
A CODING METHOD FOR UVLC TARGETING EFFICIENT DECODER
ARCHITECTURE

Shang Xue and Bengt Oelmann

Department of Information Technology and Media, Mid Sweden University
SE-851 70 Sundsvall, Sweden

xue.shang@mh.se

ABSTRACT
Variable length code (VLC) is used in a large variety of

lossless compression applications. A specially designed
VLC, called “Universal Variable Length Code” (UVLC),
is utilized in the latest video coding standard H.26L under
development. In this work we propose a coding method
that we call “Alternating Coding” (ALT coding) for
UVLC. And an efficient UVLC decoder is designed (ALT
decoder) on the basis of it. ALT coding facilitates a much
easier decoding scheme for UVLC. It frees the decoder
from codeword tables and the sizes of the barrel shifters
are reduced. The codeword tables and barrel shifters usu-
ally occupy the largest portion of the area in the tradi-
tional VLC decoders and they are also performance
limiting in terms of speed and power consumption. We
compare the ALT decoder with one of the most efficient
VLC decoders called “VLC decoder using plane separa-
tion” (PLS). Our results show that the ALT decoder
increases 25% in speed, decreases 41% in size, and con-
sumes 45% power of the PLS decoder.

1. INTRODUCTION
Image and video coding standards all utilize entropy

coding in the form of variable length codes (VLCs) for
their efficient compression. The video coding standard
H.26L utilizes a unique VLC pattern which is called Uni-
versal Variable Length Code (UVLC) to perform entropy
coding [4]. UVLC was first proposed in [1]. In [1,2,3] it is
suggested to be used in the coding of motion vectors as
well as DCT coefficients for H.26L. UVLC is claimed to
be able to provide good performance in terms of coding
efficiency, configurability to various applications and
error resiliency. Although UVLC is efficient in compres-
sion, the variable code length also limits the decoding
throughput. The decoding process needs to identify the
codeword boundaries, each of which depends recursively
on the previous codeword boundary. In this paper we pro-
pose a new coding method, called “Alternating Coding”
(ALT coding), which is applied to UVLC. It enables the
extraction of the special properties of UVLC and facili-
tates it with ability of immediate codeword boundary
detection. In addition, by ALT coding method, the decod-
ing procedure of UVLC can be simplified to computa-

tional operations instead of codeword table searching.
Therefore the decoder can be greatly simplified.

VLC decoders are usually implemented by using look-
up tables and a shifting scheme [6,7]. All possible code-
words and codeword lengths need to be stored in look-up
tables so that they can be matched out according to the
input data. The shifting scheme shifts the input data
according to the codeword lengths in order to perform
decoding continuously. The codeword tables can be
implemented with ROM or PLA and the shifting scheme
is usually implemented with barrel shifters. These two
parts in a VLC decoder occupy the largest portion of the
area and as they are the two crucial parts in determining
the codeword boundaries, they are both included in the
critical timing path of the decoder. Look-up tables and
barrel shifters are therefore the performance limiting com-
ponents in a VLC decoder. UVLC belongs to the VLC
family. Therefore it is straight-forward to implement a
UVLC decoder by using the existing architectures for
decoding general VLCS, i.e. using look-up tables and a
shifting scheme.

In this paper we present a new type of UVLC decoder
based on the ALT coding method. It does not contain
look-up tables, and the sizes of barrel shifters are greatly
reduced. Therefore it is faster, much smaller and less
power-consuming. With the development in mobile video
communications, the construction of smaller, faster, and
less power-consuming video CODECs becomes increas-
ingly important. In the paper, we compare the perform-
ances of the proposed UVLC decoder with a decoder
developed by Jae Ho Jeon et al. [8], under the name of
“Fast Variable-Length Decoder Using Plane Separation”
(PLS), which was claimed to be one of the most effective
VLC decoders. We compare the ALT decoder to the PLS
decoder in delay, area and power consumption. Our results
show that the ALT decoder is 1.34 times faster, 1.7 times
smaller, and consumes 45% power in comparison to the
PLS decoder.

The outline of this paper is as follows. First the coding
method, “Alternating Coding”, for UVLC is described.
Then the ALT decoder is presented. After that we present
a comparison of performance of the ALT decoder to the
PLS decoder. Finally we draw some conclusions.

