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ABSTRACT 

The entropy coding of high peak, heavy-tailed probability distributions such as 
the Laplacian, Cauchy, and generalized Gaussian have been a topic of interest 
because they are able to provide good models for data in many coding systems, 
especially in image and video coding systems.  This thesis studies the entropy coding 
of such high peak, heavy-tailed probability distributions.  By summarizing the 
encoding of such distributions under the concept “Unary Prefixed Codes” (UPC), the 
thesis depicts the encoding via a different approach.  By extending the concept of 
UPC, the thesis proposes a universally applicable coding algorithm “Unary Prefixed 
Huffman” (UPH) that could be applied to both finite and infinite sources.   The code 
set resulting from the UPH algorithm has a coding efficiency which is upper-
bounded by entropy + 2 given that the entropy is finite, and is able to provide sub-
optimal encoding of the sources studied in the thesis.  The thesis also proposes 
several different variations of UPCs that are simple in structure yet efficient for use 
for several variations of the high peak, heavy-tailed distributions that are commonly 
found in image and video coding systems.  

By applying the concept of the UPC, the thesis further proposes a coding 
method named the “Alternating Coding” (ALT) method.  The ALT coding provides 
a coding pattern that is different from the conventional method which enables the 
extraction of special properties of the UPCs.  Using the extraction of the special 
property of the UPCs, decoding could be greatly simplified and parallel decoding 
could be a possibility.   Moreover, for the highly structured UPCs that are widely 
used in image and video coding systems, the ALT coding enables an error resiliency 
mechanism to be applied, which helps to improve the error tolerance of these UPC 
packets to a significant extent.  Simulations and actual application results of the ALT 
coding are discussed in the thesis.  

By applying the ALT coding, the hardware architecture of the decoder 
changes accordingly.  The ALT decoder is different to the conventional variable 
length decoders that have been applied in the decoding of UPCs, as it is able to 
utilize the special properties of the UPCs and thus simplify the decoder architecture.  
As shown in the thesis, the ALT decoders are smaller in size, faster in speed and 
consume much less power compared to the conventional decoders.  This is 
particularly true for those highly structured UPCs that are commonly used in image 
and video coding systems.  Actual realizations of several ALT decoders are 
discussed in the thesis, and comparisons are made to the conventional decoders.  The 
improvements are shown to be very evident.  
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1 INTRODUCTION 

This chapter is an introduction of the entire thesis work, which includes the 
background and motivation associated with the thesis work, and a brief description 
of the thesis study.  

 
 

1.1 BACKGROUND  

 
The work in this thesis originated from a study of the entropy coding of 

some image and video data.  The encoding and decoding of image and video data, 
especially video data, requires an entire complex system which is an integration of 
many different functional parts.  To convert image/video into electronic signals that 
are suitable for physical transmission is no easy task.  Especially for image/video, 
the high bit rates that result from the various types of digital video make their 
transmission through their intended channels very difficult.  Compression coding 
bridges a crucial gap between the user’s demands (high-quality still and moving 
images, delivered quickly at a reasonable cost) and the limited capabilities of 
transmission networks and storage devices.  For example [43], a “television 
quality” digital video signal requires 216 Mbits of storage or transmission capacity 
for one second of video.  Transmission of this type of signal in real time is beyond 
the capabilities of most present-day communications networks.  A two-hour movie 
(uncompressed) requires over 194 Gbytes of storage, equivalent to 42 DVDs or 
304 CD-ROMs.  In order for digital video to become a plausible alternative to its 
analogue predecessors (such as the analogue television), it is necessary to develop 
methods to reduce or compress this prohibitively high bit-rate signal.  

The drive to solve this problem has taken decades and massive efforts in 
research, development and standardization. Significant gains in storage, 
transmission, and processor technology have been achieved in recent years, and it 
is primarily the reduction of the amount of data that needs to be stored, transmitted, 
and processed that has made widespread use of digital video a possibility.   

 
Modern image/video coding standards have adopted comprehensive 

compression methods to remove the redundancy in image and video data and thus 
compress the amount of data to be stored and transmitted.  Compression could be 
performed at the encoder for transmission and then decompressed at the decoder to 
restore the original signals.  The decompressed signal may be identical to the 
original signal (lossless compression) or it may be distorted and degraded (lossy 
compression).  Compression of image and video signals is based on the fact that 
there are always spatial, temporal or statistical redundancies that could be removed.  
For instance, neighboring pixels in an image or a video frame tend to be highly 
correlated and so there is significant spatial redundancy.  Neighboring regions 
within successive video frames also tend to be highly correlated and thus 
significant temporal redundancy exists.  These statistical redundancies could be 
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modeled by using proper source models.  A good source model then attempts to 
exploit the properties of video or image data and to represent it in a form that can 
be readily compressed by an entropy encoder.  A source model may also take 
advantage of subjective redundancy, exploiting the sensitivity of the human visual 
system (HVS) to various characteristics of image and video.  For example, the 
HVS is much more sensitive to low rather than to high frequencies and so it is 
possible to compress an image by eliminating certain subjectively redundant 
components of the information.  Although the decoded image is no longer identical 
to the original, the information loss is hardly perceived by the human viewer.  

There are many different techniques of compression in the image and video 
coding systems. In an image coding system, there are three basic parts of 
compression: transform coding, quantization and entropy coding. In a video coding 
system, frame differencing and motion-compensated prediction are also applied to 
further reduce the temporal redundancies.  

Figure 1-1 shows an example of the block diagram of the image enCOder 
and DECoder (CODEC).  

 

TransfromSource 
image Quantize Reorder Entropy 

encoding

Inverse
Transfrom

Decoded 
image Rescale Reorder Entropy 

encoding

Store/
Transmit

Encoder

Decoder

 
Figure 1-1  Image CODEC 

 
In an image CODEC, the transform coding stage transforms the image from 

the spatial domain into another domain in order to make it more amenable to 
compression.  The transform may be applied to discrete blocks in an image (block 
transform) or to the entire image.  In a video coding system, a block transform is 
usually applied.  The Karhumen-Loeve transform (KLT) has the “best” 
performance of any block-based image transform. The coefficients produced by the 
KLT are decorrelated and the energy is packed into a minimal number of 
coefficients.  However, KLT is very computationally complex and is impractical 
for use.  The discrete cosine transform (DCT) performs nearly as well as the KLT 
and is much more computationally efficient and therefore DCT is usually applied.  
The DCT are usually applied as block-base transforms.  Figure 1-2 shows an 
example of a block-based DCT.  In the original block, it can be seen that the energy 
is distributed across all the samples but after the DCT, the energy is concentrated 
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into a few significant coefficients (at the top left).  Other types of transforms such 
as the wavelet transform are also commonly found in the image coding systems.  

 

 
Figure 1-2 Block based DCT 

 
The quantization stage in an image encoder removes those components of 

the transformed data unimportant to the visual appearance of the image but retains 
the visually important components.  This is typically done by dividing each 
transformed coefficient by an integer and then discarding the remainder.  
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Figure 1-3 Zigzag reordering 
 

After the image is transformed and quantized, the quantized coefficients are 
reordered so that the non-zero values can be grouped together in sequence.  The 
non-zero quantized coefficients are usually clustered around the “top-left” corner 
containing mainly the low frequency coefficients and thus by means of a zigzag 
scan, the non-zero coefficients can be grouped together.  Figure 1-3 illustrates the 
zigzag ordering of the quantized transformed coefficients. The reordered 
coefficient array usually consists of a group of non-zero coefficients followed by 
mostly zeros.  For the example in Figure 1-3, the zigzag scanned DCT coefficients 
appear as follows:  

80, 0, 12, 0, 0, 10, 0, 0, 0, 0, 0, 1, 0, 0, ..., 0. 
 

Such a pattern is usually coded using the run length coding where the length 
of zeros between non-zero values and the non-zero value are coded as a (run, level) 
pair instead of coding every single repeating zero in the array.   So for the example 
in Figure 1-3, the (run, level) pair appears as: 

80, (1, 12), (2, 10), (5, 1), EOB (End Of Block). 
 
Statistical models are then applied to the run length coded data and entropy 

coding of the statistical models is performed.  The entropy coding of these data 
involves different statistical models and different coding algorithms.  The statistical 
models are usually source distributions with high peaks, heavy tails, and coding 
algorithms involving variable length encoding and arithmetic coding.  Variable 
length encoding is a common technique used in coding any discrete source, which 
assigns shorter codewords to frequent symbols and longer codewords to infrequent 
symbols in order to reduce the average code length.  Arithmetic coding achieves 
variable length encoding by mapping a series of symbols to a fractional number 
which is then converted into a binary number.  It has proved to be very efficient, 
and the match to the actual statistical model can be very accurate, but the algorithm 
is in general computationally complex.   
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The output of the entropy encoder is a sequence of binary codes that 
represent the original image in compressed form.  To recreate the image, decoding 
of the compressed image is performed.  The inverse procedure is taken step by step 
as Figure 1-1 shows.  

 
The video coding system is even more complicated than the image coding 

system with the image encoder being a mere part of the video encoder.  Figure 1-4 
shows the block diagram of a video encoder.  

A video signal consists of a sequence of individual picture frames in which 
each frame may be compressed individually using an image encoder (intra-frame 
coding).  However, consecutive frames usually have strong temporal correlations 
and therefore could be further compressed by predicting and compensating for the 
current frame using previous frame references (inter-frame coding).  The main 
difference between the video and image CODEC lies here.   Predicting the current 
frame using those previously transmitted is called frame differencing.  A residual 
frame is produced by subtracting the previous frame from the current frame in a 
video sequence, and the residual frame is compressed and transmitted instead of 
the current frame itself.  This is the simplest predictor in a video coding system. 
Frame differencing enables good compression to be achieved when successive 
frames are similar. But when there is a significant change between the previous and 
current frames, significantly better predictions could be achieved by estimating the 
movement and compensating for it.  Motion estimation and compensation assist in 
achieving these goals. 

 
Motion-compensated

prediction
+
_

Prediction

Current  
frame

Image
encoder

Previous
frames

Motion
estimation

Prediction

Image
decoder

+
_

Decoded 
frame

Encoded
frame

Motion
vectors

Image
decoder

Previous
frames

 
Figure 1-4 Video encoder 

 
The entropy coding in the video coding system involves more types of data 

in comparison to the image encoders.  In the video encoder, an image transform is 
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applied to the residual frame and the coefficients are quantized, reordered and run-
length coded.  The result of the run-length coding is entropy coded as in an image 
encoder.  However, the statistical models are generally different for intra- and 
inter-coded frames.  Moreover, if motion compensated prediction is to be followed 
through, motion vector information must also be sent in addition to the run-length 
coded data.  Therefore the motion vectors must also be entropy coded.  There are 
also other data types such as quantizer parameter, headers and parameters etc, 
which all need to be entropy coded to remove the statistical redundancy.  For 
different data types, variable length coding of proper statistical models as well as 
arithmetic coding could both be applied.  For instance, in H.264 [44][45][49], 
entropy coding could be performed using fixed- or variable length codes, or 
context-based adaptive arithmetic coding (CABAC) [46][47][48] (which is a low-
complexity adaptive binary arithmetic coding technique with context modeling), 
and context-based adaptive variable length coding (CAVLC) [50] and exp-Golomb 
codes.  

 
From the above we see that, entropy coding is one of the key parts involved 

in image/video compression.  Proper statistical models need to be applied to 
perform entropy coding efficiently.   

 
With reference to the implementation of the video CODEC, there are many 

issues requiring to be taken into consideration. Video compression and 
decompression are known to be computationally intensive tasks that require special 
hardware or very powerful general-purpose processors.  It is possible to implement 
the video coding mostly in hardware and use a micro controller to implement high-
level control functions in software.  However, it is also possible to implement the 
codec completely in software and use a high-end, high-performance micro 
controller or digital signal processor (or both) [58].  A special hardware solution is 
always better from a performance, area and power point of view as the architecture 
can be designed to implement a specific algorithm. A software-based solution, on 
the other hand, is often considered more appealing as it is flexible and easier to 
develop. The availability of low-cost and low-power hardware with sufficiently 
high performance is essential for the popularization of image and video coding 
applications. Thus, efficient hardware implementations in VLSI are of vital 
importance.  However, image and video coding algorithms are characterized by 
very high computational complexity. Real-time processing of multi-dimensional 
image and video signal involves operating continuous data streams of huge 
volumes.  Such critical demands cannot be fulfilled by conventional hardware 
architectures without specific adaptation [66].  Therefore any tradeoff between the 
software and hardware solutions should be studied carefully before the system 
architecture is designed.  

In [59], an MPEG-4 video codec is designed using a combination of RISC 
and dedicated hardware engines in order to satisfy the requirements for both low 
power and programmability.  This is because dedicated hardware is much better 
from power- and area-efficient standpoints and software programmability whereas 
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an embedded reduced instruction set computer processor is preferable in order to 
cope with the MPEG standardization.  The dedicated engines in [59] are adopted 
for computationally intensive functions in MPEG4, such as DCT, inverse DCT 
(IDCT), Motion Estimation (ME), Motion Compensation (MC), and the Variable 
Length Code (VLC) CODEC, while the embedded RISC processor is included to 
provide flexibility for other tasks.  By doing so, together with several levels of low-
power techniques, such as parallel operation, clock gating, etc, the design in [59] 
achieved 70% power saving when compared to a conventional design. In their 
design, it was shown that the power dissipated by the VLC decoder alone consisted 
of approximately 9% of the total power dissipation even using a dedicated 
hardware design.  The DCT and IDCT module are also energy consuming 
components which between them consume respectively 6% and 13% of the total 
power dissipation.  In [67], the computational load of MPEG decoder was analyzed 
and it was shown that the VLC decoding and inverse quantization utilize up to 24% 
of the total computational load,  the IDCT approximately 28% of the computation, 
and the MC 48%.  This also shows that the VLC decoding is one of the 
performance limiting components and requires careful consideration.  It is 
commonly accepted that the DCT/IDCT, ME/MC, quantization and VLC decoding 
are the performance limiting modules in a video CODEC or multimedia system 
[68] [69] [70].  Almost all MPEG-4 CODEC designs [60] [61] [62] [63] [64] [65] 
[67] adopt dedicated module architectures for the computationally intensive 
ME/MC, DCT/IDCT, and the VLC CODECs.  In [63], dedicated module 
architectures are even adopted for all coding tasks including CODEC control.  

 
From the above we have seen that the VLC CODEC part in a video CODEC 

is usually designed using dedicated modules that are able to work independently, as 
it is one of the most computational intensive parts of the video CODEC.  Therefore 
an efficient VLC decoder plays an important role in a video CODEC.  The 
simplification of the VLC decoder dedicated to video systems then becomes an 
interesting topic to study.  

 
 
 

1.1.1 The statistical models of some image/video data 
 
To efficiently perform entropy coding in image and video coding systems, 

an accurate model of the image and video data need is a necessity regardless of 
which entropy coding algorithm is to be applied.  The modeling of the different 
types of image/video data is a massive subject and has involved a great deal of 
effort by many researchers.  The work in this thesis does not involve the modeling 
of image/video data. Our emphasis is to study and improve the entropy coding of 
some specific probability models that are often encountered in image/video 
encodings.  
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Many different types of image/video data could be modeled with probability 
distributions having high peaks and heavy tails.  For instance, several studies on 
the statistical distribution of the AC coefficients have been proposed, in which the 
AC coefficients were conjectured to have Gaussian [34] [35], Laplacian [36] [37], 
or more complex distributions [38][39].  The work in [40] also indicates that the 
AC coefficients can be suitably modeled using Cauchy distribution. It is generally 
believed that the distribution of the luminance components of a transformed image 
block is also Laplacian [52][53]. [51]confirmed the Laplacian distribution for both 
the luminance and chrominance channels of DCT encoded images and video 
sequences.  Gaussian and Laplacian distributions are the most popular statistical 
models used for DCT coefficients [54][55] and DCT residuals [56].  A mixed 
Laplacian model was proposed in [57] as an accurate statistical model for DCT 
residuals for the MPEG4 FGS (Fine Granular Scalability) enhancement layer. In 
[12], scalar quantized, run-length-coded image sub-bands are modeled using a 
generalized Gaussian (GG) distribution and it has proved to be a more flexible 
model. In [15], another discrete distribution has been designed for the length of 
each run of zeros in a uniformly quantized sub-band of a wavelet transformed 
image.   

 
The shapes of all of these probability distributions used in the modeling of 

image/video data contain high peaks and heavy tails.  They provide accurate 
models for some of the image/video data and therefore provide a reasonable model 
for the entropy coding of these image/video data.  Figure 1-5 [51] shows an 
example of the distribution of some image data.  Its high peak, heavy-tailed shape 
is very obvious.  

 

 
Figure 1-5 Histogram of a certain image data  
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1.1.2 The architecture of the variable length decoder  

 
VLC are codes with variable code lengths. The basic concept of the entropy 

coding is to assign shorter codewords to symbols with higher appearance 
frequencies and longer codewords to symbols with lower appearance frequencies, 
thus reducing the average length of the codes.  To encode and decode VLCs 
efficiently, different types of VLC encoders and decoders have been developed.  

 
The design of VLC encoders is straightforward. We can simply describe 

VLC encoders using block diagrams as are shown in Figure 1-6. The input symbol 
is fed into a look up table and then the corresponding codeword is read out from 
the table. With an output buffer, codewords with variable lengths can be output at a 
constant rate. 

 

 
Figure 1-6 Block diagram of a VLC encoder 

 
Decoding of the VLCs is in much more difficult since the variable lengths 

make the codewords difficult to separate. The codeword boundary cannot be 
determined until previous codewords have been decoded. This recursive 
dependence results in an upper bound on the iteration speed and limits the decode 
throughput.  

The most straightforward means of   implementing a VLC decoder is to use 
a "tree-based architecture" as shown in Figure 1-7 . 

 

 
Figure 1-7 The tree-based architecture 

 
Such a tree-based structure is based on the fact that the decoding process 

actually is a traversal along the directed path of the code tree. One can map the 
code tree directly as shown in Figure 1-7 . The branching function at each internal 
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node can be modeled as a 1-to-2 demultiplexer.  Obviously, this structure has an 
output of one bit per cycle. 

Pipelining can increase the throughput of the tree-based decoder, as 
discussed by Shih-Fu Chang and David G. Messerschmitt in [41]. The most 
straightforward method is to partition the decoder into pipeline stages where each 
one includes one level of the code tree.  Then the decoder can be implemented by 
simply cascading several ROMs, where the number of ROMs is equal to the depth 
of the code tree.  

 
Although pipelining could be achieved, this direct implementation using a 

tree-based architecture is obviously inefficient.  Many other different methods and 
concepts have been proposed in VLC decoder implementations. Different types of 
VLC decoders are developed according to the different ways in which the code 
word boundaries are determined.  Figure 1-8, Figure 1-9 and Figure 1-10 show 
block diagrams of three types of decoders. 

 

 
Figure 1-8 VLC decoder type one 

 

 
Figure 1-9 VLC decoder type two 

 

 
Figure 1-10 VLC decoder type three 

 
The VLC decoder in Figure 1-10 is the most commonly used VLC decoder 

architecture.  It is a general VLC decoder structure that could be used for any VLC.  
It involves the input buffer, a shifting scheme and Look-Up Tables (LUT) that 
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provide references for the codeword lengths as well as the decoding of the actual 
data.  It is possible to decode one codeword per clock cycle.  

