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Abstract� E�cient use of an optimized custom memory
hierarchy to exploit temporal locality in the data accesses
can have a very large impact on the power consumption
in data dominated applications� In the past experiments
have demonstrated that this task is crucial in a complete
low�power memory management methodology� But e�ective
formalized techniques to deal with this speci�c task have not
been addressed yet� In this paper� the surprisingly large de�
sign freedom available for the basic problem is explored in�
depth and the outline of a systematic solution methodology
is proposed� The e�ciency of the methodology is illustrated
on a real�life motion estimation application� The results ob�
tained for this application show power reductions of about
�	
 for the memory sub�system compared to the case with�
out a custom memory hierarchy� These large gains justify
that data reuse and memory hierarchy decisions should be
taken early in the design �ow�
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I� Introduction

A large part of the power dissipation in data dominated
applications is due to data transfers and data storage� This
power component can often be reduced by introducing an
optimized custom memory hierarchy that exploits the tem�
poral locality in the data accesses� The impact of this can
be very large� as has been demonstrated by us on an H����
video decoder ��	 and a motion estimation application ��	�
The idea of using a custom memory hierarchy to mini�

mize the power consumption is based on the fact that mem�
ory power consumption depends primarily on the access
frequency and the size of the memory� For on�chip memo�
ries� which are not very much partitioned� memory power
increases with the memory size� In practice� the relation
is between linear and logarithmic depending on the mem�
ory library� For o
�chip memories� the power is much less
dependent on the size because they are internally heav�
ily partitioned� Still they consume more energy per ac�
cess than the smaller on�chip memories� Hence� power sav�
ings can be obtained by accessing heavily used data from
smaller memories instead of from large background memo�
ries� Such an optimization requires architectural transfor�
mations that consist of adding layers of smaller and smaller
memories to which frequently used data can be copied ��	�
Memory hierarchy optimization introduces copies of data
from larger to smaller memories in the data �ow graph�
This means that there is a trade�o
 involved here� on the
one hand� power consumption is decreased because data
is now read mostly from smaller memories� while on the
other hand� power consumption is increased because extra
memory transfers are introduced� The memory hierarchy
design task has to 
nd the best solution for this trade�o
�
Memory hierarchy design for power optimization is ba�

sically di
erent from caching for performance optimiza�
tion ��	� The latter determines how to 
ll the cache such
that data has been loaded from main memory before it
is needed� Instead of minimizing the number of transfers�
the number of transfers is often increased to maximize the
chance of a cache hit� leading to wasted power by prefetch�
ing data that may never be needed�

Some custom memory hierarchy experiments on real�life
applications can be found in literature� What is not solved�
however� is how to decide on the optimal memory hierar�
chy� In this paper� we present a formalized methodology
for this decision and give an indication of how large the
search space really is� The latter is much larger than con�
ventionally exploited in state�of�the�art designs� For more
information on the context of this work we refer to ��	�

The rest of the paper is organized as follows� Section II
discusses the related work� Section III de
nes the global
memory hierarchy problem� Section IV de
nes the data
reuse decision problem and points out important issues to�
wards a methodology� Section V presents our methodology
for solving the data reuse exploration and decision prob�
lem� Section VI discusses the results of the data reuse ex�
ploration experiment for a motion estimation application�
Section VII concludes the paper�

II� Related Work

The main work related to data reuse exploration lies in
the parallel compiler area� especially related to the cache
hierarchy� Here� several papers have analyzed memory or�
ganization issues in processors ��	� This� however� has not
resulted yet in any formalizable method to guide the mem�
ory organization issues� In most work on parallel MIMD
processors� the emphasis in terms of storage hierarchy has
been on hardware mechanisms based on cache coherence
protocols ��	� Partitioning or blocking strategies for loops
to optimize the use of caches have been studied in several
contexts ��	� The main focus is on performance improve�
ment though and not on memory cost� Recently� also in a
system synthesis context� applying transformations to im�
prove the cache usage has been addressed ��	� ��	� None
of these approaches determine the best memory hierarchy
organization for a given �set of� applications and only few
address the power cost� Only an analysis of memory hierar�
chy choices based on statistical information to reach a given
throughput expectation has been discussed recently ���	� In
the hardware realization context� much less work has been
performed� mainly oriented to memory allocation ���	� ���	�
���	� This paper discusses how to decide on the optimal use
of the memory in a systematic way�



