
Parallel Variable-Length Decoder Architecture for Alternated Coded GR-Codes

Shang Xue and Bengt Oelmann

Department of Information Technology and Media, Mid Sweden University, SE-851 70 Sundsvall, Sweden.
E-mail: Xue.Shang@mh.se, Bengt.Oelmann@mh.se

Abstract -- In this paper we present a decoder architec-
ture for variable-length codes capable of decoding alter-
nated coded Golomb-Rice (GR) Codes in parallel. An
architecture developed specifically for GR-codes and a
coding method, we call alternating coding, simplify the
decoder structure and enable parallel decoding. The pro-
posed decoder detects the codeword lengths for all code-
words in the input buffer in parallel. The logic delay for
this is not dependent on the input buffer size which makes
it possible to detect an arbitrarily large number of code-
word lengths at a constant speed. The decoding speed is
however limited by the output stage that outputs a serial
stream of decoded symbols. Estimates of the speed per-
formance indicate that for an ASIC implementation the
maximum throughput is more than 800 MSymbols/s and
for an FPGA implementation more than 300 MSymbols/s.

1. INTRODUCTION
The most used entropy coding techniques include Vari-

able-Length Coding (VLC) and are used in image and
video coding standards like JPEG and MPEG. Compres-
sion is achieved by assigning shorter codewords to sym-
bols with high probability and longer codewords to
symbols with lower probability. The variable length of the
codewords makes the decoding to a sequential process. In
order to decode a codeword, the previous codewords must
be decoded in sequence in order to determine where in the
input buffer the codeword starts. This data-dependency is
limiting the throughput of the VLC decoders. The conven-
tional VLC decoder is implemented as a Finite-State
Machine (FSM) where the input rate is constant one bit
per clock cycle and the output rate is variable [1]. This is a
compact solution but the decoding speed is very low.
Another common solution provides constant output rate of
one symbol per clock cycle [2]. The major drawback here
is the relatively large critical timing path in the feedback
loop that includes Barrel-Shifter, codeword table (ROM/
PLA), and accumulator. This feedback path cannot be
pipelined and will therefore limit the performance of this
architecture. In a recently presented work [3] a decoder
performing parallel extraction of the codeword lengths is
presented. Here the problem of the recursively depend-
ency has been greatly reduced but not been removed.

In all previous research on designing high-throughput
VLC decoders, general decoders able to decode any varia-

ble-length code have been considered. For video and
image coding certain types of codes have shown to be
suitable. For example, in H.26L the Exponential-Golomb
code and for lossless image compression in JPEG-LS GR-
codes is suggested. Since the applications of VLC today
are heavily dominated by image and video coding, we find
it motivated to focus on finding better solutions for the
specific codes used in these applications to the price of
loss of generality.

In this work we focus on designing a high-throughput
decoder for GR-codes. Joint design of hardware architec-
ture, format of the code, and format of the VLC packet
gives us new possibilities for high-level optimizations. In
summary, there are two important steps in our approach
that enables parallel codeword detection. Firstly, the GR-
code is split into a prefix- and a suffix part. Secondly, the
prefix of the code is of variable length and its bit pattern is
coded in, what we call, an alternating way to simplify the
codeword boundary detection. The suffix, which is a
fixed-length code, does not need any special function for
codeword boundary detection.

We target a decoder architecture with constant input
rate and variable output rate. It decodes all codewords in
an arbitrarily large input buffer in parallel. The output of
the symbols comes serially in a variable rate and can be
fed to an external FIFO buffer. The overall architecture is
shown in Figure 1.

Even though it can decode an arbitrarily large input
buffer with constant delay, the throughput has an upper
limit which is defined by the maximum speed the output
buffer can deliver a serial sequence of symbols. The
decoder is implemented in RT-level VHDL and from the
synthesis results, the maximum throughput is found to be
more than 300 MSymbols/s and 800 MSymbols/s for
FPGA and ASIC implementations respectively.

