VLSI Implementation of DS-CDMA Receiver Using Asynchronous
Design Techniques

Bengt Oelmann, Henk Martijn, and Hannu Tenhunen

Electronic System Design Laboratory, Royal Institute of Technology,
ESDLab/KTH-Electrum. Electrum 229, S-164 40 Kista, Sweden
Email: bengt@ele.kth.se

Abstract: This paper describes the implementation of
an asynchronous self-timed direct sequence spread
spectrum radio receiver. The designed receiver is
planned to be used in MINT [1] (Mobile InterNet
Router) radio interface for broadband wireless data-
communication. The receiver has been implemented in
a 0.8 um CMOS technology using a standard cell
library. The final design contains approximately 100 660
transistors.

1. Introduction

One of the most critical issues in designing electronics
for portable equipment is keeping the power consumption
low.

Systems that are doing any kind of real-time digital sig-
nal processing, especially those which are implemented as
ASICs (Application Specific Integrated Circuits), often
have hard requirements on high throughput rate. CMOS
technology is normally considered to be a low-power tech-
nology, since it practically draws no current when the cir-
cuits are idle. At higher clock frequencies a fast clock
signal must be distributed over the entire chip. Large clock
buffers are needed to drive large capacitive loads. In high-
speed synchronous designs the clock distribution only will
consume as much as 40% of the total power [9,10].

Asynchronous circuits have the advantage of not being
dependent on global signals for synchronization. Instead, it
enables all synchronization and communication to be han-
dled at a local level. The size of the system can be scaled
without effecting the speed, and introducing extra overhead
in power consumption.

Asynchronous circuits offer an event-driven approach to
system design. Only circuits that are doing useful work will
be activated. In CMOS technology this means that idle cir-
cuits automatically get in a power-down mode when idle
[8].

The benefits of using asynchronous design can be
expected on global chip level. On local level asynchronous
circuits have a larger area and they will also be slower.
Dependent on asynchronous design style the area overhead

0-7803-3002-1/95 $4.00 ©1995 IEEE

is typically more than 40%, and the increase in delay more
than 30% compared to synchronous function blocks [6,7].

In spite of the disadvantages asynchronous circuits have
on local level we find it worth while investigating how it
can be used for full-scale VLSI-designs in the area of com-
munication and digital signal processing.

This paper presents a practical approach to asynchronous
system design. We have been using design tools and -tech-
nology that are today industry standard. We will point out
in which respects these are insufficient for asynchronous
design. Finally, we will discuss the performance of the
asynchronous design compared to a synchronous imple-
mentation of a DS-CDMA digital receiver.

2. Digital Radio Receiver Architecture

The asynchronous implementation presented in this
paper is based on a DS-CDMA receiver architecture pre-
sented in [1]. The main objectives were to develop a digital
radio interface suitable for high degree of integration and
with low power consumption.

One aspect of the problem is to investigate and evaluate
the feasibility of using asynchronous design techniques for
the digital radio receiver.

In this section we will give an overview description of
the receiver and explain the working principles and func-
tions.

From the analog front-end the receiver chip get the base-
band signal that is not synchronized with the receiver. The
receiver is doing synchronization and de-modulation of the
signal.

Differential BPSK (binary phase shift-keyed) modula-
tion scheme is used. The binary information that are trans-
mitted are first differential encoded and after that multiplied
with a 13 bit long pseudonoise (PN) sequence, and finally
modulated using BPSK.

After down-mixing in a quadrature mixer and A/D-con-
version the baseband signal is fed to the digital receiver,
shown in figure 1. In the block channel the received data is
first correlated with three shifted versions of the PN-
sequence. The PN-sequence is identical to the one used
when the data were transmitted.

1252

data
I-channel

channel
1

loop
control

data l

Q-channel
o

output

differential| data!

decoder

decision

logic

power
estimate

channel

-
/ =~
-

/ ~

S~
|_PN-sequences + dumy ~

PNE { dump
correlator >‘l D » absolute l__,)j

PNP

ata |y, &
,ﬁ |y o L L) ot |3

absolute

to_decision logic

channel

Sampie sample rate

fbuzfchip/ 13
f;hip=f.\"amplc/ N
N=35

PNE = PN-sequence Early
PNP = PN-sequence Punctual
chip rate PNL = PN-sequence Late

oversampling, times per chip

bit rate

Figure 1. Block diagram over the digital part of the receiver with the
block channel expanded. Sample rate signals are drawn with black lines
and bit rate signals are drawn with gray lines.

