
A Tool for Low-Power Synthesis of FSMs with Mixed
Synchronous/Asynchronous State Memory

Cao Cao, Mattias O’Nils, and Bengt Oelmann
Department of Information Technology and Media, Mid Sweden University

S-851 70 Sundsvall, Sweden; {cao.cao, mattias.onils, bengt.oelmann}@mh.se
Abstract
An efficient way to obtain Finite-State Machines (FSMs)

with low power consumption is to partition the machine
into two or more sub-FSMs and use dynamic power man-
agement, where all sub-FSMs not active are shut down, to
reduce dynamic power dissipation. In this paper we focus
on FSM partitioning algorithms and RT-level power esti-
mation functions that are the key issues in the design of a
CAD tool for synthesis of low-power partitioned FSMs. We
target an implementation architecture that is based on both
synchronous and asynchronous state memory elements that
enables larger power reductions than fully synchronous
architectures do. Power reductions of up to 77% have been
achieved at a cost of an increase in area of 18%.

1. Introduction

 Power optimizations at the architectural level often
involves some Dynamic Power Management (DPM)
scheme that reduces the dynamic power consumption [1].
Whenever DPM is applied, the original design has to be
partitioned into two or more units in such a way that they
dynamically can be “shut down” when idle. An automated
optimization procedure will take the original design
description along with statistics for the primary input sig-
nals to a partitioning algorithm with cost-functions that
seeks for the best partition. The number of possible parti-
tions (candidates) are, for non-trivial problems, too large to
explore. Therefore, an algorithm for selecting only the most
promising candidates is required. Among these candidates
one should be ranked to be the best. Here, it is crucial to
have accurate cost-functions despite lack of detailed infor-
mation of the final implementation.

This paper focuses on the partitioning and candidate-
selection procedures and the RT-level power estimation
functions which are implemented in a tool for low-power
FSM synthesis. The outline for the paper is as follows. In
section 2 a background on partitioned FSM design for low-
power is given. This is followed by an overview of the tool
we have developed. Section 4 goes into the details on parti-
tioning algorithm and power estimation functions. In sec-
tion 5 synthesis results are given and after that the paper is
concluded.

2. Background

The initial design description for most approaches of
partitioned FSM design is the synchronous State Transition
Graph (STG). Partitioning, cost-estimations, and transfor-
mations are done on the STG. The first step is typically to
identify clusters of states with high mutual state-transition
probabilities. These states are said to be strongly connected.

The objective is to find small clusters with strongly con-
nected states because they will result in small sub-FSMs
that are active most of the time which leads to low average
power consumption. Each sub-FSM will require circuitry
for idle condition detection and for the shut-down mecha-
nism, which both constitutes a functional overhead. The
partitioner seeks the most beneficial idle conditions, taking
this overhead into account. In the early work by Benini et
al. [2], so called self-loops with high transition probabilities
were implemented as separate sub-FSMs. This work was
generalized to involve clusters of many states [1]. The
major power-overhead introduced in a partitioned FSM
comes from the fact that at the event of a crossing transition
(a state transition has source state and destination state
residing in different sub-FSMs). Two sub-FSMs have to be
clocked in that cycle to complete the transition [3] which
makes it very costly. To overcome this double-clocking
requirement, an asynchronous mechanism has been pro-
posed [4]. By allowing asynchronous state changes, two
state changes can be made in the same clock cycle. Another
advantage of using asynchronous control is that the capaci-
tive load on the free-running global clock is reduced [4].

The straight-forward way to implement a partitioned
FSM is to have separate state memory for each of the sub-
FSMs, see Figure 1a. On the other hand, the state memories
can be shared by all the sub-FSMs since only one is active
at a time. One main advantage here is reduced area for flip-
flops. In this case there is, however, a need for a global state
determining which one of the sub-FSMs is active, see Fig-
ure 1b. The global state memory needs to be clocked by the
global clock and will add substantial power consumption.