III� Memory Hierarchy Design

This section de
nes the memory hierarchy design task�
First� it shows that memory hierarchy design is about ex�
ploiting temporal locality� Then� it shows that memory
hierarchy design consists of two steps�data reuse decision�
which is the topic of this paper� and memory layer assign�
ment � which is left for a future paper�

A� Exploiting temporal locality

Memory hierarchy design exploits data reuse local in
time to save power by copying data that is reused often
in a short time period to a smaller memory� from which
the data can then be accessed� Fig� � illustrates this for all
read operations to a given array�

for i = 0 to n {
    for j = 0 to 2 {
        for k = 1 to 6 {
            ... = A[i*4 + k];
            }
        }
    } time
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Fig� �� Exploiting data reuse local in time to save power�

The horizontal axis is the time axis� It shows how the
data accesses are ordered relatively to each other in time�
The vertical axis shows the index of the array elements�
Every dot represents a memory read operation� scheduled
at a certain time and accessing a given array element� In
this example most values are read multiple times� Assum�
ing that the data is still needed later on� all of the array
elements have to be stored in a large background memory�
However� when we look at smaller time�frames �indicated
by the vertical dashed lines�� we see that only part of the
data is needed in each time�frame� so this part of the data
would 
t in a smaller� less power consuming memory� If
there is su�cient reuse of the data in that time�frame� it
can be advantageous to copy the data that is used fre�
quently in this time�frame to a smaller memory� Conse�
quently� the second time an array element has to be read�
it can be read from the smaller memory instead of the larger
memory� This leads to the following de
nitions�

De�nition� time�frame
The execution time of an application can be subdivided into
a number of non�overlapping time�intervals� called level �
time�frames� Each level i time�frame can be subdivided fur�
ther into non�overlapping level i� � time�frames�

De�nition� copy�candidate
A copy�candidate corresponding to an array A and time�
frame TFi is a set of array elements of A that are read
in TFi and are considered for copying to a lower hierarchy
level�

During the data reuse task it will be decided which copy�
candidates are really worth to be copied in order to save

power� Once this decision is made� the transfers for mak�
ing the copies will be added to the application code and
the copy�candidates become real �partial� copies of their
corresponding arrays�
Data reuse is the result of intra�copy reuse and inter�

copy reuse �cfr� Fig� ��� Intra�copy reuse means that each
array element is read several times from its memory during
one time�frame� Inter�copy reuse means that advantage is
taken from the fact that part of the data needed in the
next time�frame could already be available in the memory
from the previous time�frame� and therefore does not have
to be copied again�

for i = 0 to n {
  for j = 0 to 1 {
    for k = 0 to 2 {
      for l = 0 to 2 {
        for m = 1 to 5 {
          ... = A[i*15 + k*5 + m];  
        }
      } } } } 
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Fig� �� Possibility for multi�level hierarchy�

Taking full advantage of temporal locality for power� usu�
ally requires architectural transformations that consist of
adding several layers of memories �each corresponding to its
own time�frame level� between the large background mem�
ories and the small foreground memories �registers in the
data�path�� Every layer in the memory hierarchy contains
smaller memories than the ones used in the layer above it�
An example of this is shown in Fig� �� It shows time�frames
that are subdivided into smaller time�frames� Each level of
time�frames potentially corresponds to a memory layer in
the memory hierarchy�

B� Steps in memory hierarchy design

Two steps can be identi
ed in memory hierarchy design�
�� The data reuse exploration and decision step decides
which intermediate copies have to made for accessing the
data in a power e�cient way�
�� The memory layer assignment step decides for each ar�
ray and copy of an array on which layer in the common
custom memory hierarchy it will be stored�
After memory layer assignment� an optimal memory ar�

chitecture has to be derived for each layer� This is done
by the subsequent memory allocation and array�to�memory
assignment tasks in our Data Transfer and Storage Explo�
ration �DTSE� methodology ��	� This paper focuses on the
data reuse decision step only�

IV� Data Reuse Decision

This section discusses the data reuse exploration and de�
cision step of memory hierarchy design� It points out im�
portant elements for a systematic methodology described
in the next section�

A� Search space

The following assumptions allow to focus the data reuse
task� without really restricting the search space in practice�



� Only read operations have to be considered
The reason for this is that repeated reading of the same
data value makes sense �i�e�� repeatedly reading the same
memory location without intermediate writes to that mem�
ory location�� whereas writing the same data value usually
does not make sense� So there is no need for creating a
memory hierarchy for repeatedly written data� The only
thing that has to be decided for write operations is in which
layer a certain �temporary� array will be written� This is
decided in the memory layer assignment step after data
reuse decisions are made�
� Only one array has to be considered at a time
Data reuse exploration can be tackled for each array sep�
arately� The main reason for this is that each copy in the
memory hierarchy has its own root array� i�e�� the copies
form a tree where the root is the original array that is being
accessed� A copy cannot be obtained as the mix of di
erent
arrays� We will also assume that the data reuse decision
can be taken for each array separately� As explained later
on� this limits the search space to some extent�

B� Data�reuse factor

The usefulness of memory hierarchy for saving power is
strongly related to the array�s data reusability� because this
is what determines the ratio between the number of read
operations from a copy of an array in a smaller memory�
and the number of read operations from the array in the
larger memory on the next hierarchical level�
The reuse factor of a group of data D stored in a memory

on layer i relative to layer i��� where layer � is the furthest
from the data paths� is de
ned as�

FR�i�D� �
NR�Mi� D�

NR�Mi��� D�
���

where NR�Mi� D� is the total number of times an element
from D is read from a memory at layer i� A reuse factor
larger than � is the result of intra�copy and inter �copy reuse
�cfr� Fig� ���

C� Classi�cation of data reuse

Fig� � presents a classi
cation of four cases in which
data reuse can be exploited by means of memory hierar�
chy� These four cases are�
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Fig� �� Classi�cation of data reuse opportunities�

�a� No loops
In case there are no loops� there is no structured use of ar�
rays� In fact� each array element is treated independently
from the others similar to scalars� This case is not consid�
ered in our methodology� It is left for scalar methodologies
which are more suited for this�
�b� One read instruction in a �nested� loop
This is the basic case on which our methodology is based�
Both intra�copy and inter�copy reuse are possible here�
when the loop nesting �i�e�� the order of the di
erent nested
loops� and the direction in which the loops are traversed�
is 
xed� Indeed� in this case� the ordering of the di
erent
copies is known and every two consecutive copies can be
examined for overlap �i�e�� inter�copy reuse��
�c� Multiple read instructions in a �nested� loop
Here it is assumed that each read instruction has a di
erent
index expression� because otherwise they can be reduced to
the previous case by reading once from background mem�
ory and storing the result in a foreground register� When
the read instructions are accessing di
erent parts of the
array� a di
erent memory hierarchy can be constructed for
each of them� In practice� these memory hierarchies can
contain partly the same data� and are then best combined�
Determining which part of the memory hierarchy can be
shared� can be done with a geometrical data �ow analysis�
�d� Read instructions in di�erent loop nests
In this case� a memory hierarchy can be derived for each of
the loop nests separately� Because they are in di
erent loop
nests� these memory hierarchies can be very di
erent from
each other� Depending on the temporal locality �which is
only known when the ordering of all loop nests is already

xed�� it may be useful to copy the data that is common to
these loops to an extra memory layer� Again a polyhedral
analysis can be used to determine which part of the array is
used in common� Remark that when more than two loops
are involved� part of the array can be common to only a few
of the loops involved� making things much more complex�

V� Proposed Methodology

In this section� we propose a methodology for data reuse
exploration and decision based on a number of assumptions
to make the solution feasible for real�life applications�

A� Assumptions

The following is assumed in our methodology�
� Nesting order and direction of nested loops is �xed
The 
xed nesting order is required to determine the time�
frames and copy�candidates corresponding to each read in�
struction in the loop nest� The 
xed iteration direction is
required to determine the overlap for estimating the inter�
copy reuse�
� Time�frames are determined by loop boundaries
Finding an optimal time�frame hierarchy is a very complex
problem� However� we believe that the optimal time�frame
boundaries are likely to coincide with the loop boundaries
of loop nests� Therefore� we use as a heuristic that the loop
boundaries correspond to time�frame boundaries� instead
of trying to 
nd globally optimal time�frame boundaries�



� A copy�candidate contains all data read in its time�frame
It is assumed that all data being accessed by a certain
read instruction in a certain time�frame will be copied to
a copy�candidate� such that all data required by the read
instruction can be found inside the copy�candidate� Ide�
ally� only part of the data that is accessed more than once
should be copied� The loss due to this restriction is small
in practice�
� Copy�candidates of a time�frame level are stored in�place
It is assumed that at the end of a time�frame� the data
copied into the intermediate memory is not needed any�
more� and will be overwritten by the data needed in the
next time�frame� Therefore the size of the copy�candidate
corresponding to a certain time�frame level is determined
by the time�frame leading to the largest copy�candidate�
� Copy�candidates are stored in perfectly �tting memories
It is assumed that a copy�candidate will be stored in a
memory with word depth and bit width equal to those of
the copy�candidate� In general� this assumption leads to an
underestimation of the power cost� as usually several copy�
candidates will have to share a memory� This real memory
size is only known until after array�to�memory assignment
and can therefore not be taken into account�
� Inter�copy reuse is fully exploited
It is assumed that inter�copy reuse will be fully exploited�
This means that data that is already present in the smaller
memory from the previous copy will not be copied again�
Only data that is not yet present has to be copied over
the data of the previous copy that is not needed anymore�
This a
ects the number of accesses to each of the copy�
candidates� The size of the copy�candidates is una
ected�

B� Data reuse exploration

Based on the assumptions listed in the previous sub�
section� we propose a systematic data reuse exploration
methodology� Fig� � illustrates the di
erent steps for a
small example�
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Fig� �� Data reuse exploration methodology� example�

Copy�candidate chains

For each read instruction inside a loop nest� a copy�
candidate chain can be determined in the following way�
The 
rst copy�candidate in the chain contains all array el�
ements accessed by the given read instruction during the
execution of the loop nest� The second copy�candidate
in the chain is associated with the iterations of the outer
loop� Each iteration has a corresponding time frame� All
array elements that are accessed by the read instruction
during a given time frame are stored in the corresponding
copy�candidate� The storage space of the copy�candidate is
shared among the di
erent iterations of the loop� In case
the number of elements accessed by the read instruction
varies between iterations� the size of the copy�candidate is
determined by the iteration that accesses the most array
elements� This can be repeated for each of the remaining
loop nest levels� Together these copy�candidates form the
copy�candidate chain for the considered read instruction�
Such a chain represents the maximal exploitation of data
reuse of type �b� in Fig� ��

Copy�candidate trees

Copy�candidate chains of di
erent read instructions ac�
cessing the same array can be combined into a copy�
candidate tree for that array�
�� Read instructions belonging to the same loop nest
Often� the copy�candidates of read instructions belonging
to the same loop nest contain the same data� If this
is the case for all iterations� the copy�candidate can be
shared between the read instructions� Moreover� if a copy�
candidate can be shared� also the copy�candidates before
it in the chain can be shared� Because the 
rst copy�
candidate� which is the array itself� can always be shared�
the copy�candidate chains can always be combined into a
copy�candidate tree� Such a tree represents the maximal
exploitation of data reuse of type �b� and �c� in Fig� ��
�� Read instructions belonging to di�erent loop nests
Copy�candidates that cannot be combined in the previ�
ous way because they belong to di
erent loop nests �cfr�
Fig� ��d��� can still share the same data� In this case� an
extra intermediate copy�candidate can be inserted in the
copy�candidate tree to exploit this data reuse opportunity�
When more than two copy�candidates share data in this
way� the search space grows quickly� for every possible sub�
set of them an extra copy�candidate could be introduced�
This freedom will be explored in future research and will
not be considered further in this paper� So we will treat
the read instructions as operating on independent arrays�
Two simple rules can be applied to prune copy�candidates
from copy�candidate trees because they will never occur
in an optimal memory hierarchy� the size of the copy�
candidates must decrease from one layer to the next� and
the reuse ratio �Eq� �� of each layer must be larger than ��

Copy�candidate graphs

From the previous step we can conclude that for every
array� a copy�candidate tree can be determined� Each node
in the tree represents a copy�candidate� A copy�candidate



can be characterized by its required memory size� number
of write operations to copy data into it� and the total num�
ber of read operations to copies on lower layers� Also its
data reuse�factor can be calculated� From this tree other
valid copy trees can be derived because it is allowed to
copy data from any ancestor node in the tree� not only the
parent node� Therefore� we extend the copy�candidate tree
to a copy�candidate graph in the following way� for every
node in the tree� we add edges starting from all its ancestor
nodes towards the node itself� All possible trees that can
be derived by selecting a single path from the root node to
every leaf node� represents a valid copy tree�

Array copy trees

The array copy tree is the lowest cost tree obtained from
the copy�candidate graphs in the way described above� Se�
lecting the array copy tree from all possible copy trees is
called data reuse decision �cfr� subsection V�D�� The cost
function for selecting the array copy tree is de
ned next�

C� Cost function

The cost function for selecting the optimal copy tree is
a weighted sum of a power and area estimate for the copy
tree CT � The cost function is given by�

cost�CT � � � �

X

c � CT

�Pr�Nbits�c�� Nwords�c�� fread�c��

�Pw�Nbits�c�� Nwords�c�� fwrite�c��	

� � �

X

c � CT

A�Nbits�c�� Nword�c�� ���

where

� c is a copy�candidate of the considered copy tree CT �
� Pr�w�Nbits� Nwords� faccess� is the power estimate for
read�write operations of a memory with bit width Nbits�
word depth Nwords� and that is accessed with a real access
frequency faccess�
� A�Nbits� Nwords� is the area estimate for a memory with
speci
ed parameters� and
� � and � are weighting factors for area�power trade�o
s�

The real access frequency faccess of a memory is obtained
by multiplying the number of memory accesses per frame
with the frame rate �not the clock frequency��

D� Data reuse decision

The end result of the data reuse decision task is an opti�
mal array copy tree for each array in the application� Here�
it is assumed that the optimal copy tree can be derived for
each array independently from the other arrays� This is
not completely true because the optimal copy trees depend
partly on how well the di
erent copies can share mem�
ory space �inter�array in�place ���	�� However� because the
data reuse decision is best taken early in the design �ow�
not enough data about inter�array in�place is available to
include it in the decision process�

VI� Test Vehicle� Motion Estimation Algorithm

The motion estimation �ME� algorithm is used as a test�
vehicle to illustrate the proposed methodology�

A� Algorithm and Cost Functions

The motion estimation algorithm is used in moving im�
age compression algorithms� It allows to estimate the mo�
tion vector of small blocks of successive image frames� The
version we consider here is the kernel of what is commonly
referred to as the �full�search full�pixel� implementation
���	� The algorithm and its parameters are shown in Fig� ��
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Fig� �� The motion estimation algorithm and its parameters

For the experiments we have used the parameters of the
QCIF format �W����� H����� m�n��� with a frame rate
of �� frames�s� We are using an accurate but proprietary
model for estimating the power and area of the memory
modules from a speci
c library for which we are not allowed
to publish absolute values on area and power� Therefore
only relative values are provided�

B� Data reuse exploration for ME application

Copy�candidate chains� For the motion estimation appli�
cation only the frame arrays Old �O� and New �N� will
be considered here� because the other arrays can easily be
stored in a foreground register� Fig� � shows the copy�
candidate chains for the two read instructions accessing
array O and N respectively� Copy�candidates N� and N�

can be pruned because they are not smaller than N��

Copy�candidate trees� Since there is only one read instruc�
tion from the Old frame and one from the New frame� there
is nothing to combine in this example� the copy�candidate
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Fig� �� Copy�candidate chains for ME application�

chains for the frame arrays are the copy�candidate trees�
The nodes O� and N� can now be pruned� though� because
they have a reuse ratio of one �i�e�� no reuse��

Copy�candidate graphs� The copy�candidate graphs for the
two frame arrays are shown in Fig� ��

Array copy trees� In this case the copy�candidate trees are
in fact chains�� Because of the chains� the search process for

nding the array copy tree can be represented as a simple
search tree� Fig� � shows these search trees for our motion
estimation example� The �optimal� array copy trees are
indicated in grey� The dashed lines divide the search trees
in a number of layers� Each layer corresponds to a copy�
candidate �or time�frame level�� The solutions can either
include this copy�candidate �copy is shown in search tree�
or skip it �copy is not shown�� Every node in the tree
represents a solution� the copy�candidate on that node is
the lowest layer in the hierarchy� and all copy�candidates
on the path between the root node and the node itself are
intermediate layers in the hierarchy� For each solution� the
area �A� and power �P� of the complete array copy tree
relative to the solution without hierarchy are indicated�

�In general this is not true as demonstrated by us before for the
H���� video conferencing decoder test vehicle in ����
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Fig� �� Copy�candidate graphs for ME application�

C� Discussion

A surprising result is that the total memory area can
decrease by adding extra memory layers �cfr� Fig� ��� The
reason for this is that the maximum access frequency of the
memories is taken into account in our estimations� If a cer�
tain memory would be accessed above its maximum access
frequency� this memory will be split into two memories of
half the size to increase the memory bandwidth� This split�
ting introduces overhead� By adding extra memory layers
with small memories� the bandwidth requirements of the
large background memories can be reduced� and therefore
splitting can be avoided for the large memories� This area
gain can be larger than the area lost by adding a few small
memories�
The optimal memory hierarchy for power is�
� for the Old frame� a ��level hierarchy that leads to a
power saving of ��� compared to the solution without
memory hierarchy�
� for the New frame� a ��level hierarchy that leads to a
power saving of ��� compared to the solution without
memory hierarchy�
These 
gures do not include the power dissipation in the
interconnect� Taking this into account will result in even
larger gains� as o
�chip communication dissipates much
more power than on�chip communication� Without mem�
ory hierarchy all data transfers are o
�chip� With memory
hierarchy� most of these are replaced by less power consum�
ing on�chip transfers�
If we compare the result with the one we proposed in an

ad hoc way in an earlier paper ��	� we note that a di
erent
memory hierarchy with only two levels was selected which
results in a higher power consumption� This clearly shows
that by using a more systematic design space exploration
methodology which exploits the full search space available�
as proposed in this paper� better results can be obtained�

VII� Conclusion

Exploiting temporal locality in the memory accesses by
means of an optimized memory hierarchy can e
ectively



reduce the power dissipation of data�dominated applica�
tions� The memory hierarchy design task can be split into
two steps� data reuse decision and memory layer assign�
ment� The 
rst step is the topic of this paper� the second
is left for a future paper�
A systematic methodology for the data reuse decision

step has been proposed based on a number of realistic as�
sumptions� The feasibility and the large impact of the pro�
posed techniques have been shown on a real�life video ap�
plication� The results obtained for the motion estimation
application show power reductions of about ��� for the
memory sub�system compared to the case without mem�
ory hierarchy� Similar results have been obtained for other
applications not presented in this paper� These 
gures do
not include the power dissipation in the interconnect� Tak�
ing this into account will result in even larger gains� These
large power gains justify that the memory hierarchy should
be decided early in the design script�
Currently we are extending the methodology to work

also for instruction set processors with a �partially� 
xed
memory hierarchy�
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