 
The bottleneck of the decoding throughput of VLC decoders is caused by the 

sequential dependencies of the codewords.  Therefore, to break the dependency to 
attempt to achieve concurrency is of great importance in increasing the decoding 
throughput.  To balance the tradeoff between throughput and complexity, the 
papers by H. D. Lin and D. G. Messerchmitt [42] introduced several general 
methods for parallel decoding processes. However, a general VLC architecture will 
always suffer for complexity as it is necessary to consider all the possible cases 
which could happen in the VLC. Such complexity leads to large, slow and power 
consuming designs.  
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1.2 MOTIVATION BEHIND THE STUDY 

 
The motivations behind the study of this thesis are based on the following 

two considerations: 
1. To improve the entropy coding of those probability distributions that are 

used to model image/video data; 
2. A simplification of the VLC decoder for these image/video codes 
 
 
 

1.2.1 Improvement in the entropy coding 
 
As was described in section 1.1.1, there are several different probability 

distributions that are used to model some of the image/video data. Even for one 
type of image/video data, such as the DCT coefficients, there are different 
probability models used to model them. The entropy coding for each probability 
model, is usually at least slightly different. Therefore different entropy codes have 
been developed for these different probability distributions and have been applied 
to the coding of some image/video data. Considering these distribution and code 
variations, it is sometimes difficult to select an optimal match or indeed a sub-
optimal one. For instance, optimal entropy codes exist for the Laplacian 
distributions, yet for the GG distributions, no optimal codes could be constructed. 
Therefore, to efficiently model and encode the image/video data source, it is 
necessary to not only match the data to a good statistical model, but also alter the 
entropy encoding of these statistical models.  

 
It is well known that the Huffman encoding algorithm [1] has proved to be 

optimal for any finite source. Therefore, it might be considered possible to apply 
the Huffman encoding algorithm to the different statistical models thus avoiding 
the need to select another efficient entropy code. However, the distributions of 
these image/video data are all modeled using infinite sources which are not 
applicable to the Huffman algorithm. The reason behind this is that the Huffman 
algorithm requires the encoding to be initiated through the merger of the two 
symbols with the least probability values, whereas for infinite sources, there are no 
“least” probability values.  

 
In order to tackle these infinite sources while at the same time still being 

flexible in order to adapt to the change caused by using different statistical models 
in the encoding procedure, in this thesis we have attempted to study and improve 
the entropy coding of these high-peaked, heavy-tailed probability distributions and 
have proposed new codes as well as coding algorithms. 

 



15 

Moreover, the resulting entropy codes are, in the majority of cases VLCs. 
The VLC has the disadvantage of being vulnerable to transmission errors, as will 
be demonstrated in Chapter 3. The work in this thesis also attempts to improve the 
error-resiliency of the entropy codes for the probability distributions used to model 
some of the image/video data. 
 
 
 
1.2.2 Simplification of the decoder architecture  

 
As we have mentioned in the previous section, the most commonly used, and 

most efficient VLC decoder structure involves buffering, shifting and table-look-up 
in its architecture. The shifting scheme and the LUTs are usually large, slow and 
power consuming and these all limit the performance of parts of the VLC decoder.  

The key point in a VLC decoder is the determination of the variable code 
lengths, which is necessary in order to proceed with the decoding. For a common 
VLC decoder, determining the lengths of the decoders is only possible by 
searching the LUT, matching the codewords and reading out the code lengths of 
these codewords. With the decoded code length, the shifting scheme would be able 
to shift out the decoded codewords and immediately restart decoding. However, 
there are certain VLCs where the very structure of the codes provides additional 
information concerning the lengths of the code lengths. For the widely used 
image/video entropy codes, it is worthwhile studying the code structure and 
attempting to extract useful information from it. The other part of the work in this 
thesis is devoted to the study of the code structures of the image/video entropy 
codes, involving an attempt to extract useful code length information and thus 
simplify the decoder architecture for these entropy decoders.  
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1.3 THESIS OUTLINE 

 
There are five chapters in this thesis.  The first chapter consists of an 

introduction and provides the background and motivation behind the thesis.  The 
last chapter consists of a brief summary of the entire work. The main work of this 
thesis is described in chapters two, three and four, respectively.  

 
In chapter two, we focus on the efficient entropy encoding of particular 

sources that are commonly found in modeling image and video data.  In this 
chapter, we introduce a general concept which summarizes one type of 
image/video entropy codes, and then different variations of this concept are 
introduced and discussed.    

Chapter three introduces a coding method developed on the basis of the 
coding concept introduced in chapter two.  Some applications of the coding method 
are then shown and its advantages and disadvantages are discussed.  

Chapter four of this thesis focuses on the decoder architecture built on the 
coding method introduced in chapter three.   The variations of the decoders in 
accommodating different image/video entropy code sets are discussed and 
applications of such decoders are also shown.  The advantages and disadvantages 
of such decoders are also discussed in the chapter.  

Chapter five is a brief summary of the thesis and suggestions are also made 
concerning several possible future continuations of the thesis work.  
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2 UNARY-PREFIXED CODES 

The starting point for the study of the entropy coding of the typical sources 
in image/video coding systems is with the existing codes used in the coding of 
these sources. As mentioned in the introduction, these source probability 
distributions, such as Laplacian, generalized Gaussian, Cauchy etc., are all of 
similar shapes, i.e., all with high peaks and heavy tails.  Therefore the optimal or 
nearly optimal entropy codes for these sources, also share some common 
properties.  In this chapter, we study the optimal and nearly optimal codes of some 
typical probability distributions and summarize the entropy codes of these sources 
under the common name: “Unary-prefixed Codes” (UPC).  Based on the study of 
previous work, we propose a new type of UPC as well as an adaptive coding 
algorithm for these sources, the resulting codes from the adaptive algorithm could 
also belong to the UPC family.  

 
In this chapter, we first introduce the existing UPCs. Then we introduce the 

new UPC and the adaptive coding algorithm proposed. While introducing the 
adaptive algorithm, several possible coding strategies are discussed, which result in 
code sets with different properties. Finally, we present the applications of different 
UPCs.  

 
 

2.1 THE EXISTING UPCS  

2.1.1 Run-Length Encodings  
 

Consider repeatedly performing a success-failure experiment having a 
probability of success 1 , (0 1)θ θ− < <  until the first success appears. For 
example, flipping a coin (with the probability of getting head to be1 θ− ) until you 
get a head, or receiving a binary sequence bit by bit (with probability of getting “1” 
to be 1 θ− ) till you get a “1”.  Let random variable X denote the number of failures 
until a success appears, then the probability distribution of X can be given by: 
 ( ) (1 ), 0,1, 2,3, 4kP X k kθ θ= = − = L  (2.1) 
Such a discrete probability distribution is called a geometric distribution and the 
random variable X here has an infinite positive integer sample space: 
{0,1,2,3,4, }LL .  

 
Now let us consider the entropy coding of an integer source with the 

geometric probability distribution given in Eq.(2.1).  It is well known that by 
applying the Huffman coding algorithm, we are able to encode the letters of a finite 
source alphabet into Huffman codes [1], which are uniquely decipherable codes 
with minimum expected codeword length. However, for an integer source of the 
geometric distribution, the alphabet is infinite and the Huffman algorithm cannot 
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be applied directly. This is due to the fact that the Huffman algorithm requires the 
encoding to start by ‘merging’ the least probable letters in the alphabet.   

 
S.W. Golomb initiated the early work [2] in coding infinite alphabets of non-

negative integer sources, which follow the geometric distribution in Eq.(2.1), into 
optimal codes. He named the random variable X as “the run lengths between 
successive unfavorable events” and studied the case when θ  satisfies 1

2
mθ = , 

where m is some positive integer. Under such conditions, θ  could only take values 
in the set: 1 1 1 131 2 4

2 2 2 2{ , , , }L . 
 
Since we have 1

2
mθ = , then the probability of the run length n m+  is: 

 1
2
1
2

( ) (1 )
(1 )

( )

n m

n

P X n m

P X n

θ θ

θ θ

+= + = −

= −

= =

 (2.2) 

This means that a run length n m+  occurs with a probability of exactly one half of 
run length n.  Suppose a run length n is coded using a binary code of l-bit, then it is 
obviously very reasonable to encode a run length n m+  using a binary code of 
length ( 1l + ). Intuitively, every m codeword, apart from the initial few, should 
have the same code length.  Golomb has pointed out that, this argument, though not 
rigorous, leads to the correct conclusion that for  geometric distributions with 

1
2

mθ = , the optimal code set should include m codewords of each possible code 
length, except for the shortest code lengths, which are not used at all if 1m > , and 
possibly one transitional code length, which is used fewer than m times. This 
argument, as also indicated by Golomb, could easily be verified by mathematical 
induction.  

 
In general, let k be the smallest integer satisfying 2 2k m≥ , then we have 

exactly m codes for each code length longer than k.  There are 12k m− −  codewords 
for code length 1k − .  

 
A quick proof of this argument would be as follows. According to the Kraft 

inequality [3], for prefix codes, codewords with length n occupy 1 2n  of the total 
leaves of the binary code tree. Therefore for the above allocation of the code 
lengths, all codewords with length longer than k bits occupy 12km −  of the total 
leaves. This is because: 

 1 2 3 12 2 2 2 2k k k k k

m m m m m
+ + + −+ + + + =L   

Therefore, the rest of the codes must be occupying proportionally: 



19 

 
1

1 1

21
2 2

k

k k

m m−

− −

−
− =   

of the total leaves. Thus, it follows that, the number of codewords with length 
1k −  must be 12k m− − .  

 
When m is a power of 2, i.e., 12km −= , we have 12 0k m− − = . Thus there 

are no codewords with length 1k −  and every code length will have exactly m 
codewords. 

 
For instance, if we have 4m = , then 4 1

2θ = , the run length codes will 
appear as shown below: 

 

N  )1( θθ −n   Run Length Codes 

0  0.151  000 
1  0.128  001 
2  0.109  010 
3  0.092  011 
4  0.078  1000 
5  0.066  1001 
6  0.056  1010 
7  0.048  1011 
8  0.040  11000 
9  0.034  11001 

10  0.029  11010 
Table 2-1(a) Run length codes with 4m =  

 
However for 3m = , i.e., 3 1

2θ = , the run length code will be: 
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N  )1( θθ −n   Run Length Codes 

0  0.206  00 
1  0.164  010 
2  0.130  011 
3  0.103  100 
4  0.081  1010 
5  0.064  1011 
6  0.051  1100 
7  0.041  11010 
8  0.032  11011 
9  0.026  11100 

10  0.021  111010 
… … … 

Table 2-1(b) Run length codes with 3m =  
 
Note that in Table 2-1(a), the shortest code length has four codewords, 

which is equal to m; whereas in Table 2-1(b), the shortest code length has one 
codeword, which is not equal to m.  

 
Now we have discussed the case when log 2 logm θ= −  is an integer. 

However, in most cases, log 2 logθ−  is not an integer. Under such circumstances, 
the number of codewords having the same code lengths will then oscillate between 
⎣ ⎦m  and ⎣ ⎦ 1+m . Golomb pointed out that, when m is very big, θ  approaches 1, 
and it would be possible to choose an integer closest to m and still perform run 
length encoding; which will not lead to a bad result.  

 
If we look closely at the run length codes, it is not difficult to find out that, 

starting from the very first codeword; every m codewords in the run length code set 
contain exactly the same leading bits. For instance, in Table 2-1(b), when 3m = , 
the first three codewords have the same leading bit “0”, the second three 
codewords have the same leading bits “10”, the third three codewords have the 
same leading bits “110” and so on. In fact, every codeword in a run length code set 
can be expressed as the concatenation of the common leading bits in an m-
codeword group and some binary codes.  
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Let us now investigate this interesting property from another approach by 
looking at the case when 1m = . The following table shows the run length code 
when 1m = .  

 

n  )1( θθ −n   Run Length Codes 

0  1/2  0 
1  1/4  10 
2  1/8  110 
3  1/16  1110 
4  1/32  11110 
5  1/64  111110 
6  1/128  1111110 
7  1/256  11111110 
8  1/512  111111110 
9  1/1024  1111111110 

10  1/2048  11111111110 

Table 2-2  The run length code when 1=m  

 
When 1

2
kθ = , the sum of every k-codeword group will have a probability 

distribution as shown in Table 2-2.  This is easily verifiable since the sum of the 
first k probabilities is: 

 
1

0

1(1 ) 1
2

k
i k

i
θ θ θ

−

=

− = − =∑  (2.3) 

And therefore the sum of the j-th group of k probabilities is 1 2 j  
For the distribution in Table 2-2, we can see that, every codeword is a unary 

code of the integer n plus a “0”. We can simply call it a unary prefix since the bit 
“0” exists for every codeword.  This unary prefix is exactly the common leading 
bits we have talked about. Then it is obvious that for 1

2
mθ = , the run length code 

can be expressed as a unary prefix plus a 2log m⎢ ⎥⎣ ⎦ -bit or ⎣ ⎦ 1log2 +m -bit suffix.  
 
 

2.1.2 The Golomb Rice codes 
 
Until now, in the run length encodings, we have been discussing the 

situation when 1
2

mθ = , where m is an integer. Under such conditions, Golomb has 
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proved that the run length codes are optimal for the geometric distribution in 
Eq.(2.1). Golomb has indicated that in most cases, θ  cannot satisfy this condition, 
but run length coding strategy could still be used. Gallager and Van Voorhis [4] 
generalized Golomb’s idea to the entire interval when 10 << θ  and proved that 
optimal code exists for any probability distribution with 10 << θ .   

 
Gallager and Voorhis pointed out that, the run length codes are not only 

optimal for 1
2

mθ = , but also optimal for any θ  that satisfies: 

 1 11m m m mθ θ θ θ+ −+ ≤ ≤ +  (2.4) 
It is obvious that, for any θ  satisfying 10 << θ , there exists a unique m such that 
the inequality (2.4) is satisfied. Therefore, Gallager and Voorhis’s result indicates 
that for 10 << θ , optimal codes can be constructed using Golomb’s run length 
encoding algorithm. 

 
Now let us look at a particular θ  such that 10 << θ . From inequality(2.4), 

we could find out the corresponding integer m. For this specific θ  and m, we 
define a discrete source that has 1n m+ +  symbols, and has a probability 
distribution given by: 

 
(1 ) , 0

( ) (1 ) , .
1

k

k
n

m

k n
P k

n k n m

θ θ

θ θ
θ

⎧ − ≤ ≤
⎪= ⎨ −

< ≤ +⎪ −⎩

 (2.5) 

 
Here n can be any integer.  In fact, the last m probability values in such a 

discrete source can be considered to be the sum of all probability values in Eq.(2.1) 
with k m> . That is:  

 
0

(1 ) (1 ) .
1

k
k jm

m
j

θ θ θ θ
θ

∞
+

=

−
= −

− ∑  (2.6) 

 
Now let us consider the optimal coding of this discrete source with 

1++ mn  symbols. The first 1+n  symbols of this discrete source have 
probability values that decrease as n increases; similarly, the last m symbols also 
have decreasing probability values. Therefore we know that, the ( mn + )-th 
probability value is smaller or equal to the ( 1−n )-th probability value: 

 1(1 ) (1 ) .
1

n m
n

m

θ θ θ θ
θ

+
−−

≤ −
−

 (2.7) 

Whereas the ( 1−+ mn )-th probability value is bigger than the n-th probability 
value: 

 
1(1 ) (1 ) .

1

n m
n

m

θ θ θ θ
θ

+ −−
> −

−
 (2.8) 
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Eq.(2.7) can be derived from the left hand side of Eq.(2.4), and Eq.(2.8) can 

be derived from the right hand side of Eq.(2.4). Thus we can conclude that the 
( mn + )-th probability value and the n-th probability value are the two smallest 
probability values in the probability sequence.  As we know that the Huffman 
coding algorithm is initiated by merging the two smallest probability values, 
therefore the ( mn + )-th symbol and the n-th symbol will be merged first, and the 
probability value after merging will be (1 ) 1n mθ θ θ− − .  Now we assign “1” to 
the ( mn + )-th symbol and “0” to the n-th symbol. The resulting probability 
distribution becomes a discrete source in the form of Eq.(2.5), with now n 
becomes 1−n .  Following the above steps, we can continue our encoding 
until 0=n . Finally the discrete source becomes: 

 
1

1
(1 )( ) , 0 1

1

n m

mP k k mθ θ
θ

+ −

−

−
= ≤ ≤ −

−
 (2.9) 

 
Now from Eq.(2.4), we know that in the probability distribution defined by 

Eq.(2.9), the sum of the two smallest probability values exceeds the biggest 
probability value. Therefore the optimal code for such distribution can vary by only 
one bit in length.  Then for 2log 12 mk m+⎢ ⎥⎣ ⎦< −  in Eq.(2.9), the code length would be 

2log m⎢ ⎥⎣ ⎦ , and the rest of code would be of length ⎣ ⎦ 1log2 +m .  Now for every 
k n≤ , the optimal code could be considered to be the optimal code of k mod m 
concatenated with the unary code of k m⎢ ⎥⎣ ⎦ . And as n can be any integer, we can 
conclude that this is the optimal encoding for the geometric distribution.  

 
Thereupon, we can summarize the above encoding algorithm as follows. 

Express the source integer k of a geometric distribution using a quotient j and 
reminder r: 
 k mj r= +  (2.10) 
where m satisfies Eq.(2.4), then the optimal code for the geometric distribution can 
be constructed using the unary expression of j plus the Huffman code of r, and the 
length of the Huffman code is ⎣ ⎦m2log  or ⎣ ⎦ 1log2 +m .  

 
By studying some special but representative cases, Rice [5] proposed one 

type of sub-optimal codes for the geometric distribution in Eq.(2.1). This type of 
code, which was latterly  referred to as the Golomb Rice (GR) code, is highly 
structured and has found a variety of applications in many coding systems such as 
the coding of Laplacian distributed prediction errors in lossless image coding 
algorithms [6].   

 
The special case studied by Rice involved m being a power of 2, i.e. km 2= .  

Under this condition, the run length code becomes a unary code for j plus a fixed k-
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bit length code. The k-bit suffix of the codeword represents one of the reminders in 
the interval [0, 12 −k ]. For instance, when 2=k , the integer 9 will be coded as 
11001. From Gallager and Voorhis’s analysis, it is obvious that the GR codes 

works optimally only when 2 1
2

k

θ =  and if we are to apply the GR codes for any 
10 << θ , it will not always be possible to achieve optimality.  However, the GR 

codes are able to perform almost optimally for all 10 << θ . Its advantage is its 
simplicity of structure which makes it easy to construct and decode.    