The CAD-tool discussed in this paper targets the mixed
synchronous/asynchronous architecture developed in [5]
that has a shared synchronous local state memory (LSM)
together with a global asynchronous state memory (GSM),
see Figure 2. The basic idea is to have synchronous mem-
ory in the part always clocked, i.e. the local state memory,
and asynchronous memory for the global state memory, that
have a low probability of being updated. In this way the
global state memory adds very low power-overhead. The
shut-down mechanisms used are input-gating to reduce
power dissipation in idle combinational logic, and gated-

M1 M2 M1, M2

a) Separate state memory b) Shared state memory

Figure 1. Structural decomposition of FSM

GSM

LSM

δ1δ1 δ2

clocks to shut down flip-flops temporarily not needed in the
local state memory.

3. Design Flow and Tool

As shown in Figure 3, the tool accepts FSMs described
as synchronous STGs. For each input, the switching activity
and signal probability are given. A standard-cell based
design flow is assumed which means that there are no spe-
cial requirements on the library that goes beyond what is
normally provided. However, the tool requires some cell
library dependent information in order to make accurate
power estimations and gate-level synthesis of the asynchro-
nous elements.

In order to enable power estimation, the first step is to
generate necessary statistics for the FSM. From the behav-
ioural FSM description (STG) and the primary input proba-
bilities, we get the state-transition probabilities, input and
output statistics for the state-memory, the transition and out-
put functions. Based on the state-transition probabilities, the
states are clustered according to their mutual state-transition
probabilities. We then use an algorithm that selects those
candidates most likely to give the best partition. With a lim-
ited number of candidates, more accurate RT-level power
estimation is made. Each candidate is synthesized to a RT-
level description and power consumption is estimated. From
these results the best candidate is selected and RT-level
VHDL code is generated along with synthesis scripts for
logic synthesis in a standard tool.

4. Automatic Synthesis of Partitioned FSMs

4.1. State Clustering
The original state transition graph can be looked upon as

an edge-weighted undirected graph G(V,E). A binary tree is
built by recursively applying the Kernighan-Lin two-way
partitioning, states are clustered depending on their state
transition probability for minimizing the crossing transi-
tions between two sets. Redundant states, that in later stage
are discarded, are introduced to V firstly, forming V’, to
make sure |V’| (number of vertices) is the power of 2.
Assumed |V’| equals 2n, the complexity of this algorithm is
O(n2logn). For the benefit of the second phase, the tree is
built with the left hand cluster having higher static probabil-
ity. The left most cluster at each level has then the highest
static probability. Take benchmark dk27 [7] which has 7
states as an example. After introducing one redundant state
(8), a full binary tree is built as shown in Figure 4.

4.2. Candidate Generation
We propose an efficient algorithm that combines clusters

in each level of the binary tree for generating the partition-
ing candidates. For n states, this algorithm finds candidates
ranging from 1-way to n-way partitioning with a complexity
of only O(nlog3n). Within a limited number of candidates, a
good partition with low power can be found. Applying the
algorithm, given in Figure 6, on the binary tree shown in
Figure 4, candidates are generated as shown in Figure 5.

4.3. Power Estimation
The power estimation functions are used on the partition-

ing candidates obtained in Section 4.2. to find the best one
with lowest power. For both the asynchronous global and
synchronous local state memories the gate-level implemen-
tations are known. It is not the same as the combinational
logic which requires different power estimation techniques.
From the STG simulator input and output statistics are
obtained and used for the power estimation.

δ1δ1 λGSM δ1δ1 λδ1δ1 λ1

I

O

Φ

Figure 2. Mixed Synch/Asynch. FSM Architecture

Merging function
Gating function

LSM

STG SimulatorRandom pattern
generator

PartitionerState Clustering

FSM Synthesizer Power estimator

RTL code generator Script generator

Input
probabilities

STG for FSM

Technology
Information

transition probabilities

 candidates

best candidate

VHDL RTL code Synthesis scripts

Figure 3. Overview of the tool

Level 1: {1,2,3,4,5,6,7,8}
Level 2: {2,3,5,7},{1,4,6,8}
Level 3: {2,5},{3,7},{1,6},{4,8}
Level 4: {2},{5},{3},{7},{6},{1},{4},{8}

1 Cluster
2 Clusters
4 Clusters
8 Clusters

Figure 4. Full binary tree for dk27

Level 1: {1,2,3,4,5,6,7,8}

Level 4:

{2},{5},{3,7,6,1,4,8};{2},{5},{3,7},{1,6,4,8};{2},{5},{3,7},{6,1},{4,8}
{2},{5},{3},{7,6,1,4,8};{2},{5},{3},{7},{1,6,4,8};{2},{5},{3},{7},{6,1},{4,8}
{2},{5},{3},{7},{6,1,4,8};{2},{5},{3},{7},{6,1,4,8};{2},{5},{3},{7},{6,1},{4,8}
{2},{5},{3},{7},{6},{1,4,8};{2},{5},{3},{7},{6},{1},{4,8}
{2},{5},{3},{7},{6},{1},{4,8}
{2},{5},{3},{7},{6},{1},{4},{8}

Figure 5. Generated candidates for dk27

Level 2: {2,3,5,7},{1,4,6,8}
Level 3: {2,5},{3,7,6,1,4,8};{2,5},{3,7},{6,1,4,8}; {2,5},{3,7},{6,1,4,8};

{2,5},{3,7},{6,1},{4,8}

{2},{5,3,7,6,1,4,8};{2},{5},{3,7},{6,1,4,8};{2},{5},{3,7},{6,1},{4,8}

Power estimation for combinational logic:
An entropy-based power estimation approach proposed

in [6] is used for the combinational logic. The transition
table together with entropy for the combinational logic,
based on the switching activity of the inputs and the out-
puts, are used:

.Where Hi is the
entropy of the logic, Rowi is the number of rows in the state
transition table originating from the sub-FSM i, ktech is an
empirically determined constant to adjust to the cell library
used, and Ti is the duty period of the sub-FSM i.
Power for global state memory:

For the global state memory we use an empirical model
that is based on the structure of the memory. Even though
the gate-level implementation is known, we found it more
accurate to use the macro model shown below that consists
of two parts representing the power of 1) the logic that
detects and initiates the transition from one sub-FSM to
another and 2) the asynchronous state memory element.

The expression inside the parenthesis estimates the
power in the global state transition function that is a func-

tion of the local state and the global state. The first term rep-
resents the contribution from the local state memory where
pLSM-B is the toggle probability of local state bits. The sec-
ond term represents the contribution from the global mem-
ory where is the sum of toggle probabilities of the g-
states. A g-state is a local state that initiates a global state
transition. The third term represents the complexity of glo-
bal state transition logic where |g| is the number of g-states.
The sum 2) represents the contribution from the global state
memory devices, implemented as muller-C elements where
Ti is the probability of global state transition, which is the
probability of a crossing-transition between different sub-
FSMs. The number of sub-FSMs is denoted n. The con-
stants are determined empirically. These can
be determined based on a single FSM partition run. For
more details on the global state memory architecture we
refer to [5].
Power for D type flip flop:

The local state memory consists of a set of D flip-flops
and is estimated by:

Where Ti is the duty time of the flip-flop, m is the number
of local state memory bits.
Power for clock net energy:

 The power dissipation in the clock net is estimated by:
.

Where |FF| is the average number of flip flops clocked,
Cclkin is the capacitance of the clock input, VDD is the power
supply voltage, f is the clock frequency, kbuffer is the clock
buffer capacitance coefficient, and kwire is the wire capaci-
tance coefficient.
Power for overhead:

, where
includes the power of AND gates for activating and deacti-
vating the combinational logic, also the OR gates for merg-
ing the output; is the power for activating and
deactivating the local state bits and basically originates
from NAND gates.

The power dissipation for the whole partitioned FSM is
simply a sum of the above:

5. Results

The accuracy of the power estimation functions is veri-
fied by comparing the estimated power before and after
logic synthesis. As reference we use Power Compiler (Syn-
opsys) for gate-level power estimation. In Figure 7, the
results from the estimation functions , , ,
and (labeled Estimated) and the results from Power
Compiler (labeled Actual) can be compared. A 0.18µm
technology is used with VDD of 1.8V, clock frequency of
20MHz. The primary input probability and switching activ-
ity are both set to 0.5. A series of candidates chosen from
each level of the partitioning tree of three different FSM
benchmarks (s820, keyb, and s1488) were used in this verfi-
cation. It can be seen that estimation functions match well
with the results from the gate-level estimations. The correla-
tion coefficient, which measures the extent to which two
sets of data match with each other, is used for verifying the