The correlated data are integrated over one bit period in
the integrate and dump unit (I/D). After integrate and
dump is done the data rate is going from sample rate down
to bit rate. The channel provides signals to the decision
logic. From these signals are 1) an synchronization error
signal, 2) an amplitude estimate of the channel, and 3) a
bit stream derived.

The synchronization is done by a tracking loop. In the
block decision logic the synchronization error signal from
the channel with highest amplitude is selected to be
steered to the loop control. In the block loop control the
PN-code is adjusted, based on the error signal, to obtain
synchronization [2]. In the block power estimate an aver-
age value of the received power over 64 bits is calculated.

3. Asynchronous Self-Timed Circuit Design

There are basically two ways of doing asynchronous
self-timed circuits. With dual-rail data encoding and com-
pletion detection it is possible to detect when the combina-
torical logic has finished its computation [12]. This can be
an advantage when computation time is very data-depend-
ent and average computation time can be exploited. The
extra circuits for completion detection will in many cases
slow down the computation stage, especially for wide bit-
parallel data where all bits must be checked. The other way
is to use the bundled data approach. Here a delay element is
placed in parallel with the combinatorical logic. This
matched delay must be larger than the worst-case computa-
tion time for the logic. The computation in the self-timed
element using bundled data convention is shown in figure
2. The computation is initiated with control signal I (initi-
ate). The signal DV (Data Valid) is indicating that the com-
putation has finished, and data are valid on the outputs.

In this work we have used a design methodology called
micropipelines [4], and is based on data bundle signalling.
We see two reasons for selecting micropipelines. Firstly,
the receiver chip is working in an environment where the
data arrive in fixed time steps controlled by the sample
clock. The chip must be designed in a way so that it can
process each of every sample, irrespective of its value,
within the time of one sample clock period. Therefore it
must be designed for worst-case operation. Secondly, we
expect the use of micropipelines to result in more efficient
circuits than any other design method [5].

A. Basic Operation

In the pipeline stage shown i figure 2. the control is very
simple. The data transfer from one register to another is
done in the following way. A transition (positive and nega-
tive has the same meaning) on the request wire indicates to
the receiving register that new data are available on its
inputs. When the data have been captured the register sub-
mits a transition on the acknowledge wire. The source reg-
ister may now start the next cycle by submitting a new
request.

a) Self-timed logic
Combinatorica data d
d gl [Forinaerc 7
i |reguest 5
rin roul Gﬂ regues Tin Fout
ain aoul ¢ ac omlzdu_ ain aoul
b)

request / \ /
data :X valid data X ‘

acknowledge ’ \ /

Figure 2. Bundled data convention

valid data

valid daia J

1253

C. Control Modules

Control modules are used for controlling the data-flow in
the system. The control paths are built from a set of primi-
tives [4]. A few of the primitive modules we use are shown
in figure 3. The delay element is inserted in the control path
to meet the bundling constraints (fig. 3a). The C-element
(fig 3b) is an AND-function for transitions. A transition on
the output will only occur after there have been transitions
on all of the inputs. The merge module (fig. 3¢c) merges two

When the dump-signal gets ‘0’ the accumulated value is
dumped. This means that the transition is directed to
ro_dump. The following stage can now capture this value
and acknowledge it by a transition on ao_dump.

dump
data

ai_data
ri_data

control paths. It acts like an OR-function for transitions. — —
The selector module (fig. 3d) steers the input transition (e)
to one of two outputs (t,f) based on the boolean value {s). <
a1 | [y
I ro_dump
e ao__dump
t f
a) b) c) d) l l asynch. master/slave
register . __
Figure 3. Control modules T
E. Macro Cell Design
The receiver has been built using the basic components
described above. We want to exploit the possibilities an
asynchronous technique offers for this type of applications. ™ —
In the block channel (see. fig. 1) the data-rate is reduced data —1 I I I I
from sample rate down to symbol rate. It is taking place in ri_data -
the integrate-gnd-dump unit. A typical synchronous solu- .; gata [1 [— —
tion uses, beside the system clock, a slower clock signal for s :
the dump-rate. In the asynchronous solution (see fig. 4) the a
output data rate is determined by both the input data-rate ~ **F !
and a control bit, which is tagged to the data. The input data ~ 2°-dum '
(data) are accumulated as long as their associated control
bits (dump) are ‘1. Figure 4. Integrate and dump (I/D)
ri D/c_i‘
Sump. da r%_g ro_g r%_(C: ro_§ ri_s ro_as |—p
ai_’ ao_ ai_ .
("i"z'i"t‘:'a—" D D~p| D(7:0) C(7:0) »f C(7:0) Z?‘l’g:o » al_s :g_(I’?\SO ¢ »
ri_PN dump 3] dump ?| 5(15:0) ’
ai_D/d C ai PN
¢ PNE—p| EN INTEGRATE&DUMP ABSOLUTE
A a—p| aump CORRELATOR
ri D ro C ri ¢ ro_S y| ri_s ro_AS |—Pp
ai_D ao_C <€ ai_c a0 S ai_s ao AS
D(7:0 7: > : 15. - b T
D“: r:i(._PN) Sfm,p"’ g\ﬁj,p‘” S(15:0 s(1s5:0) AS(7:0 _'__,
ai_PN
PNP-jp| PN INTEGRATE&DUMP ABSOLUTE
d—p] dump CORRELATOR
PNE'
PNP.
PNL pt ri D _C i_C i
- ai_DO gg_c :i_c §§-§ P :i_i 22—22 >
D(7: : : 1s5. - o ¢
AIHPN : . F il ri(._PN) glﬁ:Z\pO) > g\fuz\pm 8(15:0 B s(15:0) AS(7:0fp
ai_PN
RL_EN PNL~{ PN
ap| qump CORRELATOR INTEGRATE&DUMP ARSOLUTE