  
Table 2-3 gives an example of the GR codes.  
 

n Unary Prefix Suffix Length 

0 0 0 2 
1 0 1 2 
2 10 0 3 
3 10 1 3 
4 110 0 4 
5 110 1 4 
6 1110 0 5 
7 1110 1 5 
8 11110 0 6 
9 11110 1 6 

10 111110 0 7 
11 111110 1 7 
12 1111110 0 8 
… … … … 

Table 2-3 GR code (k=1) 
 
The GR code can also be shown in a code tree format, as Figure 2-1 

demonstrates. Figure 2-1 shows a GR code tree with suffix length one, which is an 
exact set of unary codes.  
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...  
Figure 2-1 GR code (k=1) 

 
 
 

2.1.3 The Exponential-Golomb codes 
 

Although it is not possible for the GR codes to achieve optimality in most 
cases, they have been shown to be applicable in the coding of geometric 
distributions and have been found to be nearly optimal for geometric distributions 
and sources associated with the Laplacian distributions. For the GR code, every 
code length has exactly k2  codewords.  This matches the geometric distribution or 
Laplacian distributions reasonably well because the geometric distribution 
“decays” at some constant exponential rate. In many real-world coding systems, 
however, the probability distributions with higher peaks and heavier tails are 
usually found to better fit empirical data models. For instance, the Generalized 
Gaussian family with given source parameters, the Cauchy distributions, and so on, 
are all shapes with higher peaks and heavier tails.  Such distributions and the 
sources associated with them no longer have constant “decay” rates, on the other 
hand, the “decay” rate of the distribution functions are usually steep for bigger 
density values, and flat for smaller density values.  Thus to encode such sources, it 
is more reasonable to consider codes that have fewer codewords of shorter code 
lengths and more codewords of longer code lengths.   

 
Bearing such concerns in mind, Teuhola [7] proposed another type of code, 

attempting to provide better matches for these high peak and heavy tail 
distributions. The code is called an Exponential-Golomb (EG) code.  The EG code, 
in contrast to the GR codes, has an exponentially increasing number of codewords 
for each code length.  

 
The EG codes could also be viewed as a unary prefix concatenated with a 

fixed length suffix, where only the length of the suffix is no longer fixed for all 
prefix lengths. In contrast to the GR codes, the EG codes have longer suffix lengths 
for longer prefix lengths, shorter suffix lengths for shorter prefixes. Such suffix 
structures enable more codewords for longer code lengths. The suffix of the EG 
code could be further separated into two parts, one part associated with the unary 
prefix where its length is fixed once the prefix length is fixed and the other part is 
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of arbitrary length k.  The group of codes that have the same prefix are of the same 
code length, so we could group these codes using an index j, where j equals 0, 1, 2, 
and so on.  For the j-th code group, the prefix length is actually 1j + , the part of 
the suffix that is associated with the prefix is one bit shorter than the prefix and 
therefore it is j bits; the arbitrary part of the suffix is k bit long.  Therefore for an 
EG code, the prefix is of 1j +  bits, the suffix is of j k+  bits, and each EG code 
yields a length of 12 ++ kj  bits. Table 2-4 shows the EG code with 0k = .  

 

n EG code Length 

0 0 1 
1 100 3 
2 101 3 
3 11000 5 
4 11001 5 
5 11010 5 
6 11011 5 
7 1110000 7 
8 1110001 7 
9 1110010 7 

10 1110011 7 

11 1110100 7 

12 1110101 7 

… … … 

Table 2-4 EG code with k=0 
 
From Table 2-4, we can see that, the j-th “group” of codes has the same code 

length 12 ++ kj , and there are in total kj+2  codewords in the group.  It is obvious 
that the number of the codewords in the group increases exponentially with the 
group number j.  

 
In a similar manner to the GR codes, we can also represent the EG codes by 

a code tree. 
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...
 

Figure 2-2 EG code (k=0) 
 

The EG code is actually a special case of the Elias code [8]. As Teuhola 
mentioned, the EG code cannot perform optimally for any distribution, however, it 
works reasonably well for almost all exponential distribution, in general, by 
carefully selecting the suffix length.  Moreover, the construction of the EG codes is 
also very simple, which makes it very practical for applications. 
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2.2 THE HYBRID GOLOMB CODE 

 
On the basis of the GR codes and the EG codes, we proposed another type of 

code which we called Hybrid Golomb codes in [9]. The HG codes are hybrids of 
the GR codes and EG codes, which also perform sub-optimally for exponentially 
distributed sources.  

 
From the previous sections we know that for the GR codes with k-bit 

suffixes, every code length group has k2  codewords; whereas for the EG codes 
with k-bit arbitrary suffixes, every code length has kj+2 (where j is the group 
number).  Both the GR and EG codes are constructed using a unary prefix and a 
fixed length suffix. For the GR codes, with a fixed number of codewords for each 
code length group, the codeword length increases linearly as the probability value 
decreases; for the EG codes, on the other hand, the codeword length increases 
exponentially as the probability value decreases.  Such properties of GR and EG 
codes make them suitable for application to slightly different sources. As we have 
discussed in previous sections, GR codes are more suitable for application in those 
sources with a fixed exponential decay rate, and EG codes are more suitable for 
sources with higher peaks and heavier tails.  However, in many practical 
application situations, the sources are usually not fixed but vary under different 
situations. For example, in image and video coding, the image and video data may 
change significantly due to the nature of the image or video. Therefore, it may be 
more practical to design one type of code that generally works in a satisfactory 
manner. The HG codes are designed with such concerns in mind.  

 
In constructing the HG codes, we also assign a unary prefix (or a group 

number) to each codeword, however the suffix will be a hybrid of the GR suffix 
and the EG suffix. For the codewords with lengths 2 j k+ , 1j > , the number of 
codewords increases exponentially for the same length, which is 12 1 −−+kj  for 
codeword group j; however for the codewords with lengths 2 1j k+ + , 2j > , the 
number of codewords remain the same as for 12 +k .  For the initial two codeword 
groups ( 0=j  and 1=j ), the number of codewords are kept at k2 .  Thus, the code 
length integrated the properties of both the GR code and the EG code. Table 2-5 
gives a comparison of the three types of codes with 0=k .  
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n  GR  Length EG Length HG Length 

0 0 1 0 1 0 1 
1 10 2 100 3 10 2 
2 110 3 101 3 1100 4 
3 1110 4 11000 5 11010 5 
4 11110 5 11001 5 11011 5 
5 111110 6 11010 5 111000 6 
6 1111110 7 11011 5 111001 6 
7 1111110 8 1110000 7 111010 6 
8 11111110 9 1110001 7 1110110 7 
9 111111110 10 1110010 7 1110111 7 

10 1111111110 11 1110011 7 11110000 8 
… … … … … … … 

Table 2-5 Comparison of GR, EG and HG codes 
 
Again, we can also express the HG codes by a code tree.  

 

...
 

Figure 2-3 HG code (k=0) 
 

With integrated properties from GR and EG, the HG codes works efficiently 
for a wide variety of sources with high peak and heavy tail distributions and the 
performances are comparable to both GR and EG codes.  

 
We applied the HG codes to the quantized generalized Gaussian sources 

with given source parameters ( and /υ δ σ ) suitable for use in the modeling of 
image and video data.  The generalized Gaussian sources are found to provide good 
models for image and video data.  We will discuss these sources in detail in later 
sections.  A comparison study is performed for HG codes, GR codes and EG codes.  
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The comparison results in a wide range of source parameters are shown in Figure 
2-4 through to Figure 2-8.  We see here that the HG codes perform robustly well 
for these different sources.  Although it is noticeable that the HG codes are more 
comparable to the EG codes with k equal to 0, in fact they outperform the EG 
codes for the source parameters we studied.  

 
Figure 2-9 shows the efficiency difference between HG codes and EG codes 

with k=0 since the performance of these  two sets of codes are very close to each 
other and both appear to be the most robust codes.  The efficiency difference is 
calculated as:  

 
( , / ) ( / ) ( , / ) ( / )

( )
( , / ) ( / )

b b

HG EGa a
b

EGa

d d
D

d

η υ δ σ δ σ η υ δ σ δ σ
υ

η υ δ σ δ σ

−
= ∫ ∫

∫
 (2.11) 

where ( )D υ  is the efficiency difference, which is a function of the source 
parameter υ , ( , / ) and ( , / )HG EGη υ δ σ η υ δ σ  are the efficiencies of the sets of HG 
codes and EG codes that are both functions of source parameters  and /υ δ σ and 
( , )a b  is the range of the integration.  We see here that the HG codes perform better 
than EG codes for the source parameters we have studied.  

 

G R , k= 0

G R , k= 1

G R , k=2

G R , k= 3

E G, k= 0
EG, k= 1

EG, k= 2
EG, k= 3

H G, k= 0

 
Figure 2-4 Comparison of coding efficiencies of HG, GR and EG codes for 

quantized GG sources with 0.1υ =  
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Figure 2-5 Comparison of coding efficiencies of HG, GR and EG codes for 

quantized GG sources with 0.3υ =  

G R , k=0

GR , k= 1

G R , k= 2

G R , k= 3

EG, k= 0

EG, k= 1

EG, k= 2
E G, k= 3

H G, k= 0

 
Figure 2-6 Comparison of coding efficiencies of HG, GR and EG codes for 

quantized GG sources with 0.5υ =  
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G R , k= 0
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Figure 2-7 Comparison of coding efficiencies of HG, GR and EG codes for 

quantized GG sources with 0.7υ =  

GR , k= 0

G R , k= 1

GR , k= 2

GR , k= 3

E G, k= 0
E G, k= 1

EG, k=2

EG, k= 3

H G, k= 0

 
Figure 2-8 Comparison of coding efficiencies of HG, GR and EG codes for 

quantized GG sources with 0.9υ =  
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Figure 2-9 Efficiency difference between HG codes and EG codes (k=0) 
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2.3 THE CONCEPT OF UPC 

2.3.1 General concept 
 

In the previous sections, we have discussed the GR codes, EG codes and HG 
codes. These codes are all optimal or nearly optimal codes for sources with high 
peaks and heavy tails. We have also seen that, the constructions of these codes all 
involve concatenations of unary prefixes and suffixes.  Each suffix can be of a 
fixed or variable length. It is obvious that these codes are of similar structures. We 
therefore give a common name to these codes: the Unary-Prefixed Codes.  

 
By the term Unary-Prefixed Codes (UPC), we mean any code that is 

constructed by the concatenation of a unary prefix and a suffix.  The suffix can be a 
fixed-length code, or can be any form of variable length code.  As we will show in 
the following sections, the GR, EG and the HG codes are not the only codes which 
belong to this category as many different codes could be designed with such a 
structure.  These differ from the Huffman coding algorithm as all UPCs could be 
constructed using a top-down approach, which does not require coding to start 
from the least probably source symbols and therefore the UPCs are suitable for 
application to sources with infinite alphabets. Moreover, the unary prefixes of 
UPCs provide good matches for exponentially shaped distributions (high peak and 
heavy tail distributions). Therefore in the coding of infinite sources with geometric 
distributions, or sources associated with the Laplacian, generalized Gaussian, 
Cauchy distributions etc, applying the UPCs is reasonable and natural.  

 
To fully reveal the reason why the UPCs are efficient and suitable for use 

with these high peak and heavy-tailed distributions, some analysis must be 
conducted.  

 
 

2.3.2 The optimality of the unary prefixes 
 
As we have described in the previous sections, each UPC consists of a unary 

prefix and a binary suffix. To understand why the UPCs are able to provide a 
reasonably efficient compression, we firstly need understand the reason why and 
how well the unary prefixes are able to match an infinite discrete probability 
distribution. This section will show that, for any infinite discrete source, it is 
possible to segment the discrete probability distribution associated with it and that 
the result of such segmentation is able to be optimally encoded using unary codes.  

 
Suppose we have a probability distribution 1{ }k kp ∞

= .  Let us always assume 

that 1{ }k kp ∞
=  is a decreasing sequence, which it usually is for any reasonable 
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applications.  A segmentation of this probability distribution results in subsets of 
probabilities 1{ }k kP ∞

= , where  
 

1 11 2{ , , , }.
k k kk s s sP p p p

− −+ += K  

Let us denote the summations of each subset by 1{ }k kS ∞
= , where  

 
1 1

k

k

s
k ii s

S p
−= +

= ∑  

No matter how we segment this probability distribution, the result of these 
summations 1{ }k kS ∞

=  is a new probability distribution, since the summation of all 

kS  is also one. Now let us perform the segmentation by finding ks  in the following 
manner: 

1) Start with 0k =  and 0 0s =  
2) For the current k , let 

 
1k

k i
i s

S p
∞

−
= +

= ∑   

 
3) Find 1ks +  such that:  

 
1

1

1
2

k

k

s
i

i s k

p
S

+

= + −

−∑   

is minimized 
 

4) Let 1k k= +  and repeat from step 2). 
 
This iterated process could also be described as the following.   Suppose that 

we have already obtained the first k segments.  In finding the next segment, we first 
normalize the set of probabilities that are left: 

 1 2
,1 ,2 ,{ , , , }k k ks s s j

k k k k j
k k k

p p p
P p p p

S S S
+ + +

− − −

= = = =L L  

Then we find the index j  such that the summation from ,1kp  to ,k jp  will be 

closest to1 2 , and we let 1k ks s j+ = + .   In another words, each time we are 
attempting to achieve a subset of the remaining probabilities, such that the 
summation of the probabilities in the subset will be as close to one half of the 
remaining total as possible.  

 
It is easy to see that this segmentation process results in a new probability 

distribution 1{ }k kS ∞
=  that is very close to 1{1 2 }k

k
∞

= . It is obvious that for the 

probability distribution 1{1 2 }k
k
∞

= , unary codes are optimal. So now the question is, 
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are the unary codes also optimal for the new probability distribution 1{ }k kS ∞
= ?  To 

verify this, we have the following lemma and theorem. 
 
Lemma 1: For any infinite source with probability distribution given by 

1 2 3{ , , , }Q q q q= K  with ( )H Q < ∞ , let Q
n kk n

S q∞

=
= ∑ . Unary codes are optimal 

for sources that satisfy the following condition: 
 2 for any 3Q

n nq S n− > ≥  (2.12) 
Proof: It is obvious that, under the above hypothesis, for any truncated 

probability distribution 
 1 2 1{ , , , , }, 3;Q

n n nQ q q q S n−= ≥K  
The Huffman codes are equivalent to the unary codes.  Then from the result in [12], 
we can conclude that the optimal codes for the probability distribution satisfying 
(2.12) converge to unary codes.□ 
 

Theorem 1: For the segmentation 1{ }k kP ∞
=  of a probability distribution 

1{ }k kP p ∞
==  with ( )H P < ∞ described above, unary codes are optimal for the 

probability distribution given by the summations 1{ }k kS S ∞
== . 

Proof:  Let
1

( ) logk kk
H S S S∞

=
= −∑ , we will have: 

 1 1

1 1 1 1

1

1 21

1 1 2 21

( ) log

( ) log

( log log log )

( )

k k k

k k k k k k

k kk

s s s kk

s s s s s sk

H S S S

p p p S

p p p p p p

H P

− −

− − − −

∞

=

∞

+ +=

∞
+ + + +=

= −

= − + + +

< − + + +

= < ∞

∑
∑
∑

L

L

 

 
As described in the segmentation process, ks  is decided by 

minimizing 1
( 1) 2k kS S− − − .  If 1

( 1) 2k kS S− − ≥ , we have: 

 

1

2( 1) ( 1) ( 1)

2( 1) ( 1)

2

jk k

j kk k k

jk

j kk k

k j
j k

SS S
S S S

SS
S S

S S

∞
+

= +− − − − − −

∞

= +− − − −

∞

= +

≥ +

>

>

∑

∑

∑
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If 1
( 1) 2k kS S− − < , we must have 1

1 ( 1) 2( )
kk s kS p S+ − −+ > . Let 1 ,

ksp a b+ = +  
such that: 

 1

( 1) ( 1)

1 1and
2 2

jj kk

k k

b SS a
S S

∞

= +

− − − −

++
= =

∑
 

It is clear that a b≤ , for otherwise 1
( 1) 2k kS S− − −  is not minimized.  

Therefore we have: 

 

1( 1) ( 1) ( 1) ( 1)

2( 1) ( 1)

2

1 1
2 2

jk

j kk k k k

jk

j kk k

k j
j k

SS a b
S S S S

SS
S S

S S

∞

= +− − − − − − − −

∞

= +− − − −

∞

= +

= − ≥ − =

≥

≥

∑

∑

∑

 

Hence condition (2.12) is satisfied by 1{ }k kS S ∞
== .  Now we can apply 

Lemma 1 to S  to show that the unary codes are indeed optimal.□ 
 
The above theorem shows that, by segmenting a countably infinite discrete 

probability distribution into proper probability subsets, it is possible for the 
summations of the subsets to be optimally coded by the unary codes.  Therefore, 
properly assigning the unary prefixes to one probability distribution may lead us 
towards an efficient coding.  If we are able to achieve an optimal suffix coding for 
each prefix group, optimal coding may be achieved.  GR, EG and HG codes, 
although not grouping the probability distribution  exactly as given for the five 
steps, actually results in a similar segmentation for the high-peaked and heavy-
tailed distributions. This partially reveals the general reason for the efficiency of 
GR, EG and HG codes.   

 
Now we have seen that for any countably infinite discrete distribution, we 

are able to assign optimal unary prefixes, the question remaining is how to make 
the suffix as efficient as possible?  

 
2.3.3 The Unary-Prefixed Huffman coding algorithm 

 
In this section, we propose a coding algorithm named the “Unary-Prefixed 

Huffman Coding” (UPH). The UPH is designed on the basis of the optimal prefix 
assignment discussed in the previous sub-section. We will show that the UPH 
algorithm guarantees an overall efficient encoding. Also, for geometric 
distributions, the UPH code becomes the codes described in [4], and is therefore 
optimal.  
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The basic idea of the UPH, is to firstly attempt to segment a probability 
distribution 1{ }k kp ∞

=  into subsets 1{ }k kP ∞
= ,

1 11 2{ , , , }
k k kk s s sP p p p

− −+ += K , where the 

summation of each subset 
1

11
{ }k

k

s
k i ki s

S p
−

∞
== +

= ∑  should be as close to 1{1 2 }k
k
∞

=  as 

possible.  The segmentation process is exactly as described in the previous sub-
section.  Then within each probability subset kP , a normalization process is applied, 
and the Huffman coding is performed.  For each codeword within the subset kP , the 
UPH code is expressed as the concatenation of a unary prefix for length k and the 
corresponding Huffman suffix within kP . 

 
By extending the four-step process described in the previous sub-section, the 

UPH algorithm is fully described by the following steps: 
1) Start with 0k = , let 0 0s = . 
2) For the current value k , let  

 
1k

k i
i s

S p
∞

−
= +

= ∑  (2.13) 

 
3) Find 1ks +  such that the difference 

 
1

1

1
2

k

k

s
i

i s k

p
S

+

= + −

−∑  (2.14) 

 
 

is minimized 
 

4) Let:  

 
1

1

1

1 1 2

1 1 2

1 2
1

1 1 1
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ˆ { , , , }

k k k

k k k

k k k

k s s s
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s s s
k

k k k
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p p p
P

S S S

+

+

+
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+ + +

+ +
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+ + +

=

= + + +

=

K

L
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Note that now 1k̂P +  is obtained by normalizing 1kP +  into a discrete 

probability distribution.  Performing a Huffman coding to the distribution given by 

1k̂P + ; we obtain 1k ks s+ −  Huffman codes.  In the future when we refer to the 

Huffman codes within 1kP + , we mean those codes obtained from 1k̂P + .  For each 
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Huffman code within 1kP + , we attach a unary prefix 111 10
k

L123 (or 

equivalently 000 01
k

L14243 ) to it.  