Figure 6. Algorithm for selecting candidates

Candidate_Select(set of Clusters ClusterTree) {
for (level ← 1; level< clusterTree.depth(); level ← level+1) {

Clusters C ← cutlevel(clusterTree, level);
int N ← C.size();
for (base ← 1; base< N; base ← base+1) {

Clusters Pbase ← {c1}, ... ,{cbase};

Clusters Prestbase ← {cbase+1}, ... ,{cN};

Clusters TMP ← PbaseU PrestBase;

candidates ← candidates U TMP;
int restBase ← N - base;
int place ← N;

 int r ← 0;
if (restBase > 2) {

 r←restBase;
while (r > 0) {

int i ← ;

int d ← ;
int q ← (r - mod(r,d))/d; // the quotient of r/d
 r ←mod(r,d); // the residue of r/d
for (j ← q; j > 0; j ← j-1) {

PrestBase ← {cplace-d +1}, ... ,{cplace};

place ← place - d;
TMP ← PbaseU PrestBase;

candidates ← candidates U TMP;
}

}
}

}
}
return candidates;

r
2

log

2
i

Pcomb Hi
i 1=

n

∑ Rowi× ktech Ti××=

PGSM= kB pLSM B–× kG pG× kg g×+ +()

+ PC Ti×
i 1=

n

∑

1)

2)

pG

kB kG and kg,, ,

PLSM PDff
i

Ti×
i 1=

m

∑=

Pclock FF Cclkin f VDD
2

kbuffer kwire×××××=

Poverhead PgatedCom PgatedDff+= PgatedCom

PgatedDff

Pwhole Pcomb PGSM PLSM Pclock Poverhead+ + + +=

Pwhole Pcomb PGSM
PLSM

cost function. The reason for using the correlation coeffi-
cient is that we want to find a candidate with the actual low-
est power also is the candidate with lowest estimated power.
Therefore, the absolute difference of these two is not impor-
tant. The coefficient between estimated and actual power
for the whole partitioned design (Pwhole) is 0.77 for s820,
0.98 for s1488, and 0.88 for keyb.

It is crucial that the candidate generation algorithm finds
the candidate with the lowest power consumption. In order
to verify that we randomly generated 50.000 partitions of
the s1488 and compare them to the one selected by the tool.
From Figure 8 it can be seen that, none of the randomly
generated partitions is better than the one selected by the
tool.

To illustrate the overall performance of our tool a com-
parison between the original monolithic FSM and the multi-
way partitioned FSM is shown in Table 1. The columns
labeled “A.O” and "P.O” represent the area and power of the
original monolithic FSM; the column labeled “n” represents
the number of sub-FSMs after partitioning; “A.D” and
"P.D” represents the area and power of the decomposed
FSM; The following two columns represent the percentage
of area increase and power reduction of the decomposed
FSMs.

The CPU times in Table 1. are for the state clustering and
candidate generation algorithms executed on a Pentium4,

1.6GHz processor, under Windows 2000. The total time for
the largest benchmark (scf 121 states) is 5 minutes which
shows that the most time consuming part is FSM synthesis
to RT-level and power estimation. This supports our idea of
the importance of having a candidate selection algorithm
that early limits the number of candidates.

Table 1. Results for standard benchmarks [7]

6. Discussions and Conclusions

In this paper we present a novel multi-way partitioning
algorithm for partitioned FSM synthesis. We have applied it
to a mixed synchronous/asynchronous architecture but it
can also be used for fully synchronous implementations. We
also present RT-level power estimation functions that have
sufficient accuracy for selecting the candidate with the low-
est power consumption. The proposed algorithms are of low
complexity which is important when it comes to practical
usage of the tool. The tool, as shown in Figure 3, has been
completely implemented in C. It fits into a standard-cell
based design flow and is fully compatible with the Synop-
sys tool set. Our tool reduces the power consumption signif-
icantly, in average 56% for the benchmarks, which is better
than any previously reported results for partitioned FSMs.

