LOCALLY CLOCKED AFSMS WITH
DYNAMIC LATCH IMPLEMENTATION

Jari Pasanen and Bengt Oelmann

Department of Information Technology, Mid Sweden University
S-851 70 Sundsvall, Sweden
{Jari.Pasanen @ite.mh.se}

ABSTRACT

Asynchronous Finite State Machines (AFSMs) have
been proposed to be used in designs where the demands
on high speed or low power consumption are high. In
this paper we present a synthesis procedure for a type of
AFSMs called locally clocked state machines with
dynamic latch implementation. The use of dynamic
latches makes it possible to reduce input capacitances
and the number of transistors. It also enables efficient
implementation of gates with monotonic output transi-
tions which is important in AFSM design. We (1) show
what implications the use of dynamic gates have on the
synthesis procedure, (2) define state constraints and
requirements on these circuits, and (3) present a com-
plete procedure for implementing AFSMs through an
example.

1. INTRODUCTION

Asynchronous (or self-timed) circuits [1] are some-
times proposed as the solution to problems related to the
distribution of the global clock signal in a synchronous
system. Several complex digital CMOS ICs have been
designed using asynchronous circuit exclusively [2,3].
However, no complex asynchronous design has, in a
convincingly way, demonstrated its superiority over a
synchronous solution. For smaller and more specific
problems asynchronous finite state machines have dem-
onstrated better performance than its synchronous coun-
terpart [4]. There are basically three situations where
AFSMs can be used successfully; (1) for high speed cir-
cuits where it is not feasible to distribute a high fre-
quency clock, (2) off-chip interfaces between devices
that are not synchronized, and (3) where the require-
ments on response time are shorter than the clock
period.

From research during the last three decades a large
number of methods and design techniques for locally
clocked sequential circuits have emerged. An extensive
review of these is presented in [5]. In the 90’s a design
methodology for locally-clocked state machines was
developed at HP Laboratories [6]. These AFSMs work
accordingly to the burst-mode specification. One major
advantage with this method is the use of selective clock-
ing which results in circuits with very short response
time that for some state changes only is a combinational

0-7803-5682-9/99/$10.00©01999 |EEE.

response.

Dynamic CMOS techniques are widely used in digi-
tal VLSI design when high performance is targeted. A
number of different dynamic logic families have been
developed during the past years, such as C?MOS {7,
NORA (8], TSPC [9], and all-N logic TSPC [10]. In
general, dynamic logic provides advantages such as
high speed and area efficient circuit implementations,
reduced input capacitance, and monotonic glitch-free
operation.

In this work we have investigated the implications
of using dynamic latches instead of static ones, that has
in so far been used in locally-clocked state machines.
The presentation is given in a general way that applies
to all dynamic latches. The outline of the rest of the
paper is as follows. First a brief description of burst-
mode AFSM is given and then the proposed dynamic
AFSM is presented. After that we put forward a synthe-
sis procedure and finally we discuss the performance of
the dynamic AFSM in relation to the static.

2. BURST-MODE AFSM

A burst-mode asynchronous state machine is speci-
fied by a form of state diagram [11] containing a finite
number of states connected by a number of arcs. Each
arc, representing a state transition, is labelled with a
non-empty set of input signals (an input burst) and a set
of output signals (an output burst). In a given state,
when a complete input burst has arrived, the machine
responds with an associated output burst and transits
into the next state.

An input burst is permitted to have multiple input
changes in random order, where only specified input
changes may occur. Also, no input burst in a given state
can be a subset of another so that the machine can
unambiguously determine the complete input burst.

The burst-mode machine operates accordingly to the
generalized fundamental-mode requirement; that is,
new inputs are not allowed to arrive until the system is
settled into its new state. Another restriction is that a
given state must always be entered with the same set of
input values.

A simple example of a burst-mode specification is
shown in figure 1. This specification will be used as a
design example throughout the paper.

1643

c-/x+y-
Fig. 1: Simple example specification

i Local clk

= Clock

Combinational Storage q

P
L
P Logic P! Elements
e >
Rl

Fig. 2: Generalized block diagram of a locally-clocked
AFSM

An asynchronous state machine that satisfies the
burst-mode specification can be implemented as a
locally-clocked machine. A generalized block diagram
of such AFSM is shown in figure 2. The machine is a
type of self-synchronous circuit in which synchroniza-
tion is handled by a local clock generator unit. Addi-
tional circuitry is combinational logic and clock-
controlled storage elements.