5) Let 1k k= +  and repeat from step 2). 
 

 
Let us take a simple example. Suppose we have an infinite probability 

distribution: 3
1{ 1 (3 2 )}n

n np ⎡ ⎤ ∞⎢ ⎥
== ⋅ , which looks like:  

 1 1 1 1 1 1 1 1 1
6 6 6 12 12 12 24 24 24{ , , , , , , , , , }L  (2.15) 

where each set of three probabilities can be summed to a value that is a power of 
1
2 . Thus we have 1{ 1 2 }k

k kS ∞
== , and 1{ {1 (3 2 ) ,1 (3 2 ) ,1 (3 2 )}}k k k

k kP ∞
== ⋅ ⋅ ⋅ . 

For this example, each kP  has three equivalent probability values. Therefore the 
Huffman codes within each kP  are: {1,00,01} or{0,10,11}. The UPH code is then 
a concatenation of a unary code of k and one of the codes within {1,00,01} 
or{0,10,11}. 

The UPH algorithm is actually performing the encoding in two optimal steps, 
it can be proved that the code sets constructed by UPH have average code lengths 
upper bounded by ( ) 2H P + .  

 
Theorem 2: The UPH codes have average code lengths upper bounded 

by ( ) 2H P + , given that the entropy ( )H P  is finite. 
Proof: Let us look at the result of UPH coding for the first n segmentations. 

We have n probability subsets 1 2, , , nP P PL .  Let  

 1 2
n

nP P P P= ∪ ∪ ∪L  
 

We normalize these n subsets 1 2, , , nP P PL : 

 

1
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1 1

1 2
1
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1 2
2

2 2 2

1 2
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ˆ { , , , }

ˆ { , , , }n n n

s

s s s

s s s
n

n n n

pp pP
S S S
p p p

P
S S S

p p p
P

S S S
− −

+ +

+ +
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=

=

K
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M

L

 

For each kP ,1 k n≤ ≤ , the partial entropy ( )kH P  is defined as: 
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1 1

( ) log
k

k

s

k i i
i s

H P p p
−= +

= − ∑  

Then for each k̂P , we have:  
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1

1 1

1

1 1

ˆ log

log log

( ) log
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k
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= − +
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∑

∑ ∑  

The UPH performs Huffman coding on every probability segment kP , 
1 k n≤ ≤ . As Huffman coding is optimal and is upper-bounded by entropy+1, for 
each normalized probability set k̂P , we have: 

 $ ( )ˆ( ) 1 log 1,k
k k k

k

H PL H P S
S

≤ + = + +  

where ˆ
kL  is the average code length of the Huffman code for each k̂P . For each set 

of Huffman codes in k̂P  we assign a k-bit prefix, therefore the average code length 
of UPH for the truncated probability set P  is satisfied by: 

 
1 1 1

( )ˆ( ) ( log )
n n n

n k
UPH k k k k k

k k kk

H PL S L k S S k S
S= = =

= + ≤ + + +∑ ∑ ∑  

i.e.: 

 
1
{ ( ) ( log )} (1 )

n
n
UPH k k k n

k

L H P S k S S
=

≤ + + + −∑  (2.16) 

 
From the formula given in Eq.(2.13), we know that the probabilities in nP  

are summed as
1

1n
k nk

S S−=
= −∑ . So we can normalize nP  as: 

 1 2ˆ { , , , }
1 1 1

nsn

n n n

pp pP
S S S− − −

=
− − −

K  

We then have: 
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Hence: 

 
1

ˆ( ) (1 ){ ( ) log(1 )}
n

n
k n n

k

H P S H P S− −
=

= − − −∑  

Now we can rewrite the inequality (2.16) as: 

 
1

ˆ(1 ){ ( ) log(1 ) 1} ( log )
n

n n
UPH n n k k

k
L S H P S S k S− −

=

≤ − − − + + +∑  (2.17) 

As n → ∞ , 0nS− → , ˆ( ) ( )nH P H P→ , and n
UPH UPHL L→ , the average 

code length of UPH.  It should also be recalled that ( )H S  denotes the entropy of 
the source 1{ }k kS ∞

= , therefore as n → ∞ , the inequality (2.17) becomes: 

 

1

1

( ) 1 ( log )

( ) 1 { ( )}

( ) 2

UPH k k
k

k
k

L H P S k S

H P kS H S

H P

∞

=

∞

=

≤ + + +

= + + −

≤ +

∑

∑  

 The last inequality is attempted because the unary codes are optimal for 

1{ }k kS ∞
=  and ( )H S < ∞ . Therefore, when ( )H P < ∞ , the average code length of 

the UPH is bounded by ( ) 2H P + . The theorem is proved.□ 
 
Here we see that when we concatenate a unary code and a Huffman code, no 

matter to what source our codes are applied, the coding efficiency will never fall 
below ( ) 2H P + . It can be shown that, for geometric distribution, the UPH codes 
will become the codes proposed by Gallager and Voorhis [4], which are optimal.  

 
Theorem 3: For the geometric distribution, the code set resulting from the 

UPH algorithm is equivalent to Gallager’s code set in [4], which is optimal for 
geometric distributions. 

Proof:  Let us first recall that in [4], Gallager and Voorhis showed that, the 
run length codes are optimal for any geometric distribution with parameter θ  that 
satisfies:  
 1 11m m m mθ θ θ θ+ −+ ≤ ≤ +  (2.18) 
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It is obvious that, for any θ  which satisfies 10 << θ , there exists a unique 
m such that the inequality is satisfied. Therefore, their result indicates that for 

10 << θ , optimal codes can be constructed using Golomb’s run length encoding 
algorithm.   

 
Now to prove this theorem, we only need to show that for all k , 

1k ks s m+ − = , where m  is the integer satisfying the inequality (2.18).  Since for 
every probability segment, both the proposed algorithm and Gallager’s algorithm 
perform a Huffman coding on the segment.  Hence if the segmentations of the two 
codes are the same, the two code sets are equivalent. 

 
For consistency, let us shift the index of geometric distributions by 1, 

namely, let 1
1{ (1 )}i

i ip θ θ− ∞
== −  be our geometric distribution with parameterθ . 

For 0 k≤ < ∞ , we have: 

 
1 1

1
k

k

k

s
s

k i i
i s i

S p p θ
∞

−
= + =

= = − =∑ ∑  (2.19) 

and hence: 

 

1 2 3 4

2 3

1

{ , , , , }

{(1 ), (1 ) , (1 ) , (1 ) , }
{ }

k k k k

k k k k

s s s s
k s s s s

k k

p p p p
P

p

θ θ θ θ
θ θ θ θ θ θ θ

+ + + +

∞
=

=

= − − − −

=

L

L  

This means that we have exactly the same pattern of data to work with for 
each of the iterations.  Hence it is sufficient to study the case 0k = , and 
show 1s m= .  Now let 0k = , from formula(2.14), we must have: 

 
1 1

1 1

1
1

1 1

1 1 1 1(1 ) (1 )
2 2 2 2

s s
s s

i i
i i

p pθ θ
−

−

= =

− − = − ≤ − = − −∑ ∑  (2.20) 

and 

 
1 1

1 1

1
1

1 1

1 1 1 1(1 ) (1 )
2 2 2 2

s s
s s

i i
i i

p pθ θ
+

+

= =

− − = − ≤ − = − −∑ ∑  (2.21) 

 
From(2.20), we have: 

 

1 1

1 1 1 1

1 1

12 21 1
2 2

1 2 2 2

2

( ) ( )

1 1 1( 1) ( 1)( 1)

s s

s s s s

s s
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−

− −
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− ≤ −

− ≤ − +
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As 0 1θ< < , then 1 111 s sθ θ−≤ + .  Similarly, from (2.21) we find 
that 1 1 1 1s sθ θ ++ ≤ .  Now there is a unique integer m  satisfying the condition(2.18), 
thus 1s m= . □ 

 
Until now, we have shown that the UPH algorithm is able to perform a two-

step optimal encoding locally for any countably infinite discrete source. Although 
local optimality does not necessarily lead to global optimality, the UPH codes are 
able to achieve high efficiency despite source variations. In particular, the UPH 
codes could reach optimality for geometric distributions. 

 
 
 

2.3.4 Modifying the UPH codes into codes with simpler structures 
 
In the previous sub-section, we have seen that the construction of UPH codes 

could be summarized in two steps. The first involves dividing the probability 
distribution into subsets that could be optimally coded using a set of unary codes, 
and then secondly a Huffman coding is performed on each of these subsets.  It is 
obvious that, unlike the GR, EG and HG codes, which all have code structures in 
closed forms, to construct the UPH codes requires a great deal of computation.   

To simplify the UPH codes, we could relax the second step and use a set of 
pseudo-fixed length codes as suffixes for each unary prefix. By compromising the 
optimality of Huffman codes in the second step, we are able to greatly simplify the 
encoding procedure and still keep the optimality achieved from the first step. In the 
second coding step, we replace the Huffman coding by the pseudo-fixed length 
codes, which are constructed using the Huffman algorithm and by assuming that 
the probabilities in the probability subsets are equal.  It is obvious that this is not 
true in most cases; however, since the Huffman codes for equal probability values 
are almost fixed length codes, this will result in a much simpler code structure.  

 
The modified UPH algorithm could be described using similar steps as the 

UPH, by merely modifying the fourth step:  
1) Start with 0k = , let 0 0.s =  
2) For the current value k , let  

 
1k

k i
i s

S p
∞

−
= +

= ∑  

 
3) Find 1ks +  such that the difference 

1

1

1
2

k

k

s
i

i s k

p
S

+

= + −

−∑  

is minimized 
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4) Let:  

1

1

1 1 2

1 1 2

{ , , }
k k k

k k k

k s s s

k s s s

P p p p

S p p p
+

+

+ + +

+ + +

=

= + + +

K

L
 

For the probability set 1kP + , there are 1k k kn s s+= −  probability values.  We 
assume that these kn  probabilities are equal to each other and then perform 
Huffman coding.  The resulting codes will be binary codes either of length 

2log kn⎢ ⎥⎣ ⎦  or 2log 1kn +⎢ ⎥⎣ ⎦ . We then attach a common unary prefix of length 1k +  
to all these binary codes to complete the encoding of this segment.  

5) Let 1k k= +  and repeat from step 2). 
 

In this modified UPH code, the suffix length differs by at most one bit, thus 
it is called the pseudo fixed length codes.  While performing Huffman codes for kn  
equal probabilities values, we only need assign fixed length codes with length 

2log kn⎢ ⎥⎣ ⎦  to the first 2log 12 kn
kn+⎢ ⎥⎣ ⎦ −  probability values and fixed length codes with 

length 2log 1kn +⎢ ⎥⎣ ⎦  to the remainder of the probability values, as previously 
mentioned. No actual Huffman encoding algorithm is required. Thus the coding 
process could be greatly simplified. 

 
The proof for Theorem 3 will also show that, for geometric distributions, the 

modified UPH codes also becomes the optimal codes proposed by Gallager in [4].   
The modified UPH coding process is exactly the same as that of Gallager’s codes 
within each segment, while the segmentation of the modified UPH is the same as 
the original UPH algorithm.   
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2.4 THE APPLICATIONS OF THE UPCS 

 
In the previous section, we introduced the UPCs.  We have seen that, the 

UPCs are actually one type of general methods of coding. It generalizes the GR, 
EG and HG codes into a much wider concept. Moreover, by extending this concept, 
we are able to find a more general algorithm – the UPH algorithm. The UPH has 
been proven to be efficient in coding the countably infinite discrete sources. With 
proper modification of the UPH algorithm, we are also able to simplify the code 
construction. However, as has been mentioned previously, the UPCs are designed 
for sources with high peaks and heavy tails. Although we have found an upper 
bound of the coding efficiency for the UPH codes, this upper bound is not strong 
enough for us to conclude that the UPH algorithm is indeed always efficient for 
any infinite source. Now the focus shifts to the high-peaked, heavy-tailed 
distributions that are commonly seen in image/video coding systems in order to 
show that the UPCs in general provide good compression for such distributions.  

 
In this section, the UPCs including the GR, EG, HG and the UPH codes are 

all applied to the quantized Generalized Gaussian (GG) distributions and 
comparisons of their coding efficiencies are made.  

The GG probability density function (GG pdf) can be expressed using the 
following expression and parameters.  
 1 2( ) exp( )xf x c c x υ= −  (2.22) 

where, 

 [ ]
1 2

1 2
( , ) 1 (3 ), ( , ) , and ( , )

2 (1 ) (1 )
c c υυη σ υ υη σ υ η σ υ

υ σ υ
⎡ ⎤Γ

= = = ⎢ ⎥Γ Γ⎣ ⎦
 (2.23) 

In Eq.(2.23), Γ is the gamma function.  
 
The GG pdf is a function of υ  and σ . Parameter υ  is called the “shape 

parameter”, and σ  is the standard deviation. When 1υ = , the generalized GG 
becomes a Laplacian distribution; when 2υ = , the pdf becomes a Gaussian 
distribution and as υ → ∞ , the distribution becomes a uniform distribution. Here 
we see that, the GG family includes a large variety of distributions when the shape 
parameter varies.  All, however, have high peaks and heavy tails. For 1υ > , the 
distribution “decays” more rapidly and thus has a thinner tail. For 1υ = , the 
distribution “decays” at a constant exponential rate, and for 0 1υ< < , the 
distribution “decays” more slowly and thus has a thicker, or heavier tail.  
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Figure 2-10 Scalar quantization of the GG pdf 
 
The GG distributions are continuous distributions; therefore to map the GG 

pdf into a practical integer source, it is necessary to apply quantization methods. 
Different quantization methods have been developed in associating a continuous 
pdf to a discrete source [10] [11]. In this thesis, we use a uniform scalar quantizer 
with a deadzone at the origin as shown in Figure 2-10 [12]. The quantization step 
size is δ  and the width of the deadzone at the origin is (1 ) , 0α δ α+ ≥ . Such 
uniform scalar quantizers with a deadzone are common in many coding systems. 
As also shown in Figure 2-11, there are three different types of mappings following 
the quantization results: positive, non-negative, and two-sided non-zero discrete 
sources, which provide appropriate matches for different sources. For instance, “in 
many wavelet, JPEG, and MPEG image and video coding applications, 
transformed, scalar quantized image data is raster scanned to generate a description 
using pairs of the form (RUN, LEVEL) where “run” is the number of zero-valued 
coefficients encountered before the next significant coefficient, and “level” is the 
magnitude and sign of the integer representing the significant coefficient. The run 
values are restricted to the non-negative integers, or, if runs of zero are not encoded, 
to the positive integers. The “levels”, on the other hand, are two-sided, nonzero 
integers [12].  While studying the theoretical properties of the UPCs, in this thesis, 
we use the positive mapping. It is obvious that no generality is lost.  

 
A quantized GG source is specified by the shape parameter υ , the 

normalized quantizer step sizeδ σ , the deadzone parameter α  and the mapping. 
 
From Figure 2-10, and Eq.(2.22), we formalize the quantization to be: 
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(2 1 )

2
1 2(2 1 )

2

2( ) exp( ) , 1, 2,3,
1 (0)

k

k
P k c c x dx k

P

δα υ
δα

+ +

− +
= − =

− ∫ K  (2.24) 

And: 

 
(1 ) 2

1 20
(0) 2 exp( )P c c x dx

α δ υ+
= −∫  (2.25) 

 
The quantized GG sources have been shown to be able to provide efficient 

and accurate models for many different types of image and video data. For instance, 
recent works in subband image coding have resulted in the high-peaked, heavy-
tailed distributions such as GG and some others previously  mentioned in [10] [11] 
[13] [14].  It was pointed out that wavelet transformed image data can be modelled 
using GG sources with a shape parameter within the range 0 1υ< < . When 1υ = , 
we know that the GG pdf becomes Laplacian, which has been shown to provide 
good models for many image video systems, such as in the modelling of the 
prediction errors in lossless image coding algorithms. Therefore, in this thesis we 
will focus on the study of GG sources with the shape parameter within the 
interval ( ]0,1 . 

 
When 1υ = , the GG pdf becomes Laplacian, the quantization, then becomes: 

 

(2 3 )
2

1 2(2 1 )
2

2
(2 1 )

2
1 2(2 1 )

2

exp( )
( 1) exp( )

( ) exp( )

k

k

k

k

c c x dx
P k c

P k c c x dx

δα υ
δα

δα υ
δα

δ

+ +

+ +

+ +

− +

−
+

= = −
−

∫

∫
 (2.26) 

 
Here )exp( 2δc−  is a constant that is smaller than 1 but larger than 0  and 

we can see that after the quantization, the GG pdf becomes a geometric distribution 
with 2exp( )cθ δ= − . We have shown and proved in the previous section that, the 
codes by Gallager in [4], UPH codes, and the modified UPH codes are all optimal 
in the coding of geometrically distributed discrete sources, therefore, for the 
quantized GG source with 1υ = , optimal coding could be achieved.  

 
Now let us look, in a similar manner, at the GG pdf with 0 1υ< <  . Firstly 

we simplify the expression in Eq.(2.24) as: 

 0 1 2( ) exp( ) , 1,2,3,......k

k

a

a
P k c c c x dx k

δ υ+
= − =∫  (2.27) 

where (2 1 ) 2ka k α δ= − + .  Then, we have: 
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 (2.28) 

 
It can be shown that 1exp( )kR aυυ δ −< ⋅ ⋅ . Therefore for 0 1υ< < , the 

probability values in the quantized GG source decrease at a higher rate for 
probability values near zero, and decrease at a lower rate when the probability 
value is far from zero. Consequently, this results in a quantized GG source with 
higher peaks and heavier tails.  
 

We would like to apply the different types of UPCs to the quantized GG 
sources with a shape parameter in the range (0,1]  and compare their performances.  
It must be noted, however, that the quantized GG sources have finite entropy, 
according to the following theorem: 

 
Theorem 4:  Let 1{ ( )}kP P k ∞

==  be the quantized GG source, then 
( )H P < ∞ . 

 
Note that according to this theorem, the finite entropy hypothesis is satisfied 

by the quantized GG source; hence we can directly apply our previous theoretical 
results concerning the code efficiency to this source.  We will return to this at a 
later stage. 

 
Proof: We want to show that 

 
1

( ) ( ) log ( )
k

H P P k P k
∞

=

= − < ∞∑  (2.29) 

where ( )P k  is defined as in Eq.(2.27). 
 
It is easy to check that multiplying ( )P k  by a constant will not change the 

finiteness of ( )H P , thus it can be assumed that 0 1c = .  As 2exp( )c xυ−  is a 
decreasing function, we have: 
 2 2( ) ( )k kc ce P k e

υ υα δ αδ δ− + −< <  (2.30) 

Let 1{ ( ) }k kQ q P k δ ∞
== = , then 
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1

1 1 1( ) log ( ) logk k
k

H Q q q H P
δ δ δ

∞

=

= − = +∑  (2.31) 

It is obvious that if ( )H Q  is finite, then ( )H P  must be finite.  Now 
since (2 1 ) 2ka k α δ= − + , we can find fixed integers ,n m , such that: 
 1( ) ( ) .k k kk n a a a k mδ δ δ+− < < = + < +  (2.32) 

We then have: 
 2 [( ) ] ( )0 log [( ) ] ( )c k n D k n

k kq q k m e C k m e
υ υδυ υδ − − − −< − < + = +  (2.33) 

where ,C D  are constants. However, it is a simple matter to check that the 
infinite series 
 ( )

1 1
( ) andD k n Dk

k k
k m e k e

υ υυ υ∞ ∞− − −
= =

+∑ ∑   

 has the same convergence.  Hence to prove the theorem, it suffices to show that 

1
Dk

k
k e

υυ∞ −
=∑  is a convergent series.    