2.ALTERNATING CODING
Table 1 gives an example of UVLC [1].

For each codeword we can look at the odd-indexed bits
(OIB) and the even-indexed bits (EIB) separately. The
OIB form a fixed pattern “011..10”. The EIB, as indicated
by xn in Table 1, is an arbitrary binary code.

The OIBs of the UVLCs can be looked on as a set of
unary codes whose length represents the code class in
Table 1. The EIBs are a set of binary codes whose length
can be determined by their corresponding odd-indexed
parts, i.e. one bit shorter than OIB. The idea of alternating
coding is to split the unary parts and the binary parts of a
codeword, to encode and transmit them separately. In cod-
ing the unary OIBs, two different sets of codes are
applied, one is {0,00,000, ..., 0000...0}, another is
{1,11,111, ..., 1111...1}. They are used alternatingly in the
coding procedure. The binary EIBs are kept the same. As
the length of each EIB can be calculated by its corre-
sponding odd-indexed part, it can be simply deemed as
fixed-length codes and can be easily decoded once the
OIB is decoded. For example, if we have a UVLC series

, after applying the alternating cod-
ing, we will get one OIB sequence and one EIB sequence.
The OIB sequence will be , and the EIB
sequence will be . The ALT coded series will
be transmitted separately as: .
Figure 1 shows how ALT coding is applied for UVLC.

Separating the OIB sequence and the EIB sequence
and applying two codeword tables for the OIBs provide
two advantages in the decoding procedure:

1. The codeword boundaries can be easily determined
by detecting the value changes in an OIB series.

2. The coded value can be calculated as:
 (1)

Here length(OIB) means the number of bits an OIB
has.

These advantages will enable simplification of the
decoding procedure.

Tu-Chih Wang et al. proposed an efficient UVLC
encoder in [5]. In their design, the encoding procedure is
simplified by modifying the code values first. Table 2
shows the modified code numbers and the corresponding
codewords of UVLC. It can be seen that the EIBs, i.e. the
underlined bits in UVLC, and the underlined bits in the
binary expressions of the modified code numbers are
exactly the same. Encoding is then done by inserting the
fixed OIB pattern in between the bits of the binary code.
Their encoder design [5] uses a “Code Splitter” to achieve
the insertion of the OIB. The “Code Splitter” is simply a
wiring box and does not contain any gates. The encoder
using the ALT coding method can then be easily modified
from the existing encoder by eliminating the “Code Split-
ter”, and outputting the two parts separately though some
buffering is needed before the whole UVLC sequence is
generated.

3.ALT DECODER
To fully exploit the advantages facilitated by ALT cod-

ing, the decoding of an ALT coded UVLC packet
demands processing the OIB sequence and the EIB
sequence separately. This requires a separation of the OIB
and EIB sequences upon receiving the whole UVLC
packet. Therefore buffering the UVLC packet before
decoding is needed. However, as buffering is normally
needed in image/video CODECs, this will not bring extra
cost to the decoder.

When the number of source symbols contained in a
packet is known to be N (such as for motion vectors and
DCT coefficients in H.263), the packet can be easily sepa-
rated into an OIB sequence and an EIB sequence.

Let N be the number of codewords in the packet, and L

Table 1. An example of UVLC
Class Coarse

code
Additional

code
UVLC Value to be

expressedk Codeword Length
1 1 None 1 1 1
2 00 x0 0x00 3 ‘x0’+ 2[2:3]
3 010 x1x0 0x11x00 5 ‘x1x0’+ 4[4:7]

4 0110 x2x1x0 0x21x11x00 7 ‘x2x1x0’+
8[8:15]

5 01110 x3x2x1x0 0x31x21x11x00 9 ‘x3x2x1x0’+
16[16:31]

6 011110 x4x3x2x1x0 0x41x31x21x11x00 11 ‘x4x3x2x1x0’+
32[32:63]

001 00011 011 01011

11 000 11 000
0 01 1 10

11 000 11 000 0 01 1 10

Sync.
Marker

Sync.
MarkerUVLC1 UVLC2 UVLC3 UVLC4 UVLCn... ...

