
ERROR RESILIENT CODING OF DCT COEFFICIENT USING ALTERNATING
CODING OF UVLC

Shang Xue and Bengt Oelmann

Department of Information Technology and Media, Mid Sweden University
SE-851 70 Sundsvall, Sweden

xue.shang@mh.se

ABSTRACT
Video coding standard H.26L uses a specially designed

Variable Length Code (VLC), called Universal Variable
Length Code (UVLC) to perform entropy coding for the
DCT coefficients. In this work we apply a coding method
under the name “Alternating Coding” (ALT coding) to the
UVLC in the coding of DCT coefficients. The ALT coded
UVLC yields same high coding efficiency as the original
UVLC, whereas ALT coding also enables immediate
decoding and error detection. It also improves the error
robustness by applying an “error speculation” to the
packet. For the UVLC coded RUN LEVEL pairs, we mod-
ify the ALT coding by further separating the sign bits of the
“LEVELs” in each packet. Results show that the ALT
coded UVLC always provides better PSNR as well as vis-
ual quality than UVLC when both are subjected to the
same error environment.

1. INTRODUCTION
The Universal Variable Length Code (UVLC) is used in

H.26L to perform entropy coding. In [3], UVLC is sug-
gested to be used in the coding of DCT coefficients for
H.26L. It is claimed to be able to provide good perform-
ances in terms of coding efficiency, configurability to vari-
ous applications, and error resiliency. The error resiliency
of UVLC is achieved by extending the UVLC to a bi-
directionally decodable mode. However, the variable code
lengths of UVLC still limit the decoding throughput and
extending the UVLC to bi-directional decodable codes
demands dual decoder structures to perform decoding in
both directions. Moreover, errors in a bi-directionally
decodable UVLC packet cannot be detected or located
immediately, this also limits the decoding throughput. In
this paper, the coding method called “Alternating Coding”
method (ALT coding) [1] is applied to the UVLC in the
coding of DCT coefficients. ALT coding enables the
extraction of the code length information of UVLC, which
facilitates the code packet with immediate decoding as
well as immediate error detection and location without
performing decoding bi-directionally. Thus the dual
decoder structures is no longer needed. ALT coding ena-
bles an “error speculation” to be applied which improves
the error resiliency and error robustness. Moreover, the
simple code pattern also simplifies the decoder structure

and enables the design of smaller, faster and more power-
saving UVLC decoder [2]. In H.26L, the UVLC uses one
infinite-extent codeword set rather than designing a differ-
ent code for each element of the H.26L syntax, only the
mapping to the single UVLC code table is customized to
the probabilistic behavior of the data. However, extra bits
need to be added to indicate the signs of each LEVEL. To
apply the ALT coding to DCT coefficients, we make fur-
ther separation of the UVLC coded “LEVELs”, which
keeps the codeword of RUNs and LEVELs in accordance.
This also helps to simplify the decoding scheme.

2.UVLC FOR DCT CODING
The bi-directionally decodable UVLC, which from now

on will be referred to as UVLC, is constructed by inter-
leaving symmetric VLC code with fixed length codes
(FLC) whose length is determined with respect to the
length of the symmetric code. The symmetric VLC is
denoted coarse code, while the FLC is named additional
code. After interleaving, the bits in the coarse code
become odd-indexed bits (OIBs) in the UVLC, whereas
the bits in additional code become even-indexed bits
(EIBs).

Table 1. RUN UVLC
Coarse

code
Additional

code
UVLC Value of RUN

Codeword Length
1 None 1 1 0

00 x0 0x00 3 if x0=0, EOB
if x0=1, RUN=1.

010 x1x0 0x11x00 5 ‘x1x0’+ 2[2:5]
...

0111110 x5x4x3x2x1x0 0x50x40x31x21x11x00 13 ‘x3x2x1x0’+
62[62:125]

Table 2. LEVEL UVLC
Coarse

code
Additional

code
UVLC Absolute

value of
LEVEL

Codeword Length

1 None 1s 2 1
00 0 000 3 EOB
00 x0 010s 4 2

010 x1x0 0x11x00s 6 ‘x1x0’+ 3[3:6]
...

0111110 x5x4x3x2x1x0 0x50x40x31x21x11x00s 14 ‘x5x4x3x2x1x0’
+ 63[63:126]

In Table 2, ‘s’ is the sign bit.
In the coding of DCT coefficients, UVLC codes the

RUNs and LEVELs separately. Table 1 and Table 2 give
examples of RUN UVLC and LEVEL UVLC [3]. We see
that the code tables of RUNs and LEVELs are actually
identical except for the sign bits at the end of each code-
word in the LEVEL table.

Transmission errors in a packet containing codewords
of a VLC can be classified into propagating errors and non-
propagating errors. As the EIB of UVLC can be any binary
combination, an error occurring in the EIB will not propa-
gate and decoding performs continuously without noticing
the error. Therefore, errors in the EIB can never be detected
or located. The OIB of a UVLC is of a fixed pattern, and an
error which occurs in the OIB causes error propagation
therefore causes the loss of synchronization.