Fig. 1: Overall decoder architecture

Prefix buffer Suffix buffer

Parallel Codeword
Length Extractor

FIFO

N-bit
fclk

N·fclk
Symbol

l0l1lN-1

Output buffer

2. ALTERNATING CODING
Golomb-Rice codes were first introduced in [4] and

[5]. The codeword table in Table 1 illustrates how the GR-
code is constructed. The GR-code is parameterizable with
the parameter k and is composed of a prefix code of varia-
ble length and a fixed length suffix of length k.

In order to simplify the codeword boundary detection,
the prefix codes are modified by, what we call, alternating
coding (alt-coding). In a sequence of codes the prefixes
are coded alternating with all-zeros and all-ones codes. In
an alt-coded VLC packet, the prefixes and suffixes are
separated where the suffixes for all codewords are located
in the beginning and all suffixes are in the end of the
packet, see Figure 2.

When the total number of codewords, P, in a packet is
known, the k·P last bits are identified as suffix codes and
the rest as prefix codes. To decode the symbol, the lengths
of the prefix codes can be decoded separately and then
simply concatenated with their respective suffix code.

3. DECODER ARCHITECTURE
For alt-coded GR-codes the decoding is reduced to

length extraction of the prefix codes. In this section a par-
allel architecture for length extraction is presented.

Each clock cycle of fclk the decoder takes in a new set
of codewords of N bits to the Prefix Buffer. The lengths of
the prefixes are extracted in parallel by the Parallel Code-
word Length Extractor. At most, when all codewords are
of minimum length of one bit, N codewords are decoded.
The output buffer is therefore designed to receive N code-
word lengths (lN-1 to l0). For normal image data the code-
word lengths are distributed within the range of one to
maximum prefix codeword length M. This means that
normally, not all positions in the output buffer will be
occupied. An empty-indicator, called ei, is generated and

shows whether a buffer position is empty or occupied.
The decoded codeword lengths are serially put on the out-
puts of the Output Buffer which is a Parallel-Input Serial
Output (PISO) register. The maximum output rate is when
the prefix codeword lengths are all of one bit which
makes it necessary to clock the Output Buffer at N·fclk.
The empty-indicator from the Output Buffer is used for
indicating the existence of data out from the Output
Buffer. The Suffix Buffer is a PISO where shifting of k
steps takes place when ei is true.

Under the condition that the codeword length extrac-
tion can be parallelized, the critical timing path in this
architecture is in the Output Buffer: ,
where tmux is the delay in a 2-1 multiplexer and tDFF is the
delay in a D-flip/flop.

Before going in details on how the proposed Parallel
Codeword Length Extractor (PCLE) is designed, an
example is presented showing the working principle in
Figure 4. The input buffer contains the alt-coded prefixes,
of maximum length of four bits (M=4), in the vector C.
The rightmost bit in the buffer is considered to be the first
bit. From C the boundary vector B is computed where a
‘1’ indicates the position of the last bit in a prefix code.
The length extraction is segmented to windows of M bits.
Based on the first four bits (i=0) in the B vector, the first
occurrence of a boundary, i.e. a ‘1’ at position 0 gives us
the length l0=0. It is guaranteed that the shortest prefix,
that is one bit long, is extracted in this window. The next
window can therefore be positioned one bit left to the pre-
vious window. In general, there will be N M-bit windows
for a prefix buffer of N bits. In the next window (i=1) a
boundary is found at position 3 (l1=3). This boundary is
also found in the windows i=2, 3, and 4. These kind of
boundaries must be disabled by providing an offset for
extracting the next length. In window i=2, the length
extraction starts where the previous code ends. Here the

Table 1. Codeword table

k=1 k=2

Golomb
-Rice

Alt-Coded
GR

Golomb-
Rice

Alt-Coded
GR

Prefix Suffix Prefix Suffix Prefix Suffix Prefix Suffix

0 0 0 0/1 0 0 00 0/1 00

1 0 1 0/1 1 0 01 0/1 01

2 10 0 00/11 0 0 10 0/1 10

3 10 1 00/11 1 0 11 0/1 11

4 110 0 000/
111

0 10 00 00/11 00

Fig. 2: Alt-coded VLC packet

Prefix codes Suffix codes

k·P bitsvariable length

Fig. 3: Detailed decoder architecture

Symbol

wr_FIFO

Parallel Codeword
Length Extractor

Prefix Buffer Suffix BufferLB

RLD

eN-M

eN-M+1

eN-1

l-1

k

N bits

(l0,e0)(l1,e1)(lN-1,eN-1)

fclk

N·fclk

sh_en

load
Output Buffer

li
ei

(PCLE)

log2 M

tcritical tmux tDFF+=

situation occurs that no boundary is found.