Sync.
Marker

Sync.
Marker

OIB1 OIB2 OIB3 OIB4 OIBn

EIBnEIB4EIB3EIB2EIB1

OIB Sequence EIB Sequence

Fig. 1: ALT coding for UVLC

Table 2. Modified code table
Code

Number
Modified

Code Number
Binary UVLC

0 1 00001 1
1 2 00010 0 0 1
2 3 00011 0 1 1
3 4 00100 0 0 0 0 1
4 5 00101 0 0 0 1 1
5 6 00110 0 1 0 0 1
6 7 00111 0 1 0 1 1
7 8 01000 0 0 0 0 0 0 1
8 9 01001 0 0 0 0 0 1 1

code number 2length OIB() 1– decimal EIB()+=

be the packet length. Let lOIB represent the length of the
OIB sequence and lEIB represents the length of the EIB
sequence. We have:

, and

.

Therefore, we have:

 and .

In order to make the ALT decoder comparable with

general VLC decoders, in this paper, we ignore the
peripheral architectures such as the input buffers or the
OIB-EIB separation logic into consideration. This is still
fair as when general VLC CODECs are applied in image/
video decoding, different peripheral architectures need to
be implemented anyway.

The ALT decoder proposed in this paper is based on
the ALT coding. The maximum codeword length is set to
be 31 bits in order to cover adequate number of code-
words.

The ALT decoder consists of two decoders, one is the
OIB decoder and the other is the EIB decoder. The archi-
tecture of the OIB decoder is described in Figure 2. Its
function is to generate the length of each OIB, offset it to
get the length of each EIB and provide it as a reference in
decoding the actual UVLC. Having in mind that the maxi-
mum codeword length is 31 bits, the maximum length for
the OIB is then set to be 16 bits. The decoder consists of
one 16-to-4 priority encoder (PE0), one 4-to-16 decoder

(DEC0), two 16-bit buffers (D0 and D1), one 15-bit regis-
ter D2, one 4-bit register D3, one 15-bit comparator
(COMP0), two 4-bit subtractors (SUB0 and SUB1), one 1-
bit 2:1 multiplexer (MUX0), and two 1-bit registers (D4
and D5).

The OIB input of the decoder is put into the two buff-
ers D0 and D1, the first two bytes in D1 and the second
two bytes in D0. The first two-byte OIB series is then fed
to the xor-gates in the “Boundary Detection Logic” (BDL)

lEIB lOIB N–=

L lEIB lOIB+ 2lOIB N–= =

lOIB
L N+()

2
------------------= lEIB

L N–()
2

------------------=

D0[15...0]D1[15...0]

... ...

... ...

Priority Encoder
PE0

Decoder
DEC0

“1”

DEC0[0]

D2[14...0]

4

15

15

load
SU

B 0

CO
M

P 0

M
UX

0

OIB Input

D3

D4
D5

load

16

D1[0] xor D0[15]

Fig. 2: OIB decoder

load load

Boundary Detection Logic (BDL)

Codeword Disabling Logic (CDL)

OIB
OutputSU

B 1

“0001”

+
_ +

_

where two consecutive bits are xored with each other. As
the OIBs are now denoted in alternating all-one and all-
zero codes, only at each OIB boundary a “1” will be gen-
erated by the xor operations. Therefore, each “1” indicates
an OIB boundary. The output after the BDL is then fed
into the priority encoder PE0 in order to generate the posi-
tion of the first OIB boundary. Register D3 is originally
loaded with the number 16 (that is “0000” in a 4-bit
binary code). The length of the first OIB is then calculated
by SUB0 and at the same time D3 is updated with the posi-
tion of the first OIB boundary. The 4-to-16 bit decoder
DEC0 generates the position of the first OIB boundary
and disables the first “1” of the input of the priority
encoder by using the or-gates and the “Codeword Disa-
bling Logic” (CDL). In the next clock cycle, the second
OIB boundary is encoded by PE0. Again the second OIB
boundary is put to D3 and its position is decoded by
DEC0. The same operations are then repeated. Thus the
length of each OIB is generated. By using another sub-
tractor SUB1, the output of SUB0 is offset by one. The
length of the corresponding EIB is then generated and put
to the OIB output.