Figure 5. Asynchronous implementation of the block channel

1254

4. VLSI-Implementation

Most tools and equipment available for IC-design are
built for synchronous systems. For example RTL-synthesis
from VHDL, ATPG (Automatic Test Pattern Generation),
and ASIC-testers are only available for synchronous cir-
cuits. This becomes a problem when we use standard tools
for asynchronous design. Some of the tasks that are nor-
mally done automatically must be done manually. We used
a commercial standard cell library in 0.8 pm CMOS. This
does not support latches and asynchronous modules. Those
basic cells, specific for micropipelines, were also built from
standard cells.

A. Design flow and Tools

Our design flow starts with a Matlab description. Rele-
vant test data are created with this behavioural description.
Test data are stored on files in a format that it can be used in
the following stages in the design flow. The design is first
partitioned into the major function units. These units are
described in behavioural VHDL and interconnected in a
structural fashion. At this stage only a very rough estima-
tion of timing is done. VHDL is used for simulation and
partly for design entry. The design is hierarchically refined
to a point where macro cells can be identified. The macro-
cells have at this stage their behaviour, interfaces, and tim-
ing requirements defined in VHDL. Due to lack of synthe-
sis tools we do the macro cells at gate-level with schematic
entry. Gate-level simulations provide more detailed timing
information back to the VHDL description. In many cases
the behavioural description of the macro cell must be fur-
ther refined to give an accurate timing model. When the
design is described as an interconnection of macro cells and
those are implemented at gate-level the following stages are
more or less carried out automatically by different tools.

B. Simulation

A flexible simulation environment is needed in order to
try out many different solutions without too much effort.
We found behavioural VHDL suitable for describing the
asynchronous function units. However, the structural
description of the entire design becomes very long in text-
format.

It is important to have accurate delay information early
in the design process. With both local synchronization and
communication the performance for an asynchronous sys-
tem is easier to predict than for system with global struc-
tures for control and communication. Accurate timing
information is only available after the actual layout has
been done. Our experiences shows that delays obtained
from simulation of a single macro cell are close to those
obtained from simulations of the entire system.

All the delay information is located in a single VHDL
record variable and is passed down in the hierarchy. This
gives a great deal of flexibility when optimizing the system
for speed. If one for example wants to see what impact an

improvement of the 16-bit adder will have on the system
performance the delay is changed for adder. The same tech-
nique is used for delay matching. The critical path is identi-
fied and close matching is only done here. At all other
places we set as large margins possible without slowing
down the system.

Design specification
and entry

r= A

’ MATLAB I

' simulations ,

l Macro cell library development
| | ittty "
| behavioural{. .1 - ;ez;z:erfe_ts_ behavioural I

VHDL , VHDL |
l | timing info.
! | |
l I,

g I |
| | structural 4|)] structurai gate-level |4
| VHDL I VEDL models | VHDL impl ,l
| | | |
L — 4 — R |

N

netlist
conversion
macro cell libray
schematic
view
standard cell library
automatic gate-level

place&route simulation

backannotated

delays from layout

GDS-file for fabrication
Figure 6. Design flow

C. Testing

Testing asynchronous circuits in an ASIC-tester is not a
straight-forward task since they are designed for testing
synchronous circuits. We added a configurable interface on-
chip. In normal operation mode it has the asynchronous
handshake protocol. In test mode it externally acts like a
synchronous circuit. The ASIC-tester can now be used for
testing the entire circuit except for the asynchronous inter-
face that has been re-configured. We use a scan-element,
that beside the function described above, also makes it pos-
sible to observe some internal control lines. We have only
inserted this element at a few places since it is too complex
to be inserted for every control signal.