 
Now since the function Dxx e

υυ −  is eventually decreasing, we can use the 
integral test for this infinite series.  We obtain: 

 
1 1 1

1( ) .
D

Dx Dx Dxx ex e dx d e e dx
D D D

υ υ υυ

υ υ υ

−∞ ∞ ∞− − −−
= = + < ∞∫ ∫ ∫  (2.34) 

The last term is finite because Dxe
υ−  is essentially a probability density function.  

Hence it has been shown that 
1

Dk
k

k e
υυ∞ −

=∑ is convergent.□ 

 
Now we are ready to apply the UPCs to the quantized GG sources.  In 

comparing the performances of the several types of UPCs, we used the coding 
efficiency defined as: 

 
av

h
L

η =  (2.35) 

Where h  is the entropy of the quantized GG sources: 

 2
1

( ) log ( )
k

h P k P k
∞

=

= −∑  (2.36) 

And the average code length is: 

 
1

( ) ( )av
k

L P k l k
∞

=

= ∑  (2.37) 

The comparison results are given in Figures 2-11, 2-12, 2-13, 2-14, 2-15, and 
2-16. For each υ , the standardized stepsize δ σ  is chosen within the range 
[ 2 010 ,10 ], which is adequate for modelling image and video data [12].  
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Figure 2-11 shows the performances of the UPCs for quantized GG source 
with 0.1υ = . Here, it can be seen that the EG code with 0k = , HG codes and the 
UPH codes, all perform very efficiently for these sources.  The GR codes and EG 
codes with larger k values are comparatively inefficient. The UPH codes, in this 
case, achieve coding efficiencies very close to the entropy and are obviously 
superior to the remaining codes.   

 
Figure 2-12 and 2-13 show the performances of the UPCs for quantized GG 

source with 0.3υ =  and 0.5υ = . The comparison results are similar to those in 
Figure 2-11. However, the GR codes are more efficient, when comparing the larger 
shape parameters. The UPH codes still show comparatively better performances for 
these quantized GG sources.   

 
Figure 2-14 and 2-15 shows the performances of the UPCs for quantized GG 

source with 0.7υ =  and 0.9υ = . Here it can be seen that, as opposed to the 
sources with smaller shape parameters, for these quantized GG sources, the GR 
codes take over. In the figures, we see that GR codes produce efficiency peaks that 
are much higher than those for EG and HG codes. This is because the “decay” rate 
becomes constant. However, the UPH codes, as we expected, still outperform all 
other type of UPCs.  In the figures, we also see that, for the quantized GG sources 
with increased δ σ  values, all UPCs appear to have lower coding efficiency.  

 
Figure 2-16 shows the performances of the UPCs for quantized GG source 

with 1.0υ = . Now the quantized GG become geometric distributions, and as has 
been proven, the UPH codes now become the optimal codes. GR codes are now 
simply special cases of the UPH codes. Therefore, the efficiency curve of the UPH 
code becomes the envelope for those of the GR codes.  Between the efficiency 
peaks of the GR codes, the UPH codes are able to provide constant coding 
efficiency.  
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Figure 2-11 Comparison of coding efficiencies of different UPCs for quantized GG 

sources with 0.1υ =  

 
Figure 2-12 Comparison of coding efficiencies of different UPCs for quantized GG 

sources with 0.3υ =  
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Figure 2-13 Comparison of coding efficiencies of different UPCs for quantized GG 

sources with 0.5υ =  

 
Figure 2-14 Comparison of coding efficiencies of different UPCs for quantized GG 

sources with 0.7υ =  
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Figure 2-15 Comparison of coding efficiencies of different UPCs for quantized GG 

sources with 0.9υ =  

 
Figure 2-16 Comparison of coding efficiencies of different UPCs for quantized GG 

sources with 1.0υ =  
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We can also see from these figures that the UPH codes perform exactly as 
the GR, EG codes for some υ  and δ σ . This means that, for some source 
parameters, the GR and EG codes are actually special cases of the UPH codes, 
whereas, because of the flexibility of the UPH algorithm, the UPH codes are able 
to achieve better matches to the GG sources and thus perform consistently well for 
all source parameters.  

 
From these results, we see that these different types of UPCs are all highly 

efficient in coding the high-peaked and heavy-tailed distributions such as the 
quantized GG. Due to the unary prefixes, the UPCs are able to match the 
exponential decrease of the distribution reasonably well and hence are in general 
efficient.  

The GR, EG and HG codes are highly structured and thus simple in 
construction. However, they do suffer from compromised performances for some 
source parameters. The UPH codes, on the other hand, are robust in performance. 
The UPH codes, however, are unable to provide a closed form code structure and 
are therefore more difficult to build.  

 
In section 2.3.4, we introduced the modified UPH codes.  The modified UPH 

codes, with only one optimization step, cannot provide an improvement on the 
coding efficiency of the UPH codes.  The modified UPH codes, by applying the 
pseudo fixed length codes for each unary prefix, yield similar code structures to 
those of the GR codes and the codes in [4] for many circumstances.  However, the 
modified UPH codes are still able to provide better coding efficiency when 
compared to the GR and, in particular, the EG codes.   

It has been proved that there does not exist discrete sources that could be 
optimally coded using the EG codes. However, the authors in [15] designed a class 
of pdfs that are well matched to the EG codes and they also showed that these pdfs 
are good probability models for empirically observed integer sources, such as in 
the coding of the quantised subband of wavelet-transformed images [4]. These 
integer sources can be expressed using the discrete pdf: 

 21( ) ( ) , 1, 2,3,
'( )

P k k kα α
ψ α

−= + = KK  (2.38) 

where 0α > , 'ψ  is the first derivative of the digamma function 
( ) '( ) ( )y y yψ = Γ Γ , and ( )yΓ  is the Euler gamma function. 

A random variable, whose probability distribution is given by Eq.(2.38) ., 
has infinite mean and entropy and thus, in relation to the performances of the EG 
codes and the modified UPH codes, we compare the estimated coding redundancies 
of these two different of UPCs.   

 
Figure 2-17 shows a comparison of the estimated redundancies of the 

modified UPH codes and the EG codes with different k  values in coding the pdfs 
in Eq.(2.38) for a wide range of different α  values. From the figure, it is obvious 
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that the modified UPH codes are better, with reference to compression, when 
compared to the EG codes. Moreover, since the UPE algorithm works more 
adaptively according to different pdfs with different parameters than do the EG 
codes, it is unnecessary to make selections of k  to achieve a better performance, 
which is the case for the EG codes. 

 

 
Figure 2-17 Comparison of the redundancies of the EG codes and the modified 

UPH codes 
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2.5 THE WEAK LOWER BOUND OF THE UPH CODES 

 
In section 2.3.3 we have shown that the coding efficiency of the UPH code is 

lower bounded by entropy + 2.  In the last section of this chapter, we want to 
demonstrate that this bound is fairly weak given the outstanding performances of 
the UPH codes. This is particularly true for the high-peaked, heavy-tailed sources 
studied in this thesis.  

 
Here in this section, we still use the quantized GG sources with shape 

parameter in the range (0,1]  and δ σ  is chosen within the range [ 2 010 ,10− ]. 
Figures 2-18, 2-19, 2-20, 2-21, 2-22 and 2-23 show the coding efficiency of the 
UPH codes and the corresponding lower bound for quantized GG sources with 
different shape parameters. It can be seen that it is possible for the lower bound to 
be as low as 40% or even worse, when the coding efficiency of the UPH codes is 
still near the entropy.  This shows the weakness of the lower bound when we are 
studying such high-peaked, heavy-tailed sources.  It seems that one could develop 
still better bounds and this is an obvious extension area for the work in this thesis.  

 

 
Figure 2-18 Lower bound of UPH code for quantized GG with shape parameter 0.1  
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Figure 2-19 Lower bound of UPH code for quantized GG with shape parameter 0.3 

 

 
Figure 2-20 Lower bound of UPH code for quantized GG with shape parameter 0.5 
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Figure 2-21 Lower bound of UPH code for quantized GG with shape parameter 0.7 

 

 
Figure 2-22 Lower bound of UPH code for quantized GG with shape parameter 0.9 
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Figure 2-23 Lower bound of UPH code for quantized GG with shape parameter 1.0 



60 

3 ALTERNATING CODING 

In this chapter, we introduce a coding method called “Alternating Coding” 
(ALT). The ALT is built for the UPCs and on the basis of the UPCs.  The UPCs are 
variable length codes (VLC).  In the encoding and decoding procedures, the UPCs 
are usually treated the same as any other type of VLCs. The VLCs in general, are 
difficult to decode because of their variable lengths.  However, we have seen in the 
previous chapter that, the UPCs have specific structures and, in taking advantages 
of these, it may assist in relaxing the constraints of the decoding procedure and 
thus be beneficial. The ALT coding method is thus designed with such concerns in 
mind.  The ALT, by extracting the unary properties of the prefixes of the UPCs, 
provides a different approach to the encoding and decoding and thus enables a 
simpler means of decoding as well as a possible mechanism for error resiliency.  In 
this chapter, we introduce the ALT coding method and discuss its applications.   

 
 

3.1 THE ALT CODING IN GENERAL 

 
From the previous chapter, we have seen that, a UPC consists of a unary 

prefix and a variable length suffix. Any UPC code, no matter whether it is GR, EG, 
HG, UPH or modified UPH, is in such a form.  Although the code lengths of UPCs 
vary, the unary prefixes provide a natural grouping of the codes and thus each 
unary prefix conveys certain information about the codes. For instance, for GR 
codes with suffix length equal to three, every prefix group includes exactly 8 
codewords.  Therefore, when a codeword is given, by checking the unary prefix, 
we will be able to locate the codeword within only 8 codes.  The ALT coding, then, 
attempts to extract such information, which is conveyed by the unary prefixes.  The 
basic concept of the ALT coding is to code the unary part of the UPC and the 
variable length part of the UPC separately. Such separation should provide 
convenience in the extraction of the information in the unary prefixes. However on 
the other hand, such separation should not break the dependencies of the prefixes 
and the suffixes; neither should it complicate the encoding and decoding to any 
extent.   The ALT, does indeed attempt to take care of all these aspects.  

 
Now let us look at how ALT actually works.  By applying the ALT coding,  

a UPC sequence is split into two sub-sequences: a unary prefix sub-sequence and a 
variable length suffix sub-sequence as illustrated in Figure 3-1. The unary prefix 
sub-sequence contains only the prefixes, and the variable length suffix sub-
sequence contains only the variable length suffixes.  The order of the codewords is 
kept intact.  Now in the unary prefix sub-sequence, the prefixes are easily separated 
by extracting the zeros. For instance, if we have a sequence of GR codes with 
suffix length k equal to 2, the prefix sub-sequence may appear as follows: 
 {10,110,111110, 0,111110,110,10, 0, 0,11110}.  
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We know that every prefix is of the form {11....10
n

, where n can be 0,1,2,3, 

etc. Therefore each zero in the prefix indicates the last bit of one prefix. Such 
information makes it is easy to decode the unary prefixes.  The unary prefixes, as 
we have seen, relate to the suffixes of the UPCs in particular ways and once the 
unary prefixes have been successfully separated, it is possible to use such relations 
between the prefix and the suffix of each UPC  to direct us to further separations of 
the suffixes.  Once the prefixes and the suffixes are both successfully separated, 
complete UPCs are then successfully separated.  In general, the unary prefixes 
provide an index to a group of suffixes, which naturally provides a more rapid 
location of the UPCs. However, different UPCs have different prefix-suffix 
relations, therefore the ALT coding must be modified slightly to adapt to these 
differences. This is particularly true for the highly structured UPCs such as the GR 
codes and the EG codes, where the prefix-suffix relation is very special and 
therefore enables great freedom in the simplification of the decoding. Moreover, 
for these highly structured codes, we are able to implement a comparatively more 
efficient error handling mechanism.  

 
By separating the prefixes and suffixes, we have two separate sequences, 

prefix sub-sequence and suffix sub-sequence instead of one.  We have shown that 
in the prefix sub-sequence, the direct concatenation of the unary prefixes already 
offers us simple prefix boundary detection.  However, we would like to change 
such direct concatenation into a different, yet equivalent form. The reason for this 
will become clear in subsequent discussions. We will show that such modification 
in the prefix sub-sequence allows for the possibility for equipping the error 
handling mechanism.  Instead of the direct concatenation, we change the unary 
prefixes in the prefix sub-sequence into two sets of codes, one set containing all-
one codes and the other  all the zero codes.  The unary prefixes in the unary prefix 
sub-sequence are then coded in an alternating manner using the all-one codes and 
all-zero codes.  As the prefix is a unary code, the code length uniquely identifies 
the unary prefix itself and thus we can use any code with the same length to 
represent the unary codes.  By alternating the all-zero and all-one codes, the 
codeword boundaries are indicated by changes from one to zero or zero to one.  
Thus the code boundary detection is still as simple as in the original form.  

 
Let us look at a simple example of alternating the coding of the unary 

prefixes using the all-one codes and all-zero codes. This example is illustrated by 
the GR codes. Table 3-1 gives the code table of the GR code with suffix of length 
2.  

 



62 

 

n  GR  Unary 
prefix 

Prefix 
Length 

All-one/All-
zero codes 

Suffix Suffix 
Length 

0 000 0 1 1/0 00 2 
1 001 0 1 1/0 01 2 
2 010 0 1 1/0 10 2 
3 011 0 1 1/0 11 2 
4 1000 10 2 11/00 00 2 
5 1001 10 2 11/00 01 2 
6 1010 10 2 11/00 10 2 
7 1011 10 2 11/00 11 2 
8 11000 110 3 111/000 00 2 
9 11001 110 3 111/000 01 2 

10 11010 110 3 111/000 10 2 

11 11011 110 3 111/000 11 2 
12 111000 1110 4 1111/0000 00 2 
13 111001 1110 4 1111/0000 01 2 
14 111010 1110 4 1111/0000 10 2 
15 111011 1110 4 1111/0000 11 2 
… … … … … … … 

Table 3-1 GR code with suffix length 2 
 

Suppose we are to code an integer sequence consisting of 11 integers {5, 6, 
3, 1, 0, 1, 2, 0, 11, 0, 15} using the GR codes, then we obtain a GR sequence:  

{1001, 1010, 011, 001, 000, 001, 001, 000, 11011, 000, 111011}. 
For this GR sequence, the unary prefixes are:  

{10, 10, 0, 0, 0, 0, 0, 0, 110, 0, 1110}. 
Now, by alternating the all-zero codes and the all-one codes from the unary 

prefixes it forms the unary prefix sub-sequence:  
{11, 00, 1, 0, 1, 0, 1, 0, 111, 0, 1111}. 

 
For the suffixes, no modification is applied, and they are simply 

concatenated to form a suffix sub-sequence. Then these two sub-sequences are 
concatenated to form an ALT packet and the decoding of an ALT coded UPC 
sequence is based on this entire ALT packet.   
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By using this GR code example and, as has been previously mentioned, the 
suffixes for the GR codes are fixed length codes, thus in this case, the “variable 
length” suffixes are merely a set of 2-bit codes {01, 10, 11, 01, 00, 01, 01, 00, 11, 
00, 11}.  For the ALT coding, these suffixes are kept intact and concatenated to the 
prefix sub-sequence. Therefore the ALT packet of this GR code example becomes:  

{11, 00, 1, 0, 1, 0, 1, 0, 111, 0, 1111, 01, 10, 11, 01, 00, 01, 01, 00, 11, 00, 11}. 
In this example the prefix sub-sequence is underlined.  
 
 As is indicated by the name “Alternating Coding”, the key part of this 

coding method relies on the separation of the two sub-sequences and the alternating 
coded prefix sub-sequence. 
 
 
3.1.1 The ALT encoding 

 
From the simple example above, we have seen how a UPC sequence is 

separated into two sub-sequences to form an ALT packet.  The example uses the 
GR code set and the encoding is performed by simply concatenating the two sub-
sequences. However, this varies for different types of GR codes.  In this section we 
describe how an ALT packet is completely encoded from any UPC sequence 
packet and indicate the differences for different types of UPCs.  

 
Before discussing the ALT encoding, the UPCs must be separated into two 

categories. For some UPC codes, the suffixes are of variable length, such as the 
HG codes, the UPH codes and the modified UPH codes.  For others, the suffixes 
are of fixed length or the suffix lengths are fixed for each prefix, such as in the GR 
codes and the EG codes. The encoding of a UPC sequence is slightly different for 
these two types of UPCs.   

 
For UPCs with fixed suffix lengths, the code length information is entirely 

conveyed by the unary prefixes.  However, “fixed suffix length”, does not 
necessarily mean that the suffix must be of fixed length, but means that the suffix 
contains completely redundant information regarding the code length. For instance, 
the length of a GR code is the length of the unary prefix plus the k-bit suffix. Here 
the suffix length is indeed fixed.  But the suffix length of an EG code is not fixed, 
yet by knowing either the suffix or prefix, the code length is known. Suppose the 
prefix length is j, the fixed part of the suffix is k, and then the code length 
is 2 1j k+ − . Therefore although the suffix length varies, we are able to figure out 
the length of the entire UPC codeword without knowing the length of the suffix 
given that we have the prefix.   

It is possible to illustrate the encoding of a UPC sequence with fixed length 
suffixes by Figure 3-1. This figure shows a UPC sequence enclosed by two 
synchronization markers. The synchronization markers are commonly found in the 
coding of VLCs. The synchronization markers are used to resynchronize the 
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decoding at intervals where there are concerns about errors.  The encoding is 
simply separating the prefix and suffix of each code, collecting the prefixes and 
suffixes to form a prefix sub-sequence and a suffix sub-sequence, respectively. The 
prefix sub-sequence is then placed in front of the suffix sub-sequence and the 
synchronization markers are kept intact.  Some ALT packet information may need 
to be added to the encoded ALT packet, indicating how many codewords there are 
in the entire packet, which is very important if parallelization and error resiliency 
are required in the decoding procedure.  In many real cases where UPCs are 
applied, such information is already included in the header, therefore it is only 
necessary to resort the prefixes and suffixes.  
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UPC sequence

THE ALT CODING

Packet 
info

 
Figure 3-1 The ALT coding for fixed-length-suffix UPCs 

 
Figure 3-2 shows the GR code example from the previous section. The 

prefixes are underlined.  For the GR codes, the suffixes are completely fixed length 
codes, so only the prefix sub-sequence is a variable length sequence.  
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Figure 3-2 The GR code example 
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For the EG codes, the suffix length varies with the prefix. So both the prefix 
and the suffix sub-sequences are variable length codes.  Table 3-2 shows a set of 
EG codes.  