Assume we have a series of values to be coded using
the UVLC in Table 1 and the values are {3, 9, 1, 1, 1, 4, 1,
26, 15, 1, 1, 1, 1, 1, 2, 12,}. Then the OIB sequence
will be {00, 1111, 0, 1, 0, 111, 0, 11111, 0000, 1, 0, 1, 0, 1,
00, 1111,} and the EIB sequence will be {1, 001, 00,
1010, 111, 0, 100,} respectively.

Table 3 illustrates how the OIB decoder decodes the
above OIB sequence. Suppose the OIB decoder was ini-
tialized to all zeros before D1 is loaded with data. When
“load” is set to high, D1 and D0 are loaded with
“0011110101110111” and “1100001010100111” respec-
tively. Then D1[0]xorD0[15] is set to low, which indicates
the last codeword in D1 continues in D0.

The EIB decoder is illustrated in Figure 3. It contains
one 15-bit registers (D7), one 4-bit register D8, two 15-bit
2:1 multiplexers (MUX1 and MUX2), two 30-bit barrel
shifters (BS0 and BS1), two 4-bit subtractors (SUB1 and
SUB2), and a 4-bit greater than & equality comparator
(COMP1). The EIB series is first loaded in the lower half
of the two barrel shifters, the first 15 bits in BS0 and the
following 15 bits in BS1. The upper half of the barrel
shifters are both loaded with 15 bits zeros. D8 is originally
loaded with 15 (“1111” in binary), which is the maximum
EIB length. BS0 shifts the EIB series to the upper half of it

Table 3. Example of the decoding procedure of OIB
decoder

Clock
cycle

0

D1_out 0011110101110111 PE0_out 1110
BDL_out 010001111001100 D3_out 0000
CDL_out 010001111001100 SUB0_out 0010
DEC0_out 0100000000000000 OIB_out 0001
D2_in 010000000000000 COMP0_out 0
D2_out 000000000000000 load 0

Clock
cycle

1

D1_out 0011110101110111 PE0_out 1010
BDL_out 010001111001100 D3_out 1110
CDL_out 000001111001100 SUB0_out 0100
DEC0_out 0000010000000000 OIB_out 0011
D2_in 010001000000000 COMP0_out 0
D2_out 010000000000000 load 0

Clock
cycle

2

D1_out 0011110101110111 PE0_out 1001
BDL_out 010001111001100 D3_out 1010
CDL_out 000000111001100 SUB0_out 0001
DEC0_out 0000001000000000 OIB_out 0000
D2_in 010001100000000 COMP0_out 0
D2_out 010001000000000 load 0

...

Clock
cycle

6

D1_out 0011110101110111 PE0_out 0011
BDL_out 010001111001100 D3_out 0100
CDL_out 000000000000100 SUB0_out 0001
DEC0_out 0000000000001000 OIB_out 0000
D2_in 010001111001100 COMP0_out 1
D2_out 010001111001000 load 1

Clock
cycle

7

D1_out 1100001010100111 PE0_out 1110
BDL_out 010001111110100 D3_out 0011
CDL_out 010001111110100 SUB0_out 0101
DEC0_out 0100000000000000 OIB_out 0100
D2_in 010000000000000 COMP0_out 0
D2_out 000000000000000 load 0

... Decoding continues

Table 3. Example of the decoding procedure of OIB
decoder

Fig. 3: EIB decoder

D7

D8
BS1

BS0

MUX1 MUX2

SU
B

3

SU
B

2

CO
M

P 1

“00......00”

“00......00”

OIB
Output

EIB
Input

EIB
Output

15

15 15 15

1515

15 15
1

4

4

“000”

3

+
_

+

_

according to the first EIB length generated from the OIB
decoder. The first EIB is then generated from the upper
half of BS0. At the same time, SUB2 outputs the length of
the rest of the EIB series after the first EIB has been
shifted out. This length is stored in D8, to be used for the
decoding of the next EIB. In the next clock cycle, the
lower half of BS0 is loaded with the shifted EIB series and
the upper half is cleared into all zeros. Therefore the
decoding of the next EIB can be performed. The same
operations are then repeated. When EIB decoding is per-
formed till the end of the first 15 bits, the length of the
EIB series left in BS0 will be equal to or smaller than the
length of the next EIB. This will make the output of
COMP1 become “1”. A new 15-bit EIB sequence will
then be loaded to the EIB input. The contents of BS0 and
BS1 are both shifted according to the length of the next
EIB. The two separated parts of the last EIB in BS0 can be
merged by the or-gates and MUX1 so that the complete
EIB can be generated. MUX2 is used to load new data into
BS0. Decoding can then be performed continuously.