In order to achieve parallel length extraction, each win-
dow has a Length Extraction (LE) unit. It contains three
functions: 1) length extraction function providing the pre-
fix length (li), 2) computation of the disable mask (di) that
is fed to the following LE-units and 3) computation of the
empty-indicator ei. The offset is computed on the basis on
B exclusively. The length is based on B and the offsets
from the M-1 previous LE-units. The block diagram of the
PLCE is shown in Figure 5. The delay in a parallel archi-
tecture cannot be dependent on the size of the prefix input
buffer (N). For the proposed architecture the delay is
dependent on the maximum codeword length (M) and not
N which allows unlimited parallelization.

In the LE-unit the offset Di, based on the disable masks
from the M-1 previous LE-units, is computed as:

Where the functions shrj(d) shifts d j positions right
with ‘1’ shifted in from the left. When implemented, this
is done by wiring. The prefix codeword length is com-
puted as: .

Where Ci is the prefix code for the i:th window and the
length function is returning the position of the first occur-
rence of a ‘1’ from the right in the vector.

The empty-indicator is computed as:
Critical timing path comes from computing the length

li and is implemented as shown in Figure 6.

It may occur that only the first part of the last prefix
code resides in the Prefix Buffer and the rest will be
loaded the next clock cycle. The function Remaining
Length Detector (RLD), shown in Figure 1, decodes the
length of the partial code from the M-1 empty-indicators
and it is stored in the Length Buffer (LB) to be used for the
next set of data loaded in the Prefix Buffer.

The alternating coding enables simple logic for the
length extraction. This is important, even though the
architecture can be parallelized without limitations, it will
affect the required clock frequency of the output buffer.

4. ASIC AND FPGA IMPLEMENTATION
This section presents the performances and area-costs

of the parallel decoder implementation to both an ASIC
and an FPGA technology.

The computational logic for the PLCE and the RLD are
implemented in RT-level VHDL. Logic synthesis using
Synopsys’ Design Compiler for the ASIC implementation
in a 0.5 µm CMOS technology and WebPack for the
FPGA implementation in Xilinx’s Spartan IIe device. The
delays have been obtained from pre-layout timing analysis
with wire-load models from the silicon vendors.

When designing a decoder with maximum throughput,
the minimum size of the Prefix Buffer is determined by
the maximum clock frequency of the Output Buffer. This
will determine the number of LE-units that is equal to the
number of bits in the Prefix Buffer. The number of LE-
units required for maximum decoding throughput is:

Where tLE is the delay of one LE-unit and tRLD is the
delay of the RLD. The delays tLE and tRLD are dependent
of the maximum prefix codeword length M. Decoders for
maximum codeword lengths of 4, 8, 12, 16, 24 and 32
have been designed and evaluated. The suffix length (k)
does not affect the computational logic and different val-
ues of k are therefore not investigated. In Figure 7 the
number of parallel LE-units required for maximum

Fig. 4: Example of parallel length extraction

C: 1 0 0 1 1 1 1 0

B: 0 1 0 1 0 0 0 1

i=0 0 0 0 1 l0= 0 d0=1111

i=1 1 0 0 0 l1= 3 d1=1000

i=2 0 1 0 0 l2= - d2=1111

i=3 1 0 1 0 l3= 1 d3=1000

i=4 0 1 0 1 l4= - d4=1111

Di shrj dj()