7. References

[1] L. Benini, G. de Micheli, “Dynamic Power Management:
Design Techniques and CAD Tools,” Kluwer Academic Publish-
ers, Norwell, MA, 1998.

[2] L. Benini, G. De Micheli, Automatic Synthesis of Low-Power
Gated Clock FSMs,” IEEE Trans. on CAD of Int. Circuits and Sys-
tems, vol. 15, no. 6, pp. 630-643,1996.

[3] B. Oelmann and M. O´Nils, “Locally Asynchronous control of
low-power gated-clock finite-state machines,” IEEE Int. Confer-
ence on Electronics, Circuits, and Systems, pp. 915-918, 1999.

[4] B. Oelmann and M. O’Nils, “A Low-Power Hand-over Mecha-
nism for Gated-Clock FSMs,” Proc. of the European Conference
on Circuit Theory and Design, Stresa, Italy, 1999.

[5] C. Cao, B. Oelmann, “Mixed Synchronous/Asynchronous State
Memory for Low Power FSM Design”, Proceedings of EUROMI-
CRO Symposium on Digital System Design, 2004.

[6] M.Nemani, FN. Najm, “Towards a High-Level Power Estima-
tion Capability,” IEEE Trans. on CAD of Int. Circuits and Sys-
tems, vol.15, no. 6, pp.588 -598,1996.

[7] S. Yang, “Logic Synthesis and Optimization Benchmarks User
Guide version 3.0,” MCNC Technical Report, 1991.

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

180

S1488 Algorithm Candidate No.

P
ow

er
 C

om
pa

ris
on

 (
uW

)

EstimatedWhole
ActualWhole
EstimatedComb
ActualComb
EstimatedGSM
ActualGSM
EstimatedLSM
ActualLSM

Figure 7. Cost function verification

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

50

100

150

200

250

S1488 Random Candidate No.

P
ow

er
 E

st
im

at
io

n
(u

W
)

RandomCandidate
AlgorithmOptimum

Figure 8. Algorithm verification

FSM
A.O
gates

P.O
µW

n A.D
gates

P.D
µW

%A %P

cpu
[s]

s1488 925 160 7 1090 37 18% 77% 2.7

s820 444 75 3 630 41 42% 45% 0.9

s1494 900 141 7 1092 38 21% 73% 3.3

s832 467 80 2 534 36 14% 55% 0.9

keyb 271 72 5 436 34 61% 53% 0.9

scf 786 80 3 1067 54 36% 33% 12.7

	A Tool for Low-Power Synthesis of FSMs with Mixed Synchronous/Asynchronous State Memory
	Cao Cao, Mattias O’Nils, and Bengt Oelmann
	Abstract
	1. Introduction
	2. Background
	Figure 1. Structural decomposition of FSM
	Figure 2. Mixed Synch/Asynch. FSM Architecture

	3. Design Flow and Tool
	Figure 3. Overview of the tool

	4. Automatic Synthesis of Partitioned FSMs
	4.1. State Clustering
	Figure 4. Full binary tree for dk27

	4.2. Candidate Generation
	Figure 5. Generated candidates for dk27

	4.3. Power Estimation
	Figure 6. Algorithm for selecting candidates

	5. Results
	Figure 7. Cost function verification
	Figure 8. Algorithm verification
	Table 1. Results for standard benchmarks [7]

	6. Discussions and Conclusions
	7. References
	[1] L. Benini, G. de Micheli, “Dynamic Power Management: Design Techniques and CAD Tools,” Kluwer...
	[2] L. Benini, G. De Micheli, Automatic Synthesis of Low-Power Gated Clock FSMs,” IEEE Trans. on ...
	[3] B. Oelmann and M. O´Nils, “Locally Asynchronous control of low-power gated-clock finite-state...
	[4] B. Oelmann and M. O’Nils, “A Low-Power Hand-over Mechanism for Gated-Clock FSMs,” Proc. of th...
	[5] C. Cao, B. Oelmann, “Mixed Synchronous/Asynchronous State Memory for Low Power FSM Design”, P...
	[6] M.Nemani, FN. Najm, “Towards a High-Level Power Estimation Capability,” IEEE Trans. on CAD of...
	[7] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide version 3.0,” MCNC Technical...