 

n  EG  Unary 
prefix 

Prefix 
Length 

Suffix Suffix 
Length 

0 0 0 1 - 0 
1 100 10 2 0 1 
2 101 10 2 1 1 
3 11000 110 3 00 2 
4 11001 110 3 01 2 
5 11010 110 3 10 2 
6 11011 110 3 11 2 
7 1110000 1110 4 000 3 
8 1110001 1110 4 001 3 
9 1110010 1110 4 010 3 

10 1110011 1110 4 011 3 
11 1110100 1110 4 100 3 
12 1110101 1110 4 101 3 
13 1110110 1110 4 110 3 
14 1110111 1110 4 111 3 
… … … … … … 

Table 3-2 EG code with parameter k=0 
 

It is again obvious from this table that although the suffix length of the EG 
codes are not exactly fixed; it is linearly related to the length of the prefixes.  
Therefore the suffix length could still be deemed to be fixed.   

 
Figure 3-3 shows the EG code example using the code table above. The 

prefixes are underlined.   
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 Figure 3-3 The EG code example 

 
We see that the resulting ALT packet for this example is: 
{11, 000, 1, 0, 111, 0000, 1, 000, 1, 0, 1, 00, 10, 110,11}. 
 
For the UPCs with variable suffix lengths, the role of the prefix is no more 

than a code group index, so the encoding of a UPC sequence with variable length 
suffixes can be illustrated as shown in Figure 3-4. The only difference in the ALT 
coding for such codes is that the packet information is placed in between the prefix 
sub-sequence and the suffix sub-sequence. In this case the packet serves as a 
separation between the two sub-sequences, which is crucial in the decoding 
procedure; therefore it is no longer optional.  

 

Sync Sync

Sync Sync

Unary prefixes coded using 
all-one and all-zero codes

variable length suffixes

UPC sequence

THE ALT CODING

Packet 
info

 
Figure 3-4 The ALT coding for variable-length-suffix UPCs 

 
For this type of UPC, an HG code sequence is taken as an example. The set 

of HG codes are shown in Table 3-3.  
 
Suppose an HG sequence {10, 1100, 0, 10, 1100, 1110110, 0, 11010, 10, 0} 

is encoded using the ALT method. This encoding is illustrated in Figure 3-5 and 
the unary prefixes are underlined.  The resulting ALT packet for this example is: 

{11, 000, 1, 00, 111, 0000, 1, 000, 11, 0, 0, 0, 10, 10}. 
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n  HG  Unary 
prefix 

Prefix 
Length 

All-one/All-
zero codes 

Suffix Suffix 
Length 

0 0 0 1 1/0 - 0 
1 10 10 2 11/00 - 0 
2 1100 110 3 111/000 0 1 
3 11010 110 3 111/000 00 2 
4 11011 110 3 111/000 01 2 
5 111000 1110 4 1111/0000 00 2 
6 111001 1110 4 1111/0000 01 2 
7 111010 1110 4 1111/0000 10 2 
8 1110110 1110 4 1111/0000 110 3 
9 1110111 1110 4 1111/0000 111 3 

10 11110000 11110 5 11111/00000 000 3 

… … … … … … … 
Table 3-3 HG code with parameter k=0 
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Figure 3-5 ALT encoding of the HG code sequence (k=0) 

 
 

3.1.2 The ALT decoding  
 
All UPCs are variable length codes and as such are usually decoded using 

general VLC decoding methods.  Decoding of the VLCs is, in general, inefficient 
because the variable code lengths make it difficult to detect the codeword 
boundaries.  In a VLC sequence, decoding of the current codeword depends on the 
completion of the decoding for the previous codewords because the end of a 
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codeword cannot be found until it is decoded. This makes the decoding of the VLC 
packet a serial procedure and it is thus usually very difficult to parallelize.  
Moreover, to detect the codeword boundaries of VLCs, we must also introduce 
codeword tables, or look up tables (LUT) in the decoding procedure, which include 
all possible codewords in the VLC sequence, in order to match the codeword and 
enable decoding to continue. The codeword tables are usually very large and thus 
to search for and match a codeword with one specific code in the table makes the 
decoding computationally complex.  

 
However, we have seen that the UPCs are of a particular pattern and the 

ALT coding may help to simplify the decoding procedure.  This is especially true 
for UPCs with fixed suffix lengths. Thanks to their highly structured code pattern, 
the decoding procedure can be greatly simplified when comparing it to the 
traditional VLC decoding.  

 
In the previous section we have seen that the ALT encoding is a packet-

based procedure; therefore, decoding is also based on packets.  Since the encoding 
procedures are slightly different for UPCs with fixed suffix lengths to those of 
variable suffix lengths, the decoding procedures for these two types of UPCs are 
also slightly different.  A description of the decoding of these two types of UPCs    
now follows.  

 
For UPCs with fixed suffix length such as the GR codes and EG codes, the 

ALT coding enables a very simple decoding structure that allows parallelization, 
and the LUTs could be eliminated completely.  To decode the ALT coded GR or 
EG packets, buffering is required to store at least one entire packet. But since 
buffering is almost a given in a VLC decoder, no extra functional component is 
added to the ALT decoder.  

 
The decoding of an ALT packet can be illustrated by Figure 3-6. It should be 

remembered that packet information provides us with the number of codewords in 
a packet.  Since the suffix lengths of the UPCs are fixed and with the information 
of the number of codewords in the packet, it is easy to determine how many bits in 
the packet belong to the prefix sub-sequence and how many to the suffix sub-
sequence.  It is then a simple matter to separate the prefix and suffix sub-
sequences.  We have also indicated that the packet information is not a necessity 
for the UPCs with fixed suffix lengths.  When the packet information is not 
provided, it is necessary for the decoding of the ALT coded UPC packet to be 
performed from both ends and as a serial procedure, similar to that for the general 
VLCs.  Such cases are not dealt with here as, under these circumstances, the 
advantages of the ALT method are not evident.  

 
The prefix sub-sequence consists of all-one codes and all-zero codes and the 

detection of the boundary is then easily achieved via a row of exclusive OR (XOR) 
logics.  This greatly simplifies the decoding and also makes it possible to 
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parallelize the decoding procedure because the xor logics does not depend 
recursively upon previously decoded codewords and can be done simultaneously 
for the entire packet.  When the boundaries of the prefixes are detected, the length 
of the suffixes can be easily calculated using the previous knowledge concerning 
the suffix lengths or the linear relationship between the prefix and the suffix.  With 
the readily separated prefixes and suffixes, the UPC codewords can then be 
restored.  In the previous chapter it was shown that UPCs are designed for discrete 
sources and, indeed, they are generally used to encode integers.  For these UPCs 
with fixed length suffixes, the inverse mapping from the UPCs back to the integers 
can easily be done using algebraic calculations.  Therefore the LUTs are no longer 
required.  
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Figure 3-6 ALT decoding for UPCs with fixed suffix length 

 
Two examples are now investigated, one from the GR codes and one from 

the EG codes, respectively.  
Suppose we have an ALT coded GR sequence with suffix length k equal to 

2, and the packet information is provided, so it known that there are 8n =  
codewords in the packet (the original GR code table is given in Table 3-4):  

{11, 0, 11, 0, 1, 00, 111, 0000, 00, 10, 10, 11, 00, 11, 01, 10} 
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Coded 
Integer 

 GR  Prefix  
Length 

0 000 1 
1 001 1 
2 010 1 
3 011 1 
4 1000 2 
5 1001 2 
6 1010 2 
7 1011 2 
8 11000 3 
9 11001 3 

10 11010 3 
11 11011 3 
… … … 

Table 3-4 GR code with k=2 
 

The decoding could be characterized using the following steps: 
 
1) Upon receiving the packet, it is known that there are 2 8 16k n⋅ = ⋅ =  

bits belong to the suffix sub-sequence, thus the two sub-sequences  can be 
separated as follows: 

Prefix sub-sequence: {11, 0, 11, 0, 1, 00, 111, 0000} 
Suffix sub-sequence: {00, 10, 10, 11, 00, 11, 01, 10} 
 
2) Perform the xor operations to the prefix sub-sequence and obtain the 

prefix boundaries and decode the prefix lengths simultaneously: {2, 1, 2, 1, 1, 2, 3, 
4} 
 

3) Separate the fixed-length suffixes and map them back to integer 
values:  {0, 2, 2, 3, 0, 3, 1, 2} 

 
4) Decode the encoded integer by using: 

kcoded integer (prefix length 1) 2 suffix= − ⋅ +  
For instance, the first integer is coded as: 2(2 1) 2 0 4− ⋅ + = . The packet is 

then decoded as: {4, 2, 4, 3, 0, 7, 9, 18}.  Thus the decoding is complete.  
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Now, another example of the decoding of the EG codes will be looked at.  

Suppose we have an ALT coded EG sequence with parameter k equals to 0, and the 
packet information is provided, so it is  known that there are 8n =  codewords in 
the packet (the EG code table is given in Table 3-2):  

{11, 0, 11, 0, 1, 00, 111, 0000, 0, 1, 1, 11, 010} 
The decoding could be characterized using the following steps: 
 
1) Upon receiving the packet its length is counted first, which in this 

example is 24 bits. We know that for EG codes 0k = , the suffix length equals the 
prefix length 1− . Thus, with the information concerning the number of codewords 
in the packet, it is possible to calculate the length of the suffix sub-sequence.  
Suppose the length of the suffix sub-sequence is sl , the total length of the ALT 
packet is then 2 2 8 24s sl n l⋅ + = ⋅ + = , thus 2 24 8 16sl⋅ = − = , and then 8sl = .  
With the length of the suffix sub-sequence, we are then ready to separate the prefix 
sub-sequence and the suffix sub-sequence: 

Prefix sub-sequence: {11, 0, 11, 0, 1, 00, 111, 0000} 
Suffix sub-sequence: {0, 1, 1, 11, 010} 
 
2) Perform the xor operations to the prefix sub-sequence and obtain the 

prefix boundaries and simultaneously decode the prefix lengths: {2, 1, 2, 1, 1, 2, 3, 
4} 
 

3) Now that the length of each prefix is known, it is possible to easily 
determine the length of each corresponding suffix.  Then the suffixes could be 
separated and mapped back to integer values: {0, 1, 1, 3, 2} 
 

4) Decode the encoded integer by using: 
suffix lengthcoded integer 2 suffix 1= + − . 

For instance, the first integer is coded as: 12 0 1 1+ − =  and the packet is then 
decoded as:  {1, 0, 2, 0, 0, 2, 6, 9}. Thus the decoding is complete.  

 
 
The decoding of ALT packets of UPCs with variable length suffixes is 

somewhat more complicated and the LUTs cannot be eliminated because of the 
variable suffixes.  The decoding can be illustrated by Figure 3-7.  When the suffix 
lengths of the UPCs are not fixed, the separation of the prefix and suffix sub-
sequences must rely on separation codes.  By checking the separation code, the 
ALT packet between the two synchronization markers can be separated into a 
prefix sub-sequence and a suffix sub-sequence.  The prefix sub-sequence still 
consists of alternating coded all-one codes and all-zero codes, so the detection of 
the prefixes is the same as for the UPCs with fixed length suffixes.  Once the 
prefixes are detected, it is no longer possible to automatically separate the suffixes 
by associating the prefix lengths to the suffix lengths because the variation in the 
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suffix lengths cannot be related to the lengths of the prefixes.  Under such 
circumstances, the LUTs are still required in order to decode the suffixes.  
However, now the LUT is only required for the suffixes, thus the LUT table size 
can be greatly reduced.  As the LUT is reduced in size, the search for the codeword 
can be accelerated.  Table 3-5 is the LUT of a set of HG codes (k=0), and Table 3-6 
shows the reduced LUT after ALT coding is applied.  
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Figure 3-7 ALT decoding for UPCs with variable suffix length 

 

Coded Integer  LUT 

0 0 
1 10 
2 1100 
3 11010 
4 11011 
5 111000 
6 111001 
7 111010 
8 1110110 
9 1110111 

10 11110000 
Table 3-5 HG code with parameter k=0 
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Coded 
Integer 

Prefix 
Length 

LUT 

0 1 - 
1 2 - 
2 3 0 
3 3 00 
4 3 01 
5 4 00 
6 4 01 
7 4 10 
8 4 110 
9 4 111 

10 5 000 

Table 3-6 HG code with parameter k=0 
 
The next example concerns the decoding of the HG codes, using the code 

table in Table 3-5 and 3-6.  Suppose the ALT coded HG sequence appears as 
follows:  {11, 0, 11, 0, 1, 00, 111, 0000, 0, 1, 1, 11, 010} 

The decoding could be characterized using the following steps. 
 
1) Upon receipt of the packet plus information, the prefix and suffix 

sub-sequences can be immediately separated.  
Prefix sub-sequence: {11, 0, 11, 0, 1, 00, 111, 0000} 
Suffix sub-sequence: {01, 01} 
 
2) Perform the xor operations to the prefix sub-sequence and obtain the 

prefix boundaries and simultaneously decode the prefix lengths: {2, 1, 2, 1, 1, 2, 3, 
4} 
 

With the length of each prefix, it is possible to match the associated suffix to 
the reduced LUT.  For instance, the first prefix has length two, from Table 3-6, it 
can be seen that for this prefix, there is no suffix, and the integer represented by 
this codeword is “1”.  The last prefix has length four, thus the five possible suffixes 
associated with this prefix are searched and it is found that suffix “01” with prefix 
length four represents “7”. By this means, the entire ALT packet is decoded: {1, 0, 
1, 0, 0, 1, 4, 6}. 
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3.2 THE ERROR RESILIENCY OF THE ALT CODING 

 
It has been mentioned in previous sections that one advantage of the ALT 

coding is the possibility of implementing an error resiliency mechanism for the 
code packets.   

A UPC sequence, belonging to the VLC family, is very vulnerable to 
transmission over a noisy channel because of synchronization losses.  Even one bit 
error may cause loss of synchronization for the entire code packet.  This is because 
the bit error may cause the failure of decoding and as the decoding of the VLC 
sequence is a serial procedure, failure to decode one codeword terminates the entire 
decoding procedure.  This is shown in Figure 3-8.  Therefore, when an error is 
detected in a VLC sequence, the entire decoded packet can no longer be trusted and 
has to be retransmitted.  One way to increase the error resiliency of the VLCs is to 
replace them using fixed length codes. However fixed length codes are not 
typically as efficient as traditional entropy codes, which are almost always VLCs, 
in complexity and memory-constrained environments.  Particularly in image and 
video coding systems because of the development of image and video 
communications, there is strong incentive to preserve the basic VLC coding 
framework used in the standards while at the same time attempting to improve the 
error resiliency.  
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Figure 3-8 Bit error propagation of a VLC sequence 
 
 

3.2.1 Bi-directional decodability 
 
The considerations regarding the error resiliencies of the VLCs have led to a 

growing level of interest in the error resilient coding of VLCs, such as the 
Reversible Variable Length Code (RVLC).  The RVLC was first proposed by 
Takishima, Wada and Murakami in [16]. The idea behind the RVLCs is that 
decoding can be performed by processing the received code sequence either 
forwards or backwards. This is based on the fact that the RVLCs are VLCs which 
can be uniquely decoded from both directions.  By using the RVLC instead of the 
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VLC, the error resiliency of a code sequence can be improved by decoding both 
from the beginning and the end of the code sequence.  For example, a decoder can 
begin by processing the received code sequence in the forward direction, and upon 
detection of an error, proceed immediately to the end of the bit stream and decode 
in the reverse direction. By this means, the error may be located in a much smaller 
section of the code sequence and more codewords could be recovered from an error 
infected sequence.  Figure 3-9 shows how RVLC could retrieve codewords unable 
to be retrieved by common one-way decodable VLCs.   

In [16], Takishi et al. they studied the conditions for the existence of RVLCs 
and proposed algorithms for their construction.  Toshiba and Ericsson [17] 
proposed two different schemes for constructing RVLCs with systematic structures 
enabling easy coding and decoding.  The RVLCs, must satisfy the suffix condition 
for instantaneous backward decoding as well as the prefix condition for 
instantaneous forward decoding.  The suffix condition is that each codeword does 
not coincide with the suffixes of longer codewords; while the prefix condition 
expresses that there is no coincidence with the prefixes of longer codewords.  It is 
then obvious that, if a set of VLCs are of symmetric structures and they satisfy the 
prefix condition, they will automatically satisfy the suffix condition and therefore 
are automatically RVLCs.  Not all VLCs could be modified into RVLC without 
lengthening some of the original VLC codewords.  However, by extending the 
code length of necessary codewords, we are always able to modify VLCs into 
RVLCs.  
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Figure 3-9 Bit error propagation of a VLC sequence 

 
The authors in [18] proposed a class of parameterized RVLC that have 

length distributions identical to those of GR codes and EG codes.  Since it has been 
proved that GR codes and EG codes are able to correspond to pdfs  well matched to 
the statistics of image and video data, such as Laplacian and GG pdfs, it follows 
that the RVLC counterpart of GR and EG enables an increase in robustness in 
order to channel errors while incurring no penalty in coding efficiency. Table 3-7(a) 
and 3-7(b) shows the examples of RVLCs for GR and EG codes.  
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1k =  2k =  

GR RVLC GR RVLC 

 

Prefix Suffix Prefix Suffix Prefix Suffix Prefix Suffix 
0 0 0 0 0 0 00 0 00 
1 0 1 0 1 0 01 0 01 
2 10 0 11 0 0 10 0 10 
3 10 1 101 1 0 11 0 11 
4 110 0 101 0 10 00 11 00 
5 110 1 1001 1 10 01 11 01 
6 1110 0 1001 0 10 10 11 10 
7 1110 1 1001 1 10 11 11 11 

… … … … … … … … … 
Table 3-7(a) GR code and the RVLC counterpart 

 

 EG RVLC 

0 00 00 
1 01 01 
2 1000 1010 
3 1001 1011 
4 1010 1110 
5 1011 1111 
6 110000 100010 
7 110001 100011 
8 110010 100110 
9 110011 100111 

10 110100 110010 

11 110101 110011 

… … … 
Table 3-7(b) EG code and the RVLC counterpart ( 1k = ) 
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In the code table it can be seen that the RVLCs for GR and EG satisfy the 
prefix and suffix condition simultaneously, and the code length distributions are 
exactly the same as the original GR codes and EG codes. The authors in [18] 
showed that by using the RVLCs, the bi-directional decoding gave an image 
domain Peak-Signal-to-Noise Ratio (PSNR) that was on average 2.2 dB superior to 
the PSNR obtained using forward decoding only, when the Bit Error Rates (BER) 
was 410− .   The average PSNR improvement at a 310−  BER was 0.9 dB. 
 

No changes were required to be made to an ALT packet in order to make the 
UPCs with fixed suffix lengths, namely GR and EG codes, bi-directionally 
decodable as the code structure for these UPCs is completely symmetric.  
Therefore, there are greater increases in error resiliency for UPCs when they are 
coded and decoded using the ALT method.  

However, for UPCs with variable suffix lengths, such as HG codes, UPH 
codes and modified UPH codes, although applying the ALT coding still keeps  
their prefixes  in a symmetric structure,  modifications are still required to make the 
variable length suffixes into RVLC in order for the code sequence to be bi-
directionally decodable.  This may require extensions of suffix lengths.  Therefore 
not all UPCs can be converted to RVLCs without sacrificing the coding efficiency. 
However for those UPCs with fixed suffix lengths, the ALT coding offers the bi-
directional decodablity as a free product without compromising the coding 
efficiency.  
 