3.ALT CODING FOR UVLC
ALT coding for UVLC involves coding the OIBs and

the EIBs separately. We apply two codeword tables to the
OIBs, one is {1, 11, 111, 1111, ...}, the other is {0, 00, 000,
0000}. They are alternated in the coding procedure so that
the codeword boundaries and codeword lengths can be eas-
ily determined by detecting the value changes in the OIB
sequence. EIBs can be any binary combination but their
code lengths can be determined by decoding the corre-
sponding OIB. So we maintain the existing EIBs. Then the
OIBs and EIBs of the ALT coded UVLC packet are trans-
mitted separately as shown in Figure 1.

ALT coding does not change the code length of each
UVLC, so it is able to achieve exactly the same coding
efficiency as the original UVLC.

To perform decoding, the ALT packet needs to be firstly
partitioned into an OIB sequence and an EIB sequence. Let
N be the number of codewords in the packet, L be the
length of the packet, lOIB be the length of the OIB sequence
and lEIB be the length of the EIB sequence. We have:

. and . As
long as L and N is known, the packet can be easily parti-
tioned.

Errors occurring in the EIB do not propagate and will
therefore be impossible to be detected, whereas errors
which occur in the OIB will propagate, only OIB sequence
is considered in detecting the errors.

Suppose we have an ALT coded UVLC packet that con-

sists of N codewords of L bits length. The decoded OIBs
are denoted as l1, l2, ..., lM. The lengths of the correspond-
ing EIBs are then l1-1, l2-1, ..., lM-1. M is the number of
codewords detected. Errors will be detected when one or
more of the following cases are encountered:
1. M<N.

Let f and b satisfy:
 , and

.
Then the probable correctly decoded OIB set A is:

2. M>N.
Then the probable correctly decoded OIB set B is:

3. OIBs longer than the longest possible OIB are detected.
Assume that the OIBs which exceeds the longest OIB

are OIBs number x1, x2, ..., xk.
Then the probable correctly decoded OIB set C is:

The decoded OIB set will then be:

Here no dual decoder structures are needed. Once the
OIBs are decoded, the EIBs can be calculated so that the
complete UVLC is decoded.

Error resiliency of ALT coded UVLC can be improved
by applying a simple “error speculation” to the error-
infected packet. To simplify the analysis, we assume that
only one bit error occurs in an OIB sequence. The bit error
will have four types of influences on the OIB sequence.
1. An error occurring on the boundary of the OIB

sequence causes an insertion or a deletion of one code-
word. For example, the first codeword 1111 becomes
0111 or the first two codewords 0111 become 1111.

2. An error infects the shortest OIB (i.e. one-bit OIB)
which sits in between two codewords. This results in a
deletion of two codewords. For example, 1110111
becomes 1111111. Then three OIBs become only one.

3. An error occurs in the middle of an OIB whose length
is greater than two bits. This results in the insertion of
two codewords. For example., 1111111 becomes
1110111. Then one OIB becomes three.

4. An error occurs on the boundary of two OIBs. This is a
non-propagation error. For example, 1110000 becomes
1111000. This will not influence synchronization.
When case 1, 2 or 3 occurs, the number of OIBs

detected will not be equal to N. When one of these cases is

Sync.
Marker

Sync.
MarkerUVLC1 UVLC2 UVLC3 UVLC4 UVLCn... ...

Sync.
Marker

Sync.
Marker

OIB1 OIB2 OIB3 OIB4 OIBn

EIBnEIB4EIB3EIB2EIB1

OIB Sequence EIB Sequence

Fig. 1: ALT coding for UVLC

lEIB lOIB N–= L lEIB lOIB+ 2lEIB N–= =

l1 1– l2 1– … lf 1– L N–
2

------------≥+ + +
lN 1– l+

N 1– 1– lN 2– 1– … lb 1– L N–
2

------------≥+ + +

A x x l1 … lb 1–, ,() lf 1+ … lN, ,()∪∈{ }=

B x x l1 … lM 1–, ,() lM 1+ … lN, ,()∪∈{ }=

C x x l1 … lx1 1–, ,() lxk 1+ … lN, ,()∪∈
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

OIB set

A , case 1,

A C, case 1 and case 3,∩
B , case 2,

B C, case 2 and case 3∩
C , case 3.⎩

⎪
⎪
⎨
⎪
⎪
⎧

=

detected, we speculate where the error bit occurs by the
“error speculation”.

If the number of OIBs is N-1 or N+1, then case 1 has
occurred. The error is then speculated to have occurred on
the first or the last bit.

If the number of OIBs is N-2, then case 2 has occurred.
If there exists an OIB that has a length longer than the
longest possible OIB length, this OIB must have been
infected by a bit error. In this case, the error can be located
precisely. Otherwise, we speculate that the location of the
error is within the longest OIB (As longer OIBs have less
probability of occurrence.) in the OIB sequence, and ran-
domly change the value of one bit in this OIB. By doing so,
resynchronization is achieved and many correct codewords
can be resumed.

