer to the next, and
the reuse ratio (Eq. 1) of each layer must be larger than 1.

Copy-candidate graphs

From the previous step we can conclude that for every
array, a copy-candidate tree can be determined. Each node
in the tree represents a copy-candidate. A copy-candidate



can be characterized by its required memory size, number
of write operations to copy data into it, and the total num-
ber of read operations to copies on lower layers. Also its
data reuse-factor can be calculated. From this tree other
valid copy trees can be derived because it is allowed to
copy data from any ancestor node in the tree, not only the
parent node. Therefore, we extend the copy-candidate tree
to a copy-candidate graph in the following way: for every
node in the tree, we add edges starting from all its ancestor
nodes towards the node itself. All possible trees that can
be derived by selecting a single path from the root node to
every leaf node, represents a valid copy tree.

Array copy trees

The array copy tree is the lowest cost tree obtained from
the copy-candidate graphs in the way described above. Se-
lecting the array copy tree from all possible copy trees is
called data reuse decision (cfr. subsection V-D). The cost
function for selecting the array copy tree is defined next.

C. Cost function

The cost function for selecting the optimal copy tree is
a weighted sum of a power and area estimate for the copy
tree C'T'. The cost function is given by:

COSt(CT) = « Z [Pr (Nbits (C)a Nwords (C)a fread(c))
ceCT
+Py (Nbits (C)a Nwords(c)a Juwrite (C))]
+ ﬂ - Z A(Nbits(c); Nword(c)) (2)
ceCT
where

e cis a copy-candidate of the considered copy tree C'T,

o P, /uw(Nbits, Nwords faccess) is the power estimate for
read/write operations of a memory with bit width Nps,
word depth Nyor4s, and that is accessed with a real access
frequency faccess:

o A(Npits, Nwords) is the area estimate for a memory with
specified parameters, and

o o and 3 are weighting factors for area/power trade-offs.

The real access frequency fqccess Of a memory is obtained
by multiplying the number of memory accesses per frame
with the frame rate (not the clock frequency).

D. Data reuse decision

The end result of the data reuse decision task is an opti-
mal array copy tree for each array in the application. Here,
it is assumed that the optimal copy tree can be derived for
each array independently from the other arrays. This is
not completely true because the optimal copy trees depend
partly on how well the different copies can share mem-
ory space (inter-array in-place [15]). However, because the
data reuse decision is best taken early in the design flow,
not enough data about inter-array in-place is available to
include it in the decision process.

VI. TEST VEHICLE: MOTION ESTIMATION ALGORITHM

The motion estimation (ME) algorithm is used as a test-
vehicle to illustrate the proposed methodology.

A. Algorithm and Cost Functions

The motion estimation algorithm is used in moving im-
age compression algorithms. It allows to estimate the mo-
tion vector of small blocks of successive image frames. The
version we consider here is the kernel of what is commonly
referred to as the “full-search full-pixel” implementation
[16]. The algorithm and its parameters are shown in Fig. 5.
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for (g=0; g<H/n; g++)
for (h=0; h<W/n; h4++4) {
Aopt[g][h] = +o0;
for (i=-m; i<m; i++)
for (j=-m; j<mj; j++) {
A = 0;
for (k=0; k<n; k++) /* vertical traversal of CB */
for (1=0; 1<n; 144) { /* horizontal traversal of CB */
A += abs(New([g.n + k][h.n + ]
—Old[g.n+i+ k][h.n+j +1];)

/* vertical CB counter */
/* horizontal CB counter */

/* vertical searching of RW */
/* horizontal searching of RW */

Aopt[g}[h'] = min(Aa Aopt[g][h});

}

Fig. 5. The motion estimation algorithm and its parameters

For the experiments we have used the parameters of the
QCIF format (W=176, H=144, m=n=8) with a frame rate
of 30 frames/s. We are using an accurate but proprietary
model for estimating the power and area of the memory
modules from a specific library for which we are not allowed
to publish absolute values on area and power. Therefore
only relative values are provided.