 
3.2.2 Error Speculation  

 
We have seen that, by applying the ALT coding, for UPCs with fixed length 

suffixes, bi-directional decodablity could automatically be obtained without 
penalty.  But what is more appealing is that, by introducing an “Error Speculation” 
(ES) mechanism, we are able to achieve even better error resiliency for the UPCs 
with fixed length suffixes.  

The ES mechanism is developed based on the fact that in an ALT packet, bit 
errors in the suffix sub-sequence will not propagate.  Taking GR and EG as 
examples, we know that for GR and EG codes, the prefixes are unary codes, so any 
single bit error within the prefix will cause loss of synchronization and therefore 
cause the error to propagate.  Whereas the suffixes of the GR and EG codes are 
simply fixed or pseudo fixed length codes, with every bit in the suffix  being either 
“1” or “0”, thus a bit error in the suffixes is not detectable and will not propagate.  
For instance, for a set of GR codes with 2k = , suppose we are to encode integers 
{5, 3, 0, 2, 0} , the GR sequence would be {1001, 011, 000, 010, 000} , if a bit error 
occurs in the prefix, say in the prefix of the first codeword, and the code sequence 
becomes: {1 01, 011, 000, 010, 000}1 . Now the sequence would be parsed as: 
{1 010, 11000, 010, 000}1  and then decoded as {10, 8, 2, 0}. Here we see that, this 
one bit error in the prefix has caused the incorrect parsing of three codewords. On 
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the other hand, if, instead, there is one bit error in the suffix, then if the error 
infected sequence appears as {100 , 011, 000, 010, 000}0 , parsing of the codewords 
will not change, and the code sequence will be decoded as {4, 3, 0, 2, 0} . We see 
that here only the codeword infected by the bit error was incorrectly decoded and 
the other codewords were not affected. 

 
Now in an ALT coded packet, the prefix sub-sequence consists of all-one 

and all-zero codes, the simple code pattern could help us to identify bit errors. A bit 
error in the prefix sub-sequence of an ALT packet will result in, at most, four 
incorrect decodings of the prefixes. 

To simplify the analysis, we assume that only one bit error occurs in a prefix 
sub-sequence.  The bit error will have four types of influences on the prefix sub-
sequence. Suppose there are N prefixes in the ALT packet. 

 
1) An error occurring on the boundary of the prefix sub-sequence 

causes an insertion or a deletion of one codeword. For example, the first codeword 
1111 becomes 0111 or the first two codewords 0111 become 1111. 

2) An error infects the shortest ALT coded prefix (i.e. one-bit prefix) 
which sits in between two codewords. This results in a deletion of two codewords. 
For example, 1110111 becomes 1111111. Then three prefixes become only one. 

3) An error occurs in the middle of a prefix whose length is greater 
than two bits. This results in the insertion of two codewords. For example, 1111111 
becomes 1110111. Then one prefix becomes three. 

4) An error occurs on the boundary of two prefixes. This is a non-
propagating error. For example, 1110000 becomes 1111000. This will not 
influence synchronization. 

 
When cases 1, 2 or 3 occur, the number of prefixes detected will not be equal 

to N. When one of these cases is detected, we speculate where the error bit occurs 
by the "error speculation".  

If the number of prefixes is N-1 or N+1, then case 1 has occurred. The error 
is then speculated to have occurred on the first or the last bit. 

If the number of prefixes is N-2, then case 2 has occurred. If there exists a 
prefixes that has a length longer than the longest possible prefix length, this prefix 
must have been infected by a bit error. In this case, the error can be located 
precisely. Otherwise, it is speculated that the location of the error is within the 
longest prefix (as longer prefixes have less probability of occurrence.) in the prefix 
sub-sequence, and randomly change the value of one bit in this prefix. By doing so, 
resynchronization is achieved and many correct codewords can be resumed.  

If the number of prefixes is N+2, then case 3 has occurred.  It is assumed that 
a one-bit prefix in between the two shortest prefixes is the error bit (this is 
reasonable as the shorter the codeword is, the more probable it occurs in a 
sequence and hence more probable to be infected by an error).  Again, 
resynchronization and error recovery can both be achieved.  
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Actually, no more than 4 codewords will be ruined even in the worst 
speculation when only one bit error exists in the sequence.  This makes the ALT 
packet perform robustly when subject to a bit error. 

 
Simulations were conducted to study the actual effect of bit errors with or 

without the implementation of the ALT coding and the ES mechanism.  In the 
simulation, we chose the Universal Variable Length Codes (UVLC).  UVLC is a 
reversible version of EG code with 0k = , and will be discussed in greater detail in 
later sections.   For the original UVLC packet, two-way decoding is applied to 
increase the error resiliency, and the ALT coded UVLC packet only involves the 
ES and no two-way decoding is applied.  

Figure 3-10 shows the comparison of performance in terms of Correct Ratio 
(CR) between the ALT coded packets with ES implemented and the UVLC.  In this 
simulation, one bit error is inserted in code packet of different sizes.  

The Correct Ratio is defined as:  
Number correctly decoded codeword

CR=
Total number of codewords

 

 
Figure 3-10 Comparison of CR 

 
From the results it can be seen that when the ES mechanism is applied, the 

ALT coded decoding always achieves a CR of approximately 90%, yet that of the 
original EG packet can even fall below 30%. Moreover, the CR of the ALT packet 
shows much smaller variance than that of the UVLC packet and is therefore much 
more robust.  
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3.2.3 Combining bi-directional decoding and Error Speculation  

 
In the previous sections, we have talked about the bi-directional decoding 

and the ES mechanism.  The ES mechanism assumes only one bit error in an ALT 
packet and deals with cases that could only happen under such circumstances.  In 
[19], the authors showed that for a Binary Symmetric Channel (BSC), the 
crossover probability is below 310− , the possibility of having more than one bit 
errors in a packet is thus very small.  Therefore, the error speculation is able to 
efficiently improve the error resiliency and robustness of an ALT packet.  
However, in practice, we could not guarantee that only one bit error will occur in a 
code packet.  To deal with more than one bit error in a packet, yet still being able to 
take advantage of the ES mechanism, would involve combining the ES with the bi-
directional decoding. 

 
In an ALT packet for UPCs with fixed suffix lengths, to combine these two 

error resilient methods, we first perform error speculation as described in the 
previous section.  However, the ES mechanism only works when there is one bit 
error in an ALT packet.  When more than one bit error occurs in a code packet, the 
ES may or may not work since the ES is only able to handle four different error 
patterns.  When the error speculation fails, we perform a two-way decoding.   

It is possible for two-way decoding and ES to be performed at the same time, 
when ES fails; the result of the two-way decoding could then be used instead.  The 
result of the two-way decoding is based on the detection of the error in the packet.  
Error detection is achieved by examining one of the following: 

 
1) Upon decoding, the last bit of a packet does not coincide with the 

end of a codeword. 
2) When the number of decoded codewords is greater than the 

number of codewords in the packet. 
3) When an illegal codeword is detected. 
 
When decoding is interrupted by one of the above, errors must have occurred 

in one or all of the previously decoded codewords, so the previously decoded 
codewords should not be trusted.  Backward decoding results in a similar outcome. 
The codewords able to be trusted then fall in the intersection of the forward and 
backward decoding.  

 
For UPCs with fixed length suffixes, the two-way decoding could be further 

simplified thanks to the regular code structure and fixed suffix length.  Since only 
errors in the prefixes would cause error propagation, we only need to look at the 
prefix sub-sequences to perform the two-way decoding.  And as the prefixes are 
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coded using all-zero and all-one codes, there are much simpler ways to detect 
errors.  

Let us take the EG code with 0k =  as an example.  Suppose an ALT coded 
EG packet consists of N  codewords of L  bits in length. The lengths of the 
prefixes are denoted as 1 2 3,  ,  ,...... Ml l l l . The lengths of the corresponding suffix 
lengths are then 1 2 31,  1,  1,...... 1Ml l l l− − − − . M  is the number of codewords 
detected.  Errors will be detected when one or more of the following cases are 
encountered: 

 
1) M N< .  
Let  f  and b satisfy: 

1 2

1

1 1 ...... 1
2

1 1 ...... 1
2

f

N N b

L Nl l l

L Nl l l−

−
− + − + + − ≥

−
− + − + + − ≥

 

Then let set A be the set: 1 2 1 1{ | ( ,  ,......, ) ( ,......, )}b f NA x x l l l l l− += ∈ ∪  

2) M N> . 
Let B be the set: 1 1 2{ | ( ,......, ) ( ,......, )}N M N MB x x l l l l− − += ∈ ∪  

3) Prefixes longer than the longest possible prefix are detected. 
Assume that the prefixes which exceed the longest prefix are prefixes 

numbered 1 2,  ,......, kx x x . Then let set C be:  

11 1 1{ | ( ,......, ) ( ,......, )}
kx x NC x x l l l l− += ∈ ∪ . 

Then the decoded prefixes will be: 
, case 1

, case 1 and case 3
Decoded prefixes = , case 2

, case 2 and case 3
, case 3

A
A C

B
B C

C

∩

∩

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 

 
Simulations are conducted to study the effect of the ES and the two-way 

decoding. Figure 3-11 shows a comparison of the CR between an ALT coded 
UVLC packet and an original UVLC packet.  Both packets are subjected to 
corruption using a BSC with a bit error rate (BER) of 10-4 and 10-3.  The number of 
codewords in a packet varies from 8 to 1024.  
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Figure 3-11 Comparison of CR of ALT coded EG and EG under different BERs 

 
From Figure 3-11 it can be seen that the ALT packet always outperforms the 

original EG packet.  The CR of the ALT packet is almost always exceeds 80% and 
has a much smaller variance.  However the CR of the original EG packet falls 
below 60% for large packet sizes and bigger BER and its variance is much bigger.  
In addition, the advantage of the ALT packet is more evident when the packet is 
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subjected to a higher BER. It can be seen that the CR of ALT packet under 10-3 
BER is comparable to that of the EG under 10-4 BER when the packet size is less 
than 500. 
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3.3 APPLICATIONS OF THE ALT CODING 

 
To demonstrate the error resiliency provided by the ALT coding, we applied 

the ALT coding to specific UPCs and studied the results.  Since the UPCs, which 
are efficient entropy codes for sources with high-peaked, heavy-tailed probability 
distributions very often found in image/video data, we applied the ALT coding to 
the UVLC, which is commonly encountered in image/video systems.  As we have 
mentioned, the UVLC is actually a reversible version of the EG codes [20].  Table 
3-8 gives an example of the UVLC. “x” represents a bit that can be either one or 
zero.  

 

Class UVLC Length Value to be expressed 

1 1 1 1 
2 0x00 3 ’x0’+ 2[2:3] 
3 0x11x00 5 ’x1x0’+ 4[4:7] 
4 0x21x11x00 7 ’x2x1x0’+ 8[8:15] 
5 0x31x21x11x00 9 ’x3x2x1x0’+ 16[16:31] 
… … … … … … 

Table 3-8 An example of UVLC 
 

The UVLC is used in H.26L to perform entropy coding.  In [21], UVLC is 
suggested to be used in the coding of DCT coefficients for H.26L.  It is claimed to 
be able to provide good performances in terms of coding efficiency, configurability 
to various applications, and error resiliency.  In H.26L, the UVLC uses one 
infinite-extent codeword set rather than designing a different code for each element 
of the H.26L syntax, only the mapping to the single UVLC code table is 
customized to the probabilistic behavior of the data.  However, extra bits need to be 
added to indicate the signs of each LEVEL.  To apply the ALT coding to DCT 
coefficients, we make further separation of the UVLC coded "LEVELs", which 
keeps the codeword of RUNs and LEVELs in accordance. This also helps to 
simplify the decoding scheme.  Table 3-9 and Table 3-10 give examples of RUN 
UVLC and LEVEL UVLC [21].  We see that the code tables of RUNs and 
LEVELs are actually identical except for the sign bits (marked by “s” in the tables) 
at the end of each codeword in the LEVEL table. 
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Codeword Length Value of RUN 

1 1 0 
0x00 3 if x0=0, EOB 

if x0=1, RUN=1 
0x11x00 5 'x1x0'+ 2[2:5] 

… … … … … 
0x50x40x31x21x11x00 13 'x3x2x1x0'+ 62[62:125] 

Table 3-9 RUN UVLC 
 

Codeword Length Absolute value of 
LEVEL 

1s 2 1 
000 3 EOB 

010s 4 2 
0x11x00s 6 'x1x0' + 3[3:6] 

… … … … … 
0x50x40x31x21x11x00s 14 'x5x4x3x2x1x0' + 

63[63:126] 
Table 3-10 LEVEL UVLC 

 
To apply ALT coding to DCT coefficients, we further separate each packet 

into one of ALT coded UVLCs and one of sign bits as the code tables of RUNs and 
LEVELs are identical except for the sign bits.  Figure 3-12 shows the separation.  
By doing such a separation, the codewords in the "ALT coded UVLC packet" are 
then kept in accordance and therefore can be decoded as described in previous 
sections.  

After the ALT coded UVLC packet is decoded, the sign bits can then be 
imposed upon the LEVELs as the position of each LEVEL is then known. 

 

Sync ALT coded UVLC packet SyncSign bits

 
Figure 3-12 Further separation of ALT packet in DCT coding 
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For the DCT coefficients, RUNs and LEVELs appear pairwisely, so the 
number of codewords between two suffixes must be even.  However, the error 
speculation as well as ALT decoding itself, may result in an incorrect partition of 
the code packet and therefore the number of codewords between two suffixes may 
be odd.  When the number of codewords between suffixes is detected to be odd, we 
always discard one codeword to make it even.  This results in the absence of some 
high frequency components, which influence only the details of the block. 

In DCT coding, the suffix plays a very important role as an error in the 
suffix results in error propagation to the next block.  The number of suffixes in the 
image is also a key factor in reconstructing the image. 

Assume there are X suffixes in a packet, and Y suffixes detected.  We 
perform the following to guarantee the reconstruction of the image. 

 
1) X Y< .  Discard the extra ones at the end of the packet. 
2) X Y> .  Put zeros at the end of the packet to fill up the absent 

suffixes.  
 

After the above are performed, the sign bits will then be matched to the 
decoded codewords.  Due to the error speculation, we may have inserted or deleted 
some LEVELs in the packet; therefore, there may be too many or too few sign bits.  
For simplicity, if there are too many sign bits, we simply discard the extra bits; if 
there are too few sign bits, we deem the remaining LEVELs to be positive. 

 
Now that we have made the necessary modifications to the UVLCs and 

several images have been transformed using 8 8× DCT, zig-zag scanned and then 
run-length coded, the RUNs and LEVELs are then coded using the original UVLC 
and the ALT.  

These coded images are subjected to a BSC with a BER of 310− .  The PSNR 
of the reconstructed images are then compared in Table 3-11. 

Image PSNR of UVLC 
coded image 

(dB) 

PSNR of ALT 
coded image 

(dB) 

Lena 21.92 27.50 
Cameraman 24.23 26.06 

Monkey 17.81 22.38 
House 27.67 30.07 

Table 3-11 Comparison of PSNR 
 

From Table 3-11 we see that the ALT coded images are always better than 
the original UVLC coded ones.  The PSNR increases by approximately 2 ~ 5 dB. 
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Figure 3-13 shows the comparison of the visual qualities of the images in Table 3-
11.  The qualities of the ALT coded images are evidently better. 
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(a). The reconstructed Lena Using UVLC (b). The reconstructed Lena using ALT 

(c). The reconstructed Cameraman using UVLC (d). The reconstructed Cameraman using ALT 

(e). The reconstructed Monkey using UVLC (f). The reconstructed Monkey using ALT 
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(g). The reconstructed House using UVLC (h). The reconstructed House using ALT 
Figure 3-13 Comparison of the visual quality of reconstructed images 
 
From this application it can be seen that the ALT coding is able to increase 

the error resiliency of UPC codes.  However, this is for only those UPCs that are of 
fixed suffix length. For UPCs with variable suffix length, improvement of error 
resiliency is still possible yet not very evident, and it is done at a cost of a lowered 
coding efficiency. This is because we need to make the UPC suffixes bi-
directionally decodable and that usually requires the lengthening of the suffixes.  

Although for these UPCs the error resiliency is not a large advantage, we 
will see in the next chapter that the decoder architecture and decoding speed could 
be greatly improved by using the ALT coding method.  

 
To demonstrate the simplification in the decoding procedure enabled by 

ALT coding, we use the ALT approach to accelerate the variable length decoding 
of the run length coded image data in the JPEG standard in the Nios II embedded 
processor for Altera FPGA implementation, by using customized instructions [71].  
We replace the VLC code table in the JPEG standard with the ALT coded data and 
implement customized instructions to accelerate the decoding.   The ALT coding is 
again applied to the reversible EG codes UVLC and the UVLC is used to replace 
the VLC in the JPEG standard.  The results show that software accelerated 
implementations enabled a speed-up by a factor in excess of 3.5 compared to the 
standard JPEG software implementation.  Table 3-12 below shows the decoding 
performance for software implementations of the standard and the ALT coded 
JPEG.  The acceleration in decoding is very obvious.  

 

VLC decoder Cycles/codeword Cycles/coefficient 

Standard JPEG 783 56.0 
ALT coded JPEG 212 15.9 

Table 3-12 VLC decoding throughput 
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3.4  THE PROS AND CONS OF ALT CODING 

 
In the chapter we have introduced the ALT coding method and its 

applications. To conclude the chapter, there follows a discussion concerning the 
pros and cons of the ALT coding method.  

 
The ALT coding method is designed on the basis of the UPC codes. It takes 

advantage of the simple structure of the unary prefixes of the UPC codes. By 
separating the prefixes and suffixes, and assigning alternating coded all-one and 
all-zero codes to the prefixes, codeword boundaries are very easily detected using 
xor logics. This breaks the bottleneck in the decoding of a common VLC, and 
enables parallel decoding structure to be implemented. The ALT method collects 
the alternating coded prefixes in a prefix sub-sequence. This sub-sequence is held 
in a very regular structure, which enables Error Speculation to be implemented for 
UPCs with fixed suffix length, thus assisting in the improvement of the error 
resiliency.  

 
However, on the other hand, ALT coding performs a further separation of a 

code packet. This demands the decoding to be done in the unit of packets which 
requires buffering. Although this is not a problem in most cases since buffering is 
always necessary, buffering in the unit of packets is still required. For each packet, 
packet information about how many codewords are contained in an ALT packet is 
usually required, which adds additional bit costs. Error Speculation mechanism 
may help to increase the error resiliency, but on the other hand, it could also 
increase the computational complexity.  

 
In general, the ALT method’s biggest advantage is the simplification in the 

decoding and decoder structures thanks to the simple structures of the unary 
prefixes. In the next chapter, we will introduce the ALT decoders which are built 
on the basis of the ALT coding method.  
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4 ALT DECODER 

In the previous chapter, we discussed how the ALT encoding is able to 
increase the error resiliency.  We also mentioned that the ALT coded prefix sub-
sequence enables a simple means of detecting codeword boundaries.  By extracting 
code length information from the prefixes of the UPCs, the ALT coding method 
helps to break the dependencies between the variable length codewords and thus 
enables simplifications in the decoding procedure. We have discussed the decoding 
of the ALT packet in algorithms; however, the real advantage brought by the ALT 
coding is the great improvement in the hardware architecture of the UPC decoders.   