The clock, which is used to control the state changes
of the machine, depends only on the current inputs and
state. For a given input burst, the machine reacts by
generating the corresponding output burst and, if a state
change is necessary, the clock is fired which in turn
updates the state variables.

3. DYNAMIC LOGIC IMPLEMENTA-
TION

A locally-clocked burst-mode AFSM can be imple-
mented with dynamic latches. A dynamic latch is
depicted as a clocked gate which incorporates both a
logic and a latch function; it also comes in two flavors
to be used in an alternating fashion (see [7,8.9,10]).
Thus, dynamic latches can substitute the combinational
logic and storage elements of figure 2.

A block diagram of the proposed dynamic AFSM,
representing the simple example specified in figure 1, is
shown in figure 3. The phase-1 and phase-2 latches are
controlled by the clock, where the clock logic itself is
unlatched and static. Each output variable has a single
phase-1 latch while each stare variable has a pair of
phase-1 and phase-2 latches. Hence, this pair-constella-
tion behaves like an edge-triggered flip-flop; it also
forms the next-state function in two steps.

Which clocking strategy to be used depends on the
choice of dynamic technique. For example, using the

1644

i Local clk
Clock
a T
o Logic »
= Block| >
a T
i Logic >
= Block | Y
g—> T v 8——» T v q
1 Logic 1 Logic o
S Block! o= Blockil
a T v a——b T v q
|4 Logic : Logic L
= Block | 3 Block |
| P
Phase-1 Latches Phase-2 Latches

Fig. 3: Block diagram of a dynamic AFSM

TSPC technique [9] would require a true-single-phase
clock and a pipeline system of N-block and P-block
structures. In this case, a correct implementation is pos-
sible if using N-block structures as phase-1 latches and
P-block structures as phase-2 latches.

A dynamic latch can only be in either a precharge or
an evaluation phase. During a precharge phase the latch
is holding its current output value while during an eval-
uation phase the output is determined by the gate inputs.
When the machine is in a stable state, the phase-1
latches are in evaluation phase and the phase-2 latches
are in precharge phase. During a state change of the
machine these phases will be swapped.

A phase-1 latch is in evaluation phase during an
input burst; it may also remain in this state between two
consecutive bursts. This imposes that a phase-1 latch
must resemble the transparent behavior of the general
machine (see figure 2). However, due to the monotonic
nature of a dynamic latch input burst arriving in sequen-
tial order may inflict an erroneous behavior. To illus-
trate this behavior, an example of a non-inverting
dynamic latch is offered in figure 4.

The operational principle of the latch is addressed as
follows: When CLK is low (the precharge phase),
PMOS P! is on, node A is high, PMOS P2 is off.
Because NMOS N2 is off, the output node QUT holds
the previous value. When CLK is high (the evaluation
phase), NMOS NI and N2 are on. If the N-logic is logi-
cally 0, node A remains high and causes node OUT to
fall to ground. If the N-logic is logically 1, node A is
discharged to ground and node OUT is high. However,
once the node A has been discharged the N-logic can no
longer affect the output value (it will remain high). This
logical stuck-at-one state demonstrates the monotonic
(glitch-free) behavior of a dynamic circuit.

Hence, for sequential input changes (starting with
node A high) the logic block is only allowed to make the

+ +

ck~[P1 ——dq[P2
A

our

N-logic]
IN—P=]
Block cLk—{[N2

ak—[N b3
Fig. 4: Example of a dynamic latch (TSPC-1)

logical transitions 0—0, 0—1 and 1—1 to resemble a
static behavior. A transition of 1—0 would require that
a new precharge phase must take place (i.e. the latch
must be clocked) before this transition actually can alter
the output value; this is denoted as the recharge require-
ment of a dynamic circuit.

The characteristics of the dynamic latch will affect
the synthesis procedure described in the next section.

4. SYNTHESIS PROCEDURE
We now present a complete synthesis procedure for
a dynamic AFSM. The procedure is outlined by the
properties of dynamic logic and exemplified by the sim-
ple example described earlier (see figure 1 and 3).