Take the same example we used for illustrating the
OIB decoder. Now we have an EIB sequence
{10010010101110100......} to decode. Table 4 shows how
decoding is performed in the EIB decoder.

In Table 4, X14...X0 indicates the new data coming
after the first 15 bits. In our example, X14X13 actually are
“00”.

The complete architecture of the ALT decoder is
shown in Figure 4. The decoded EIB length, i.e. the OIB
Output, is put to a code converter. The truth table of the
code converter is given in Table 5.

The function of this code converter is to change the
length of the EIB (i.e. length(OIB)-1) into
so that the code number can be calculated by a simple
addition operation using the result of the code converter,
as mentioned in relation (1). Therefore, the output of the
code converter is added to the output of the decoded EIB
using the 16-bit adder (ADD) to generate the actual code
number. The decoding of a UVLC is then completed.

In this ALT decoder, no look-up tables are needed and
the size of the shifting scheme is greatly reduced. It is
capable of decoding one codeword per clock cycle.

4.COMPARISON OF PERFORMANCE
The ALT decoder is compared with the PLS decoder

developed by Jae Ho Jeon et al.[8] shown in Figure 5.
The original structure in [8] was designed for VLC that

has a maximum codeword length of 16 bits. Here we
reconfigure it for UVLC whose maximum codeword
length is 31 bits. The decoder consists of two separate
planes. For UVLC, each plane consists of a 62-bit barrel

Table 4. Example of the decoding procedure of EIB
decoder

Clock
cycle

1

BS1_out 000000000000000X14X13 X0 OIB_out 0001
BS0_out 000000000000001001001010111010 COMP1_out 0
D7_out 000000000000000 SUB2_out 1110
EIB_out 000000000000001 SUB3_out 1110

Clock
cycle

2

BS1_out 000000000000000X14X13 X0 OIB_out 0011
BS0_out 000000000000001001010111010000 COMP1_out 0
D7_out 001001010111010 SUB2_out 1100
EIB_out 000000000000001 SUB3_out 1011

Clock
cycle

3

BS1_out 000000000000000X14X13 X0 OIB_out 0000
BS0_out 000000000000000001010111010000 COMP1_out 0
D7_out 001010111010000 SUB2_out 1100
EIB_out 000000000000000 SUB3_out 1011

...

Clock
cycle

15

BS1_out 000000000000000X14X13 X0 OIB_out 0001
BS0_out 000000000000000100000000000000 COMP1_out 0
D7_out 010000000000000 SUB2_out 0010
EIB_out 000000000000000 SUB3_out 0001

Clock
cycle

16

BS1_out 00000000000X14X13 X000 OIB_out 0011
BS0_out 000000000000100X12X11 X000 COMP1_out 1
D7_out 100000000000000 SUB2_out 1100
EIB_out 0000000000001X14X13 SUB3_out 0010

... Decoding continues

Table 5. Truth table of the Code Converter
Input (4 bit) Output (16 bits) Output in decimal

0000 0000000000000000 20

0001 0000000000000001 21

0010 0000000000000011 22

0011 0000000000000111 23

0100 0000000000001111 24

0101 0000000000011111 25

0110 0000000000111111 26

0111 0000000001111111 27

1000 0000000011111111 28

1001 0000000111111111 29

1010 0000001111111111 210

1011 0000011111111111 211

1100 0000111111111111 212

1101 0001111111111111 213

1110 0011111111111111 214

1111 0111111111111111 215

2length EIB()

OIB
decoder

EIB
decoder

D

C
od

e
C

on
ve

rt
er

Code
Number

 OIB Series

EIB Series

OIB Output

EIB Output

A
D

D

Fig. 4: ALT decoder

16
4

shifter, a 62-bit 2:1 multiplexer, and a 62-bit output regis-
ter. The codeword table in this case is loaded with a
UVLC codeword table and so is the code length table.
This decoder is capable of decoding one codeword per
clock cycle and the design makes the coding process par-
allel by using an “or plane”. However, feeding the code-
word length from the look-up tables back to the barrel
shifters still limits the decoding throughput. All the possi-
ble codewords, codeword lengths and decoded code num-
bers need to be implemented in the look-up tables, and
two types of barrel shifters are included, both of them are
large in size. These all limit the efficiency of the PLS
decoder. According to our synthesis results, look-up tables
and barrel shifters take as much as 75% of the total area of
the PLS decoder.

