
EFFICIENT VLSI IMPLEMENTATION OF A VLC DECODER FOR
GOLOMB-RICE CODE USING ALTERNATING CODING

Shang Xue and Bengt Oelmann

Department of Information Technology and Media, Mid Sweden University
SE-851 70 Sundsvall, Sweden

xue.shang@mh.se

ABSTRACT
Variable length code (VLC) is used in a large variety of

lossless compression applications. Golomb-Rice code (GR
code) is one type of VLC that is often encountered in the
coding of video and image data. In this work we develop
an efficient decoder for GR codes. Unlike the conventional
variable length decoders, this new type of decoder needs
neither codeword tables nor barrel shifters, while the
codeword tables and barrel shifters usually occupy the
largest part of the area in the design and both are included
in the critical timing path. This proposed decoder is built
on the basis of a new coding method for GR codes, which
is also proposed in this paper, under the name “Alternat-
ing Coding” (ALT). We compare the ALT decoder with the
decoder called “VLC decoder using plane separation”
(PLS) which is claimed to be one of the most effective VLC
decoders. Our results show that the ALT decoder is up to
1.52 times faster, two times smaller, and consumes at most
28% power of the PLS decoder. Moreover, its unique
structure also gives this GR decoder great flexibility in
decoding different sets of GR codes with constant per-
formances.

1. INTRODUCTION
Image and video coding standards (e.g. JPEG, H.26X,

MPEG) all utilize entropy coding in the form of variable
length codes (VLCs) for its efficient compression.
Although VLCs are efficient in compression, the variable
code length of VLCs also limits the decoding throughput.
The decoding process needs to identify the codeword
boundaries, each of which depends recursively on the pre-
vious codeword boundary. Parallelizing VLC decoders are
usually done by implementing the decoder with look-up
tables and a shifting scheme[3,4]. Codewords and code-
word lengths are stored in look-up tables so that they can
be matched out according to the input data. The shifting
scheme shifts the input data according to the codeword
lengths in order to perform decoding continuously. The
codeword tables can be implemented with ROM or PLA
and the shifting scheme is usually implemented with bar-
rel shifters. These two parts in a VLC decoder occupy the
largest portion of the area and as they are the two crucial
parts in determining the codeword boundaries, they are
both included in the critical timing path of the decoder.

Look-up tables and barrel shifters are therefore the per-
formance limiting components in a VLC decoder.

Specially constructed VLCs such as Golomb-Rice code
(GR) are developed for different types of image and video
data. GR code was first proposed in [1,2] and has recently
been applied for coding of prediction errors in lossless
image coding applications [5]. GR code belongs to the
VLC family, so GR decoders are usually implemented
using the general architecture for VLCs, i.e. using look-up
tables and a shifting scheme. With the development in
mobile video communications, the construction of
smaller, faster, and less power-consuming video CODECS
becomes increasingly important. In this paper we present a
new type of GR decoder based on a coding method that
we call “Alternating Coding” method (ALT). It takes
advantage of the special properties of GR codes. It does
not contain look-up tables, and it is also free of barrel
shifters. Therefore it is faster, much more smaller and less
power-consuming. In the paper, we compare the perform-
ances of the proposed GR decoder with a decoder devel-
oped by Jae Ho Jeon et al. [6], under the name of “Fast
Variable-Length Decoder Using Plane Separation” (PLS),
which was claimed to be one of the most effective VLC
decoders. We compare the ALT decoder to the PLS
decoder in delay, area and power consumption. Our results
show that according to different sets of GR codes, the
ALT decoder is up to 1.52 times faster, two times smaller,
and consumes at most 28% power in comparison to the
PLS decoder. In addition, the ALT decoder has a detacha-
ble structure which makes it easy to be reconfigured for
different GR codes with constant performances.

The outline of this paper is as follows. First the coding
method, “Alternating Coding”, for GR codes is described.
Then the ALT decoder is presented. After that we present
a comparison of the performance of the ALT deocder to
the PLS decoder. Finally we draw some conclusions.

2.ALTERNATING CODING
GR code is nearly optimal for coding of exponentially

distributed non-negative integers, and describes an integer
n in terms of a quotient and a remainder [1,2]. For simplic-
ity, the divisor is often chosen to be a power of 2, 2k, and
is parameterized by k. Therefore a GR code consists of a

prefix and a suffix. The prefix of a GR code is a unary
expression of the quotient and the suffix of a GR code is a
k-bit fixed length binary code representing the remain-
der. For example, for a GR code with , the number
9 would be represented as 11001. By considering prefixes
and suffixes of the code separately, it can be seen that the
prefixes are just a set of unary codes whose lengths grow
linearly with the values of the quotients. As they are
unary, it does not matter whether all ones or all zeros are
used to represent them. When transmitting only the pre-
fixes, all-one codes and all-zero codes can be used alter-
natingly in a sequence. Thus the codeword boundaries can
be easily determined by detecting the changing of the
value of a bit in the prefix series. While the suffixes are
some fix-length codes and when only the suffixes are
transmited, codeword boundaries can be determined by
counting the bits. Therefore, if the prefixes and the suf-
fixes are separately transmitted, the codeword boundary
detection will be simplified because the need of a recur-
sive procedure is eliminated. For instance, with , a

GR series with four codewords ,
will be turned into a prefix series and a

 suffix series. The coding scheme of alter-
nating coding is shown in Figure 1. The alternating coding
can easily be achieved in the GR encoder by replacing the
codeword table with an all-one code table or an all-zero
code table and by inversing the prefix code every other
clock cycle.