1255

5. Results and Conclusions

A fully asynchronous DS-CDMA radio receiver has been
implemented by using the methods described in this paper.
The performance and characteristics of the receiver chip are
summarized in Table 1.

Table 1. Summary of receiver characteristics

Max. Sample rate @ 5V 48 MSample/s
Max. Data rate 1 Mbit/s

Chip area core / total 21/ 30 mm®
Power consumption (IO-circuits excluded) 500 mwW
Number of transistors 97 645
Number of standard cells 18 700

IC Technology 0.8 pm CMOS
Package 40 pin DIL

It is hard to compare the performance of a reasonable
complex asynchronous system to its synchronous counter-
part due to the fact that a large scale design is rarely done as
one synchronous and one asynchronous version. A fair
comparison can only been done if the functions of both sys-
tems are the same and the same technology is used. We
compare our design with a strict synchronous receiver with
the same functions but implemented in FPGA:s [3]. In
order to make a comparison based on the same technology
we convert the synchronous design to the same technology
we use for the asynchronous one. We base our results in
Table 2. on SPICE simulations of different function blocks
and a model for the clock distribution net [11]. The esti-
mated improvement of using special cells for latches and
asynchronous control logic can be seen in the middle col-
umn of Table 2.

Table 2. Comparison of different implementation techniques

Asynch. Asynch.
standard special Synchronous
cell only standard cells

Speed [Msample/s] 48 48 70

Area (core) [mm?] 21 16 13

Power @ 48Ms/s [mW] | 500 400 350

It is obvious that the synchronous version would be supe-
rior either we consider speed, area, or power. The removal
of the global clock tree and keeping the different parts run-
ning at lowest possible rate did not compensate for the
increase in circuit overhead for handling local synchroniza-
tion.

It is harder to do asynchronous design than clocked syn-
chronous circuit design. Well-established design methods

and mature design tools for design automization is shorten-
ing the design time for synchronous design. But asynchro-
nous design techniques have many nice properties. During
our work we appreciated the modularity. It is easy to spec-
ify and understand the interface of each module.

6. References

1. D. Kerek, H. Olson, H. Tenhunen, G. Maguire, F.
Reichert, “Direct Sequene CDMA Technology and
its Applications to Future Portable Multimedia
Communication Systems”, IEEE ISSSTA ‘94, Oulu,
Finland. pp. 445-449.

2. H. Olsson, D. Kerek, H. Tenhunen, “Direct
Sequence Spectrum Digital Radio Performance
Analysis with Simulation”, SIMS’94. pp. 462-466.

3. T. Saluvere, D. Kerek, H. Tenhunen, “Direct
Sequence Spread Spectrum Digital Radio DSP pro-
totyping using Xilinx FPGAs”. 4th Int. Workshop
for Field Programmable Logic and Applications
(FPL-94), Praha, 1994.

4. LE. Sutherland, “Micropipelines”, Communications
of the ACM, June 1989, vol. 32, pp.720-738.

5. I. Sparso, C. Nielsen, L. Nielsen, and J. Staunstrup,
“Design of Self-Timed Multipliers: A Comparison”,
Proc. of IFIP TC10/WG10.5 Working Conference
on Asynchronous Design Methodologies, Manches-
ter, England, 31 March - 2 April 1993, IFIP Transac-
tions, vol. A-28, pp. 165-180.

6. R. Auletta, B. Reese, and C. Traver, “A Comparison
of synchronous and Asynchronous FSMD Designs”,
ICCD’93, pp. 178-182.

7. B. Oelmann, and H. Tenhunen, “Micropipelined
Multiplier Design Analysis”, Proc. of Norchip Con-
ference 1994, p.187.

8. K. Berkel et al., “Asynchronous Circuits for Low
Power: A DCC Error Corrector”, IEEE
Design&Test of Computers, summer 1994.

9. D.Liu, and C. Svensson, “Power Estimation in
CMOS VLSI Chips”, IEEE Journal of Solid-State
Circuits, vol. 29, no. 6, June 1994,

10. D.W Dobberpuhl et al., “A 200MHz 64-b Dual-
Issue CMOS Microprocessor”, IEEE Journal of
Solid-State Circuits, vol. 27, no. 11, June 1992.

11. H.B Bakoglu, “Circuits, Interconnections, and Pack-
aging for VLSI”, chapter 9, Addison-Wesley, 1990.

12. C.L Seitz “System Timing”, in “Introduction to
VLSI Systems”, C.A Mead and L-A Conway, Eds.,
Addison-Wesley, 1980.

1256