4.1 Functional Synthesis

Given a burst-mode specification, the first steps in
synthesis is to merge compatible states of the specifica-
tion, assign state codes, and generate boolean expres-
sions for the clock and each output and state variable.

4.1.1 State Encoding

For state minimization, the specification is trans-
lated into a flow table [12], indicating output and next-
state values. Each row of this table represent a node in
the original specification and each column represents a
unique combination of input signals. A stable state is
represented in the table if a next-state value is the same
as that of the current row, otherwise this is an unstable
state. An input burst begins at a stable entry point of
some row. Other entries in the same row may be visited
during the input burst.

For stable behavior, all reachable entries must have
specified output and next-state values; remaining entries
may be specified don’t-cares.

At this point, the incompletely specified flow table
can be minimized using standard techniques [12,13].
The result is a set of maximal compatible states; a col-
lection of the largest sets of state rows which can be
merged. The set of compatible states selected to be
merged indicate a new minimized state. The final
choice of minimized states is however constrained by
the recharge requirement. Refining this requirement it
states that, for some output transitions it is necessary to
change the state and therefore some compatible states
may not be merged.

Finally, merged states are assigned unique state
codes, and the minimized flow table is used to compute

the sum-of-products (SOP) boolean expressions for the
clock and each output and state variable. These expres-
sions can be described in, and synthesized from output-
and transition-tables (see figure 5 for tables generated
for the simple example) using standard synthesis proce-
dures [14].

4.1.2 Output Table Construction

The output table is generated as follows. (1) Every
table entry that corresponds to a stable state must be
specified. If an input burst causes a state change; (2) all
reachable entries during the input burst must be speci-
fied unless there is a stuck-at-one condition, (3) except
for the entry representing the complete input burst
which must be specified to avoid stuck-at-one. (4) If an
input burst does not cause a state change; all reachable
entries must be specified unless there is a stuck-at-one
condition. (5) Remaining entries are don’t cares.

4.1.3 Transition Table Construction

Transition-table entries are specified only when they
represent a completed input burst. Remaining entries are
specified don’t-cares, including transient states visited
during feedback transitions.

4.1.4 Clock Table Construction

The clock table is generated as follows. The clock is
stable during an input burst. If a completed input burst
causes a state change the clock is fired, otherwise it
remains quiescent. Remaining entries are don’t cares;
these include transient states visited during feedback
transitions.

Outputs X y Inputsabec
000 001 o011 010 110 111 100 100
(A ®)
00| 00 - - 00 11 - - 00
01 01 ©
States qg q; — — — — =
11 [- -- -- -- 10 | -- - -
(E)
10 | O- -- -- - - -- - 01
(a) Output table
* *
Next-state 43 qy Inputs ab ¢
000 001 011 010 110 111 100 100
A)) B)
00|~ |- [= (- |- "Tot |- |-
0t 11 ©
States qq q; = = o — -
- (- (- |- {71~ t- 1l
(E)
10{00 |-- -- - - -- -- --
(b) Transition table
Clock clk Inputsabc
000 001 011 O010 110 111 100 100
(A)) (B)
00) 1 - _ 1 1 0 - 1
01 0 1 ©
States qq q; ~ = o ~ =
ni - - - - 1 - - 0
(E)
100 - - - - - - 1
(¢) Clock table

Fig. 5: Function tables for the simple example

1645

4.2 Implementation Requirements

To insure correct operation of an implementation, a
number of conditions are presented below. First, a cou-
ple of timing requirements must be met to avoid race
conditions through the latches.

Requirement 1. The minimum propagation delay
through the clock logic must be greater than the maxi-
mum propagation delay through the latches of every
output and state variable.

Requirement 2. The delay between disabling the
phase-1 latches and enabling the phase-2 latches must
be less than the minimum delay in the feedback path.

The next requirement insures correct logic imple-
mentation.

Requirement 3. The output and clock logic must be
free of logic hazards for every permitted input burst in
every state.

And finally, the last requirements insures that the
clock resets correctly.

- Requirement 4. The clock logic must be stable
before it resets.

Requirement 5. Each resetting clock transition
must be free of all hazards.

Requirements 1, 2 and 4 can easily be satisfied by
adding delay elements to the clock output and the feed-
back lines. Requirements 3 and 5 can always be satis-
fied by correct functional synthesis of the clock and
output functions (see section 4.1 and [13,14]).