Fig. 1: Alternative Coding Method

k 2=

k 2=

11000 1011 111001 1001
111 00 1111 00

00 11 00 01

zero

one codes

pr
ef

ix
,

su
ffi

x
se

pa
ra

tio
n

codes

prefix out
GR
code

suffix out

D0[15...0]D1[15...0]

... ...

... ...

Priority Encoder
PE0

Decoder
DEC0

“1”

DEC0[0]

D2[14...0]

4

15

15

load

SU
B 0

CO
M

P 0

M
UX

0

offset

Suffix Input

Prefix Input

Ds

D3

D4
D5

load

16

D1[0] xor D0[15]

Output

Fig. 2: ALT decoder

load load

Boundary Detection Logic (BDL)

Codeword Disabling Logic (CDL)

3.ALT DECODER
The ALT decoder proposed in this paper is based on the

“Alternating Coding” method. The architecture is
described in Figure 2. We assume the maximum prefix
length to be 16 bits.

The ALT decoder has two inputs for the separated prefix
and suffix series. One is the prefix input and the other is the
suffix input. The decoder consists of one 16-to-4 priority
encoder (PE0), one 4-to-16 decoder (DEC0), two 16-bit
buffers (D0 and D1), one 15-bit register D2, one 4-bit regis-
ter D3, one 15-bit comparator (COMP0), one 4-bit subtrac-
tor (SUB0), one 1-bit 2:1 multiplexer (MUX0), one n-bit
register Ds (n is the length of the suffix) and two 1-bit reg-
isters (D4 and D5). The prefix input of the decoder is put
into the two buffers D0 and D1, the first two bytes in D1
and the second two bytes in D0. The first two-byte prefix
series is then fed to the xor-gates in the “Boundary Detec-
tion Logic” (BDL) where two consecutive bits are xored
with each other. As the prefixes are now denoted in alter-
nating all-one and all-zero codes, only at each prefix
boundary a “1” will be generated by the xor operations.
Therefore, each “1” indicates a prefix boundary. The out-
put after the BDL is then fed into the priority encoder PE0
in order to generate the position of the first codeword
boundary. Register D3 is originally loaded with the number
16 (that is “0000” in a 4-bit binary code). The length of the
first prefix is then calculated by SUB0 and at the same time
D3 is updated with the position of the first codeword
boundary. The 4-to-16 bit decoder DEC0 generates the
position of the first codeword boundary and disables the
first “1” of the input of the priority encoder by using the or-
gates and the “Codeword Disabling Logic” (CDL). In the
next clock cycle, the second codeword boundary is
encoded into PE0. Again the second codeword boundary is
put to D3 and its position is decoded by DEC0. The same
operations are then repeated. As the prefix of a GR code is
the unary expression of a quotient, the quotient itself can
be easily generated by offsetting the integer which repre-
sents the prefix length. Therefore, by offsetting the output
of SUB0 the value of the quotient can be generated. The
suffix of a GR code is already a binary expression, so the
actual integer a GR code represents can be generated sim-
ply by concatenating the suffix and the decoded prefix.
When decoding is performed till the end of D1, the output
of D2 will then be accumulated to be the same as the output
of BDL, and the output of COMP0 is set high. The opera-
tion D1[0] xor D0[15] is used to find out if the prefix in D1
still continues in D0. If the prefix continues, the “load” sig-
nal is generated immediately and new data are loaded into

the buffers. If the end of D1 is the end of a prefix, then the
load signal needs to be delayed to the next clock cycle. A
multiplexer MUX0 and a 1-bit register D4 are used to com-
plete this.

In this ALT decoder, neither look-up tables nor shifting
scheme are needed, and it is capable of decoding one code-
word per clock cycle.

4.COMPARISON OF PERFORMANCE
The ALT decoder is compared with the PLS decoder

developed by Jae Ho Jeon et al.[6]. Their decoder can be
described as in Figure 3.

For a set of GR codes with maximum codeword length
of 16 bits, the decoder consists of two separate planes.
Each plane consists of a barrel shifter, a 32-bit 2:1 multi-
plexer, and a 32-bit output register. The codeword table in
this case is loaded with a GR codeword table and so is the
code length table. This decoder is capable of decoding one
codeword per clock cycle and the design makes the coding
process parallel by using an “or plane”. However, feeding
the codeword length from the look-up tables back to the
barrel shifters still limits the decoding throughput. All the
possible codewords, codeword lengths and decoded inte-
gers need to be implemented in the look-up tables, and two
types of barrel shifters are included. These all limit the effi-
ciency of the PLS decoder. According to our synthesis
results, look-up tables and barrel shifters take as much as at
least 67% of the total area of the PLS decoder.