If the number of OIBs is N+2, then case 3 has occurred.
We assume a one-bit OIB in between the two shortest OIBs
is the error bit (this is reasonable as the shorter the code-
word is, the more probable it occurs in a sequence and
hence more probable to be infected by an error). Again,
resynchronization and error recovery can both be achieved.

To complete the error resilient decoding of an ALT
packet two steps are involved. The first is the error specu-
lation and if this fails, normal ALT decoding is then per-
formed.

4. APPLYING ALT CODING TO THE
CODING OF DCT COEFFICIENTS

To apply ALT coding to DCT coefficients, we further
separate each packet to a package of ALT coded UVLCs
and a package of sign bits as the code tables of RUNs and
LEVELs are identical except for the sign bits. Figure 2
shows the separation. By doing such a separation, the
codewords in the “ALT coded UVLC packet” are then kept
in accordance and therefore can be decoded as described in
section 3.

After the ALT coded UVLC packet is decoded, the sign
bits can then be imposed to the LEVELs as the positions of
each LEVEL are then known.

For the DCT coefficients, RUNs and LEVELs appear
pairwisely, so the number of codewords between two
EOBs must be even. However, the error speculation as well
as ALT decoding itself, may result in an incorrect partition
of the code packet and therefore the number of codewords
between two EOBs may be odd. When the number of
codewords between EOBs are detected to be odd, we
always discard one codeword to make it even. This results
in the absence of some high frequency components, which
influence only the details of the block.

In DCT coding, the EOB plays a very important role as

an error in the EOB results in an error propagation to the
next block. The number of EOBs in the image is also a key
factor in reconstructing the image.

Assume there are X EOBs in a packet, and Y EOBs are
detected. We perform the following to guarantee the recon-
struction of the image.
1. X<Y. Discard the extra ones at the end of the packet.
2. X>Y. Put zeros at the end of the packet to fill up the

absent EOBs.
After the above are performed, the sign bits will then be

matched to the decoded codewords. Due to the error specu-
lation, we may have inserted or deleted some LEVELs in
the packet, therefore, the sign bits may turn out to be too
many or too few. For simplicity, if the sign bits are too
many, we simply discard the extra bits; if the sign bits are
too few, we deem the remaining LEVELs to be positive.

5. SIMULATION RESULTS
Several images are transformed using 8*8 DCT, zig-zag

scanned and then run-length coded. The RUNs and LEV-
ELs are then coded using UVLC and ALT.

These coded images are then subjected to a Binary
Symmetric Channel (BSC) with a Bit Error Rate (BER) of
10-3. The PSNR of the reconstructed images are then com-
pared in Table 3.

From Table 3 we see that the ALT coded images are
always better than the UVLC coded ones. The PSNR
increases 2 ~ 5 dB approximately.

Figure 3 shows the comparison of the visual qualities of
the images in Table 3. The qualities of the ALT coded
images are evidently better.

Sync.
Marker

Sync.
MarkerALT coded UVLC packet Sign bits

Fig. 2: Further separation of ALT packet in DCT coding

Table 3. Comparison of PSNR
Image PSNR of UVLC

(dB)
PSNR of ALT

(dB)
Lena 21.92 27.50

Cameraman 24.23 26.06
Monkey 17.81 22.38
House 27.67 30.07

(a) The reconstructed Lena using UVLC

5.CONCLUSIONS
In this paper we apply the ALT coding to the coding of

DCT coefficients using UVLC. ALT coded UVLC packet
is immediately bi-directionally decodable and immediately
error detectable. An “error speculation” helps to improve
the error resiliency and error robustness. In addition, the
ALT coded UVLC has a simple pattern that enables effi-
cient decoder structure [2]. For DCT coefficients, we mod-
ified the packet for ALT coding by separating the sign bits
in order to further simplify the decoding. Results show that
the ALT coded images always yield higher PSNR as well
as better visual qualities than the original UVLC under the
same error environment.

6. REFERENCES
[1] S.Xue and B.Oelmann, “Alternating coding for Universal

Variable Length Code,” to appear in the proceedings of
IEEE International Conference in Image Processing, Sep-
tember 2003.

[2] S.Xue and B.Oelmann, “A coding method for UVLC target-
ing efficient decoder architecture”, to appear in the proceed-
ings of the 3rd International Symposium on Image and
Signal Processing and Analysis., Sep. 2003.

[3] Y. Itoh, Ngai-Man Cheung, “Universal variable length code
for DCT coding,” in International Conference on Image
Processing, vol. 1, pp. 940-943, 2000.

[4] ITU-T, H.26L TML8 Document from http://standard.pic-
tel.com, Sep. 2001.

(b) The reconstructed Lena using ALT

(c) The reconstructed Cameraman using UVLC

(e) The reconstructed Monkey using UVLC

(d) The reconstructed Cameraman using ALT

Fig. 3: Comparison of the reconstructed images

(f) The reconstructed Monkey using ALT

(g) The reconstructed House using UVLC

(h) The reconstructed House using ALT