B. Data reuse exploration for ME application

Copy-candidate chains. For the motion estimation appli-
cation only the frame arrays Old (O) and New (N) will
be considered here, because the other arrays can easily be
stored in a foreground register. Fig. 6 shows the copy-
candidate chains for the two read instructions accessing
array O and N respectively. Copy-candidates Ny and N5
can be pruned because they are not smaller than Nj.

Copy-candidate trees. Since there is only one read instruc-
tion from the Old frame and one from the New frame, there
is nothing to combine in this example: the copy-candidate
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Fig. 6. Copy-candidate chains for ME application.

chains for the frame arrays are the copy-candidate trees.
The nodes Og and Ng can now be pruned, though, because
they have a reuse ratio of one (i.e., no reuse).

Copy-candidate graphs. The copy-candidate graphs for the
two frame arrays are shown in Fig. 7.

Array copy trees. In this case the copy-candidate trees are
in fact chains.! Because of the chains, the search process for
finding the array copy tree can be represented as a simple
search tree. Fig. 8 shows these search trees for our motion
estimation example. The (optimal) array copy trees are
indicated in grey. The dashed lines divide the search trees
in a number of layers. Each layer corresponds to a copy-
candidate (or time-frame level). The solutions can either
include this copy-candidate (copy is shown in search tree)
or skip it (copy is not shown). Every node in the tree
represents a solution: the copy-candidate on that node is
the lowest layer in the hierarchy, and all copy-candidates
on the path between the root node and the node itself are
intermediate layers in the hierarchy. For each solution, the
area (A) and power (P) of the complete array copy tree
relative to the solution without hierarchy are indicated.

'In general this is not true as demonstrated by us before for the
H.263 video conferencing decoder test vehicle in [1].

Fig. 7. Copy-candidate graphs for ME application.

C. Discussion

A surprising result is that the total memory area can
decrease by adding extra memory layers (cfr. Fig. 8). The
reason for this is that the maximum access frequency of the
memories is taken into account in our estimations. If a cer-
tain memory would be accessed above its maximum access
frequency, this memory will be split into two memories of
half the size to increase the memory bandwidth. This split-
ting introduces overhead. By adding extra memory layers
with small memories, the bandwidth requirements of the
large background memories can be reduced, and therefore
splitting can be avoided for the large memories. This area
gain can be larger than the area lost by adding a few small
memories.

The optimal memory hierarchy for power is:

o for the Old frame, a 3-level hierarchy that leads to a
power saving of 83% compared to the solution without
memory hierarchy;

o for the New frame, a 2-level hierarchy that leads to a
power saving of 87% compared to the solution without
memory hierarchy.

These figures do not include the power dissipation in the
interconnect. Taking this into account will result in even
larger gains, as off-chip communication dissipates much
more power than on-chip communication. Without mem-
ory hierarchy all data transfers are off-chip. With memory
hierarchy, most of these are replaced by less power consum-
ing on-chip transfers.

If we compare the result with the one we proposed in an
ad hoc way in an earlier paper [2], we note that a different
memory hierarchy with only two levels was selected which
results in a higher power consumption. This clearly shows
that by using a more systematic design space exploration
methodology which exploits the full search space available,
as proposed in this paper, better results can be obtained.

VII. CONCLUSION

Exploiting temporal locality in the memory accesses by
means of an optimized memory hierarchy can effectively



reduce the power dissipation of data-dominated applica-
tions. The memory hierarchy design task can be split into
two steps: data reuse decision and memory layer assign-
ment. The first step is the topic of this paper, the second
is left for a future paper.

A systematic methodology for the data reuse decision
step has been proposed based on a number of realistic as-
sumptions. The feasibility and the large impact of the pro-
posed techniques have been shown on a real-life video ap-
plication. The results obtained for the motion estimation
application show power reductions of about 85% for the
memory sub-system compared to the case without mem-
ory hierarchy. Similar results have been obtained for other
applications not presented in this paper. These figures do
not include the power dissipation in the interconnect. Tak-
ing this into account will result in even larger gains. These
large power gains justify that the memory hierarchy should
be decided early in the design script.

Currently we are extending the methodology to work
also for instruction set processors with a (partially) fixed
memory hierarchy.
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