j i M– 1+=

i 1–
∩=

li length Di Ci∧() length Di()–=

Fig. 5: Parallel codeword length extraction

LE
LE

LE

LE
LE

LE

LE

d0

d1,d0

dM-2,..., d0
dM-1,..., d1

dN-M-1,..., dN-2M

dN-M-1,..., dN-M-2

dN-M-1

N-bit Prefix Buffer

Boundary Detection Logic

c0c1cM-1

b0b1bM-1

cN-1

bN-1

l0,d0,e0
l1,d1,e1

lM-1,dM-1,eM-1

lM,dM,eM

lN-M,dN-M,eN-M

lN-1,dN-1,eN-1

lN-2,dN-2,eN-2

ei Di Ci∧()¬=

Fig. 6: Codeword length detection unit

PE

Di Ci

PE

Di

li

M-1M

log2 M

PE = Priority Encoder

M-bit subtractor

NLE
tLE tRLD+
1 foutbuff⁄
--------------------------- N= =

throughput is shown. Maximum throughput for the ASIC
and FPGA implementations are 810 MSymbols/s and 340
Msymbols/s respectively. For large values of M, the
FPGA requires more LE-units compared to the ASIC
implementation to reach maximum throughput. The main
reason for this is the larger increase in wire delays for the
FPGA.

The area required for ASIC and FPGA implementa-
tions of the decoder for different values of M are shown in
Figure 8. The area grows linearly for the ASIC implemen-
tation. For the FPGA implementation the area increases
rapidly for M=32 because the delay of the LE-unit is large
and must be compensated by increasing the parallelity that
requires more LE-units.

5. CONCLUSIONS
The maximum speed of the parallel decoder for GR-

codes, which is proposed in this paper, is limited by the
Output Buffer that is implemented with a PISO register. It
is shown that by using prefix-suffix separation together
with alternating coding, simple codeword length extrac-
tion is enabled. The main contribution of this paper is that
it shows that the recursive dependency between code-
words has been removed and input buffers of arbitrary
size can be decoded at constant delay. The bottleneck that
is in the Output Buffer is still a problem that requires fur-
ther investigations.

We have shown that there are room for improvements
of Variable-Length decoding by doing code-specific opti-
mizations. The alternating coding technique, that we are
proposing, has been applied to different VLCs to improve
the speed, area, and power performances of the decoders
[6, 7, 8] as well as the error-resiliency [9, 10].

6. REFERENCES
[1] M. Mukherjee et.al, “Efficient VLSI designs for data trans-

formation of tree-based codes,” IEEE Trans. on Circuits
Syst., vol. 38, pp. 306-314, 1991.

[2] S.M Lei and M.T. Sun, “An entropy coding system for
HDTV applications,” IEEE Trans. Circuits Syst. Video
Technol., vol.1, pp. 147-155, 1991.

[3] J. Nikara et al., “Parallel Multiple-Symbol Variable-Length
Decoding,” Proc. ICCD’02, 2002.

[4] S. W. Golomb, ”Run-length endodings,” in IEEE. Trans.
Inf. Theory, vol. IT-12, pp. 399-401, July 1966.

[5] R. F. Rice, ”Some practical universal noiseless coding
techniques,” in Tech. Rep., JPL-79-22, Jet Propulsion Lab-
oratory, Pasadena, CA, March 1979.

[6] S. Xue and B. Oelmann, "Efficient VLSI implementation
of a VLC Decoder for Universal Variable Length Code
using alternating coding," IEEE Annual Symposium on
VLSI, Tampa, Florida, USA, 20-21 February, 2003.

[7] S. Xue and B. Oelmann, "A coding method for UVLC tar-
geting efficient decoder architecture," to 3rd IEEE Interna-
tional Symposium on Image and Signal Processing and
Analysis, September 18-20, 2003, Rome.

[8] S. Xue and B. Oelmann, “Efficient VLSI implementation
of VLC decoder for Golomb-Rice code using alternationg
coding, in manuscript, 2003.

[9] S. Xue and B. Oelmann, "Alternating Coding for Universal
Variable Length Code," IEEE International Conference on
Image Processing, September 14-17, 2003, Barcelona.

[10] S. Xue and B. Oelmann, "Error Resilient coding of DCT
coefficients using alternating coding of UVLC," Norsig-
2003.

Fig. 7: Number of parallel LEs for maximum throughput

Fig. 8: Area for computational logic