We compare the delay, area and power consumption of
the ALT decoder to those of the PLS decoder. Both types
of decoders are implemented in VHDL and synthesized
using Design Compiler from Synopsys. The delay has
been obtained from static timing analysis and the figures
for power consumption from Synopsys’ Power Compiler.
A standard cell library in a 0.5µm CMOS process has
been used. The results are shown in Table 6.

The exceeding performance of the ALT decoder is evi-
dent compared to that of the PLS decoder in all factors:
speed, area and power. The reduction of size and power
consumption of the ALT decoder is due to the elimination
of huge codeword tables and code length tables and the

reduction of the size of the shifting scheme in the conven-
tional VLC decoders. This is also part of the reason why
the ALT decoder increases in speed. Another factor for the
speed increase of the ALT decoder is because the coding
procedure is parellelized by separating the decoding of
OIBs and EIBs.

5.CONCLUSIONS
We propose the ALT decoder for decoding UVLC.

This decoder is based on a coding method that we call
“Alternating Coding”. The ALT coding provides conven-
iences in the decoding of UVLC which enables efficient
decoder design. It can be seen that the ALT decoder
increases 25% in speed, decreases 41% in size, and con-
sumes 45% power compare to the PLS decoder, while the
PLS decoder is declared to be one of the best decoders for
variable length codes. This makes it a very strong motiva-
tion for UVLCs to be encoded and decoded using the
“Alternating Coding” method.

6. REFERENCES
[1] Y. Itoh, “Bi-directional motion vector coding using univer-

sal VLC,” Signal Processing: Image Communication, vol.
14, pp. 541-557, May 1999.

[2] Y. Itoh, Ngai-Man Cheung, “Universal variable length
code for DCT coding,” in International Conference on
Image Processing, vol. 1, pp. 940-943, 2000.

[3] N.-M. Cheung, Itoh, Y., “Configurable variable length
code for video coding,” in International Conference on
Acoustics, Speech, and Signal Processing, vol. 3, pp. 1805-
1808, 2001.

[4] ITU-T, H.26L TML8 Document from http://standard.pic-
tel.com, Sep., 2001.

[5] Tu-Chih Wang, Hung-Chi Fang, Wei-Min Chao, Hong-
Hui Chen, Liang-Gee Chen, ”An UVLC encoder architec-
ture for H.26L,” in IEEE International Symposium on Cir-
cuits and Systems, vol. 2, pp. 308-311, 2002.

[6] M. T. Lei, M. T. Sun, ”An entropy coding system for digi-
tal HDTV applications,” in IEEE Trans. Circuits Syst.
Video Technol., vol. 1, no. 1, pp. 147-155, March 1991.

[7] H. D. Lin, D. G. Messerchmitt, “Designing high-through-
put VLC decoder Part II-Parallel decoding methods”, in
IEEE Trans. Circuits Syst. Video Technol., vol. 2, pp. 197-
206 June 1992.

[8] Jae Ho Jeon et al, “A fast variable-length decoder using
plane separation,” in IEEE. Trans. Circuits Syst. Video
Technol., vol. 10, pp. 806-812, Aug. 2000.

OR

BSa

MUXa

MUXb

BSb

Di[61...0]

Do[61...0]

Input

Adder

Sub
Code

Table

Code

Table

Decoded
Word
Table

LengthWord

+_

5
“0”

Dcrl[5..0]

Dcl[5..0]

1

6

5

31

31

62

62

......

PLANE

INPUT
PLANE

Fig. 5: PLS decoder

Table 6. Comparison of performance
ALT PLS Ratio (ALT/PLS)

Delay (ns) 8.96 12.0 75%
Area (gates) 1855 3146 59%
Power (mW) 6.74 15.0 45%