5. CONCLUSION

A synthesis procedure has been presented enabling
design of locally-clocked AFSMs with dynamic latch
implementation.

Dynamic logic has several properties that can be
exploited when designing efficient AFSMs. First, the
next-state logic and output logic can efficiently be
implemented with a small number of transistors, which
leads to reduced power consumption and good speed
performance. Second, the monotonic transition of the
output of a dynamic gate removes the need of redundant
logic for generating hazard-free signals. This contrib-
utes to the reduction of the logic expressions by leaving
some table-entries don’t-care. Third, half-cycle pipelin-
ing in phase-1 and phase-2 latches improves the speed
performance. For complex AFSMs the computation of
the next-state can be partitioned and performed in both
phase-1 and phase-2. The complexity of the logic tree
can be simplified and thus the gate delay will be
reduced. We have described that the dynamic imple-
mentation requires more state changes than a static one
would do and it is a consequence of the recharge
requirement of the dynamic latch. Since every state
change requires a clock generation, we have seen that
the clock generation logic will in most cases become
larger for the dynamic implementation.

1646

{1l

{21

131

(4]

(5]

[6]

7

(8]

9]

[10]

[i1]

[12]

(13]

[14]

6. REFERENCES
S. B. Furber, P. Day, J. D. Garside, N. C. Paver and J. V.
Woods, “A micropipelined ARM”, Proc. of the IFIP
TC10/WG 10.5 Int. Conf. on Very Large Scale Integra-
tion, Grenoble, France, Sept. 1993, Ed. T. Yanagawa and
P.A. Ivey, Pub. North Holland
K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M.
Roncken and F. Schalij, “A fully-asynchronous low-
power error corrector for DCC player”, Proc. Int. Conf.
Solid State Circuits, Feb. 1994, pp. 99-106
B. Oelmann, H. Martijn, and H. Tenhunen, “VLSI
implementation of DS-CDMA receiver using asynchro-
nous design techniques”, Proc. of the 6th IEEE Int.
Conf. on Personal Indoor Mobile Radio Communica-
tion, Toronto, Canada, Sept. 1995
S. M. Nowick, M. E. Dean, D. L. Dill and M. Horowitz,
“The design of a high-performance cache controller: a
case study in asynchronous synthesis”, Integration, the
VLSI J., vol. 15, no. 3, Oct. 1993, pp. 241-262
F. Aghdasi, “Survey of self-clocked controllers”, Micro-
electronics J., 26 (1995), pp. 659 - 682
S. M. Nowick and D. L. Dill, “Synthesis of asynchro-
nous state machines using a local clock™, Proc. of the
1991 IEEE Int. Conf. on Computer Design, IEEE Com-
puter Society Press, Oct. 1991, pp. 192-197
Y. Suzuki, K. Nogami, and T. Abe, “Clocked CMOS
calculator circuitry”, IEEE J., vol. SC-8, Dec. 1973, pp.
462-469
N. F. Gonclaves and H. J. DeMan, “NORA: A racefree
dynamic CMOS technique for pipelined logic struc-
tures”, IEEE J. Solid-State Circuits, vol. SC-18, June
1983, pp. 261-266
J. Yuan and C. Svensson, “High-speed CMOS circuit
technique”, IEEE J. Solid-State Circuits, vol. 24, Feb.
1989, pp. 62-70 .
R. X. Gu and M. L. Elmasry, “An all-N-logic high-speed
single-phase dynamic CMOS logic”, IEEE Int. Conf. on
Circuits and Systems, vol. 4, 1994, pp. 7-10
B. Coates, A. Davis, and K. Stevens, “The post office
experience: designing a large asynchronous chip”, Proc.
of the 26th Annual Hawaii Int. Conf. on System Sci-
ences, vol. 1, Jan. 1993, pp. 409-418
S. H. Unger, Asynchronous sequential switching cir-
cuits, Wiley-Interscience, New York, 1969
E. J. McCluskey, Logic design principles, Prentice-Hall,
1986
S. M. Nowick and D. L. Dill, “Exact two-level minimi-
zation of hazard-free logic with multiple-input
changes”, Proc. of the 1992 IEEE Int. Conf. on Com-
puter-Aided Design, IEEE Computer Society Press, Oct.
1992, pp. 192-197