OR

BSa

MUXa

MUXb

BSb

Di[31...0]

Do[31...0]

Input

Adder

Sub
Code

Table

Code

Table

Decoded
Word
Table

LengthWord

+_

4
“1”

Dcrl[4..0]

Dcl[4..0]

1

5

5

16

16

32

32

......

PLANE

INPUT
PLANE

Fig. 3: PLS decoder

We compare the delay, area and power consumption of
the ALT decoder to those of the PLS decoder. Both of the
decoder types have been implemented in synthesizable
VHDL and their performance has been estimated accord-
ing to the synthesis results. For each type, three decoders
for GR codes have been implemented: without suffix, with
1-bit suffix and 2-bit suffix. The maximum prefix length is
kept constant as 16 bits. The results are shown in Figure 4.
Both types of decoders are implemented in VHDL and
synthesized using Design Compiler from Synopsys. The
delay has been obtained from static timing analysis and the
figures for power consumption from Synopsys’ Power
Compiler. A standard cell library in a 0.5µm CMOS proc-
ess has been used.

In Figure 4, the numbers 1, 2 and 3 on the x-axis repre-
sent three different sets of GR codes, 1 stands for GR codes

without suffix, 2 for GR codes with 1-bit suffix, and 3 for
GR codes with 2-bit suffix. From these graphs it is obvious
that the ALT decoder performs much better than the PLS
decoder in area, power and delay. The improvements are
dramatic for area and power. For GR codes without suffix,
the ALT decoder gets only 87% delay, 51% area and 28%
power consumption of those of the PLS decoder. For GR
codes with 2-bit suffix, the related performances are as
good as 65% delay, 25% area and 20% power consumption
of that of the PLS decoder. Moreover, the performances are
constant for different set of GR codes, whereas the per-
formance of the PLS decoder degrades quite rapidly as the
suffix length grows. When the maximum codeword length
increases from 16 bits to more than 16 bits yet less than 32
bits, the barrel shifters in the PLS decoder need 5 bits
instead of 4 bits to count the number of bits needed to be
shifted. Therefore, when 1-bit suffix is added to the prefix
that has the maximum prefix length of 16 bits, there are
abrupt increases in delay, power and area in the PLS
decoder, and this makes the ALT decoder comparatively
better.

5.CONCLUSIONS
We propose the ALT decoder for decoding GR codes.

This decoder is based on a coding method that we call
“Alternating Coding”. It can be seen that the ALT decoder
is up to 1.52 times faster, two times smaller, and 3.5 times
less power-consuming than the PLS decoder, while the
PLS decoder is declared to be one of the best decoders for
variable length codes. In addition, its unique structure
gives the ALT decoder great flexibility in decoding differ-
ent sets of GR codes with constant performances, which is
a great advantage in practice.

6. REFERENCES
[1] S. W. Golomb, ”Run-length endodings,” in IEEE. Trans.

Inf. Theory, vol. IT-12, pp. 399-401, July 1966.
[2] R. F. Rice, ”Some practical universal noiseless coding tech-

niques,” in Tech. Rep., JPL-79-22, Jet Propulsion Labora-
tory, Pasadena, CA, March 1979.

[3] M. T. Lei, M. T. Sun, ”An entropy coding system for digital
HDTV applications,” in IEEE Trans. Circuits Syst. Video
Technol., vol. 1, no. 1, pp. 147-155, March 1991.

[4] H. D. Lin, D. G. Messerchmitt, “Designing high-throughput
VLC decoder Part II-Parallel decoding methods”, in IEEE
Trans. Circuits Syst. Video Technol., vol. 2, pp. 197-206
June 1992.

[5] Jiangtao Wen, John D. Villasenor, ”Reversible Variable
Length Codes for Efficient and Robust Image and Video
Coding”, in Data Compression Conference., pp. 471-480,
1998.

[6] Jae Ho Jeon et al, ”A fast variable-length decoder using
plane separation,” in IEEE. Trans. Circuits Syst. Video Tech-
nol., vol. 10, pp. 806-812, Aug. 2000.

1 2 3
0

500

1000

1500

2000

2500

3000
Comparison of area for different set of GR codes

Different set of GR codes

Ar
ea

 (n
um

be
r o

f g
at

e
eq

ui
va

le
nc

es
)

ALT decoder
PLS decoder

1 2 3
0

2

4

6

8

10

12

14

16

18

20
Comparison of power consumption for different set of GR codes

Different set of GR codes

Po
w

er
 (m

W
)

ALT decoder
PLS decoder

Fig. 4: Comparison of performances of PLS and ALT decoder

1 2 3
0

2

4

6

8

10

12

14
Comparison of delay for different set of GR codes

Different set of GR codes

D
el

ay
 (n

s)

ALT decoder
PLS decoder