In this chapter, we first introduce the ALT decoder architecture.  Then the 
discussion is followed by comparisons of the ALT decoders to the general VLC 
decoder.  The advantages and disadvantages of the ALT decoders will then be 
studied.  
 

 
4.1 THE VLC DECODER STRUCTURES 

 
Since the UPCs are all variable length codes, it is natural to use a general 

VLC decoder to decode a UPC code sequence.  Therefore before starting to discuss 
the ALT decoder structure, we must firstly look at the general VLC decoders.   

 
In the introductory part of this thesis, we have briefly discussed the basic 

VLC decoder architecture.  We know that the VLC decoding requires sequential   
performance and therefore it is difficult for the VLC decoder to be pipelined or 
parallelized.  Various decoding methods using parallel or pipelined architecture 
have been developed to reduce the decoding time.  One early work on the VLC 
decoding was the tree-based searching algorithm of MARVLE [22], [23] which 
was able to decode the input code sequence serially at a speed of one bit per cycle.  
Therefore, the decoding time depended on the code length, i.e., longer codewords 
required longer decoding time.  Sun and Lei [24] developed a bit-parallel decoder 
which could decode each code word in one clock cycle by parallel matching the 
current code sequence with all possible code words in a LUT.  Sun and Lei [26], 
[27] then further improved the bit-parallel decoder by excluding an accumulator 
from the feedback path of the bit-parallel decoder.  The works in [25] analyzed the 
PLA-based pipelined tree-based architecture, which combined several technologies 
such as flexible operation in the decoding process and the high-level optimization 
based on the Sun and Lei’s architecture.  [33] proposed two methods to create 
concurrency and to improve the decoder throughput: 

 
1) The concurrent finite state machine (FSM), which extended the tree-

based searching algorithm to the FSM.  
2) The bit-positioning method, which divided the code sequence into 

blocks with overlapping windows.  
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The divided code sequences were decoded concurrently using Sun and Lei’s 
decoder as a basic decoding unit, and the decoded data merged during the final 
stage.  Such division makes the parallelization possible but the computational 
complexity is very high.  

 
Figure 4-1 The PLS decoder 
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In [28], a fast VLC decoder using plane separation (PLS) was proposed.  The 
architecture of the PLS decoder was based on the separation of an input-plane and 
an or-plane. By doing so, the decoder could perform input and decoding 
concurrently.  Figure 4-1 shows the block diagram of the PLS decoder.  

 
The decoder consists of two separate planes of an input plane. Each plane 

consists of a barrel shifter, a 32-bit 2:1 multiplexer, and a 32-bit output latch (BSa, 
MUXa, and Di for input plane, and BSb, MUXb and Do for the or-plane).  The 
output data (Do) from the or-plane (BSb) is matched with all possible codewords in 
the codeword table.  A match symbol and the corresponding latched code length in 
Dcl are obtained from the matching process.  After the matching process, the input 
plane rotates the data in Di at the BSa and the or-plane shifts the data in Do at BSb 
both to the left direction by the amount of the latched code length. Bits shifted out 
to the left side of the or-plane are lost, while those of the input plane are attached to 
the least significant bits of the input plane.  At the same time, the length of the 
remaining data in the or-plane is calculated.  If the remaining bit length is smaller 
than the required code length (which is the maximum possible code length) for the 
next matching, it can only be performed after updating the or-plane by loading the 
next input code sequence.  This can be simply performed by the bitwise or-
operations of Di and Do, as shown in Figure 4-1.  If the remaining bit length is 
larger than or equal to the required bit length, the next matching process can be 
repeated without the or operations 

 
By decoding the sample images in MPEG-2 video sequences, the authors 

claimed that the PLS decoder reduces the required total processing time by 
approximately  30% compared to those of  Sun and Lei’s decoder and their 
modified decoder.   

 
The VLC decoders discussed above were mainly aimed at high throughput 

and power dissipation was not a focus.  
Various levels of design techniques have been employed in designing low 

power VLC decoders.  The most effective approach to lowering the power 
consumption is by reducing the supply voltage.  However, as the supply voltage is 
reduced, the propagation delay of the circuit increases, limiting the amount of 
voltage scaling under a particular throughput constraint. From this voltage scaling 
point, the parallel method is preferred to the tree search method since the parallel 
approach processes multiple bits per cycle.  In other words, the parallel architecture 
can be run at a slower clock frequency and lower voltage than the serial method for 
a given throughput.  At a higher level, the parallel VLC decoder can be 
decomposed into two components: the VLC detector which involves the shifting of 
data, and the LUT.  The VLC detector receives the input VLC sequence and 
generates an address for the LUT.  To reduce additional circuit overheads, address 
generation is simply an alignment of the VLC’s at a fixed position so that the LUT 
uses the VLC itself as the address. The LUT receives the address from the VLC 
detector and produces the corresponding output codeword and length. The length is 
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stored in an accumulator, which informs the shifter part how many bits have been 
used.  As we have seen in the previous VLC decoder examples, to achieve a low 
power operation, both parts of VLC decoder need to be optimized.   

 
A popular method for increasing the efficiency of the LUT is called the 

“prefix-predecoding”.  In cases where the number of codewords in the table is 
large, codewords always exist with common prefixes in the code table.  By 
exploiting these common prefixes, the size of the LUT could be reduced.  Several 
approaches have exploited for this prefix-predecoding method to efficiently decode 
the VLCs [29], [30], [31].  The basic idea of prefix predecoding is to group the 
VLCs by their common prefixes.  In such decoders, the LUTs are separated into 
several block LUTs.  The common prefixes and the short codewords are stored in 
one block LUT and the grouped suffixes with common prefixes are stored in 
several different block LUTs.  The VLC sequence is decoded using the following 
steps: Firstly, the VLC is fed to the block LUT where prefixes and short codewords 
are stored.  If the VLC is a short code without any prefix, then the output codeword 
is produced from this LUT and the next VLC is ready to be decoded.  If the input 
VLC is one of the long codes with a prefix, only the prefix is decoded in this LUT.  
The remainder of the VLC is decoded in one of the subsequent blocks where the 
grouped suffixes are stored.  With this prefix- predecoding method, the size of the 
LUT is reduced because the prefixes are no longer redundant in the LUT.  The 
authors in [32] pointed out that, for MPEG-2 DCT AC coefficients, the majority of 
VLCs can be clustered by their prefixes and a greater than 50% area reduction can 
be achieved compared to a single table.  In addition, such prefix-predecoding 
methods could also help to reduce the power consumption by up to a factor of two 
since the switched capacitance is also reduced [32].  Often, the LUTs are not only 
the most power intensive blocks but also the most area occupying component 
blocks of a VLC decoder.  According to [32], in an MPEG-2 VLC decoder system, 
approximately 80% of the area is consumed by the LUT.  Therefore, reducing the 
LUT size, not only helps to reduce power consumption, but also helps to make the 
decoder compact in size.  
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4.2 THE GENERAL ALT DECODER STRUCTURE 

 
The ALT decoder, designed specifically for the ALT coded UPCs, do not 

follow the general concept of the VLC decoders.  As has been described in the 
previous chapter, the ALT coding resorts the prefixes and the suffixes of an entire 
UPC packet, collects the prefixes and replaces the prefixes with alternating coded 
all-one and all-zero codes.  The advantage of these all-one and all-zero codes is 
that the codeword boundaries are easily detected by a row of xor logics.  The xor 
logic can be seen as the key part of the ALT decoding.  This follows directly from 
the alternating coded all-one codes and all-zero codes.  Figure 4-2 shows an 
example of detecting prefix boundary by a row of xor operations.  

 

 
Figure 4-2 Detecting prefixes by a row of xor operations 

 
In Figure 4-2, every bit of the prefix sub-sequence is connected to a xor gate, 

only when a prefix boundary occurs, will the output of the xor gate yield a “1”.  
Therefore, via the row of the xor gates, we are able to detect the boundaries of the 
prefixes fairly easily.  When the boundaries of the prefixes are marked, we are able 
to calculate the lengths of each prefix, and since the prefixes are simply some 
unary codes, its length uniquely identifies each prefix. Thus the decoding of the 
prefixes is complete.  With the decoded prefixes, the associated suffixes, no matter 
whether they are fixed length codes or variable length codes, are then able to be 
decoded by some simple calculation or by searching and matching the LUTs.  

 
For UPCs with fixed length suffixes, the suffix decoding is basically just a 

suffix sub-sequence buffer plus a shifting unit used to output the decoded suffixes 
according to each suffix length.  For UPCs with variable suffix lengths, the suffix 
decoding involves an ordinary VLC decoding procedure, which includes LUT 
searching as well as the shifting mechanism.  
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After both the prefixes and the suffixes are decoded, we still need to 
combine the two decoding results to decode the original symbol. For the UPCs, as 
we have seen, they are usually applied to the integer sources, and therefore the 
coded symbols are usually some integers.  For UPCs with fixed length suffixes, 
combining the prefixes and suffixes to decode the original integer could be easily 
done by simple arithmetic calculations, as we have already seen in chapter two.  
For UPCs with variable suffix length, it again involves LUT searching; however, 
the prefixes already provide the LUT searching with a certain index and thus the 
searching is more efficient.  Moreover, for some UPCs, there are common LUTs 
that could be used by different groups of codewords that are indexed by the 
prefixes.  Such common LUTs also help to reduce the size of the LUT and in turn 
help to reduce the size of the decoder. 

 
We could see here that, for UPCs with fixed length suffixes, the LUTs are 

completely eliminated, which is a big boost for the performance of the decoder, 
whereas the UPCs with variable suffix length are not as greatly improved. In this 
chapter, emphasis will be placed on the ALT decoders designed for fixed suffix 
length UPCs, namely, GR and EG codes; however a common structure for an ALT 
decoder will be given. 

 
For any ALT coded UPC packet, the ALT decoder could be separated into 

two sub-decoders, corresponding to the two sub-sequences in an ALT packet. 
Moreover, another Figure 4-3 shows the function diagrams of the ALT decoder. 

  

Prefix Buffer Suffix Buffer

Boundary Detection

Prefix output and 
Shifting

Decoded Prefix

Decoded prefix

Suffix matching

Suffix output and 
Shifting

Combining prefix 
and suffix, output 
decoding result

Output

Input Input

 
Figure 4-3 Function diagram of an ALT decoder 
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4.2.1 The prefix sub-decoder  
 
For all ALT decoders, the prefix sub-decoders are primarily of the same 

structure. The prefix sub-decoder is the key part of the ALT decoder. It is the part 
where the ALT decoder differs from traditional VLC decoders. The performance 
boost of the ALT decoder comparing it to the traditional VLC decoders is mainly 
due to the simplification in the decoding of the prefixes. The decoder architecture 
of the prefix sub-decoder is illustrated in Figure 4-4. Here we have discarded the 
peripheral structures of the decoder, such as the packet buffers. We also assume the 
maximum code length of the prefix to be 16 bit. Customizing the prefix sub-
decoder with different maximum prefix lengths could be simply done by scaling 
the devices.  

 
Figure 4-4 General architecture of an ALT prefix sub-decoder  
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The prefix sub-decoder could be divided into several functional blocks as 
indicated in Figure 4-4. They are: the input buffers, the Boundary Detection Logic 
(BDL) which simply consists of a row of xor-gates, the Codeword Disabling Logic 
(CDL) which is used to disable the decoded prefix boundaries in each clock cycle, 
the prefix decoding logic, which decodes the prefix lengths representing each of 
the unary prefixes. The sub-decoder is a very simple and small design; there are 
neither LUTs nor shifting scheme included in the entire sub-decoder. 

 
The function of the prefix sub-decoder is to generate the length of each 

prefix and to provide it as a reference point in decoding the suffixes. Bearing in 
mind that the maximum prefix length is 16 bits, to represent the lengths of the 
prefixes, we need 4-bits. Therefore, the decoder consists of one 16-to-4 priority 
encoder (PE0), one 4-to-16 decoder (DEC0), two 16-bit buffers (D0 and D1), one 
15-bit register D2, one 4-bit register D3, one 15-bit comparator (COMP0), two 4-bit 
subtractors (SUB0 and SUB1), one 1-bit 2:1 multiplexer (MUX0), and two 1-bit 
registers (D4 and D5). Since each xor gate has two bits input, the 16 bit buffer thus 
results in a 15 bit output after the row of xor gates, and thus there are 15-bit 
registers and comparators. 

Now let us look at how the sub-decoder functions. The prefix sub-sequence 
of the prefix sub-decoder is put into the two buffers D0 and D1, the first two bytes 
in D1 and the second two bytes in D0. The first two-bytes of the prefixes are then 
fed into the xor-gates in the "Boundary Detection Logic" (BDL) where two 
consecutive bits are xored with each other. As the prefixes are now denoted in 
alternating all-one and all-zero codes, only at each prefix boundary will a "1" be 
generated by the xor operations as indicated in Figure 4-2. Each "1" then indicates 
a prefix boundary. The output after the BDL is then fed into the priority encoder 
PE0 in order to generate the position of the first OIB boundary. Register D3 is 
originally loaded with the number 16 (that is "0000" in a 4-bit binary code). The 
length of the first prefix is then calculated by SUB0 and at the same time D3 is 
updated with the position of the first prefix boundary. The 4-to-16 bit decoder 
DEC0 generates the position of the first prefix boundary and disables the first "1" 
of the input of the priority encoder by using the or-gates and the "Codeword 
Disabling Logic" (CDL). In the next clock cycle, the second prefix boundary is 
encoded by PE0. Again the second prefix boundary is placed in D3 and its position 
is decoded by DEC0. The same operations are then repeated. Thus the length and 
the prefixes are generated as well as the output for decoding and further reference.  

 
Let us look at a simple example to see exactly how each functional block 

works. Assume we have a prefix sub-sequence:  
{00, 1111, 0, 1, 0, 111, 0, 11111, 0000, 1, 0, 1, 0, 1, 00, 1111, ... ...}  
 
Table 4-1 illustrates how the prefix decoder decodes the prefix sub-

sequence. Suppose the prefix sub-decoder was initialized to all zeros before D1 is 
loaded with data. When "load" is set to high, D1 and D0 are loaded with 
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"0011110101110111" and "1100001010100111" respectively. Then D1[0] xor 
D0[15] is set to low, which indicates the last codeword in D1 continues in D0.  

 
Table 4-1 Example of the decoding procedure of prefix sub-decoder 

 
From the table we see that, the first seven prefixes are decoded within the 

first seven clock cycles, after the seventh prefix is decoded, the first two bytes in 
D1 are decoded and new data is required to be loaded from D0. The loading is done 
by setting the “load” signal and those bits left in the first two bytes but not yet 
decoded could be converted directly to the prefix length calculation. Thus, on 
receiving the new data for the prefixes, the remainder of the last prefix in the first 
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two bytes could be added directly to the left over value and therefore will not cost 
an extra clock cycle. Therefore, we could guarantee a constant decoding rate of one 
prefix per clock cycle for this prefix sub-decoder.  
 

As mentioned previously, the prefix sub-decoder takes advantage of the 
alternately coded all-one and all-zero codes, thus greatly simplifying the detection 
of the codeword boundaries with no table look-up necessary in the prefix sub-
decoder and thus also no sequential operations. This makes it very easy to 
parallelize the decoding procedure and thus accelerate the decoding speed. 
However, parallelization of the prefix sub-decoder needs to work in accordance 
with the suffix sub-decoder in order to complete the decoding, so parallelization 
could not be achieved for all UPCs. This is only possible for those highly 
structured UPCs such as the GR codes, which have fixed suffix length independent 
of the prefixes. In other UPCs, the lengths of the suffixes are variable or are 
decided by the length of the prefixes, therefore the suffix sub-decoder works as a 
traditional VLC decoder or works in a similar way, and parallelization is difficult.  

 
 

4.2.2 The suffix sub-decoder and decoding of the entire UPC 
 
Since the suffixes of different types of UPCs are different in nature, the 

suffix sub-decoder needs to be able to accommodate these. The differences 
between these suffix sub-decoders include more than the two categories of UPCs, 
namely, UPCs with fixed length suffixes and UPCs with variable length suffixes, 
which have been discussed until now.  But in general, the suffix sub-decoders can 
be divided into three categories. 

 
1) Suffix sub-decoder for UPCs with fixed suffix lengths which are 

not associated with the prefixes. For instance, the GR codes with arbitrary suffix 
length where the prefix conveys no information about the suffix. 

2) Suffix sub-decoders for UPCs with fixed suffix length completely 
associated with the prefixes. These codes include the EG codes and all UPCs 
whose suffixes have linear relationships with the prefixes.  

3) Suffix sub-decoders for UPCs with variable length suffixes.  These 
include HG codes and UPH codes and all UPCs with variable lengths.  
          

These suffix sub-decoders will now be discussed separately. 
 
For the suffix sub-decoder in the first category, decoding the suffixes is very 

simple because they are simply fixed-length codes and their lengths are known. 
Also since the suffixes are actually independently fixed-length codes, we do not 
need the prefixes to serve as references.  Therefore the decoding of suffixes is 
simply a fixed-length decoder. What is even simpler is that, since UPCs usually 
encode integers, the decoding of suffixes is actually unnecessary, as the 
requirement is to output the suffixes and use them later in the arithmetic operations 
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when the encoded integers are to be decoded. Table 4-2 gives an example of how 
to generate the encoded integer using only prefix lengths and the suffix of a set of 
GR codes.  As shown in chapter two, when the prefix length k is given, the 
encoded integer value could be calculated using 2-x.  Thus we are able to recover 
the encoded integer value using only simple multiplications and additions.  

 
Suppose the length of each suffix is k-bits, all that would be in the suffix 

sub-decoder would be a k-bit register. The k-bit register outputs a k-bit suffix every 
clock cycle and by combining this k-bit suffix with the decoded prefix in each 
clock cycle, it is possible to further decode the entire UPC. 

 

Valu
e 

 GR  Unary 
prefix 

Prefix 
Length k 

Suffix Suffix 
Length 

Value=(k-
1)*22+Suffix 

0 000 0 1 00 2 (1-1)*4+0=0 
1 001 0 1 01 2 (1-1)*4+1=1 
2 010 0 1 10 2 (1-1)*4+2=2 
3 011 0 1 11 2 (1-1)*4+3=3 
4 1000 10 2 00 2 (2-1)*4+0=4 
5 1001 10 2 01 2 (2-1)*4+1=5 
6 1010 10 2 10 2 (2-1)*4+2=6 
7 1011 10 2 11 2 (2-1)*4+3=7 
8 11000 110 3 00 2 (3-1)*4+0=8 
9 11001 110 3 01 2 (3-1)*4+1=9 

10 11010 110 3 10 2 (3-1)*4+2=10 

11 11011 110 3 11 2 (3-1)*4+3=11 
12 111000 1110 4 00 2 (4-1)*4+0=12 
13 111001 1110 4 01 2 (4-1)*4+1=13 
14 111010 1110 4 10 2 (4-1)*4+2=14 
15 111011 1110 4 11 2 (4-1)*4+3=15 
… … … … … … … 

Table 4-2 GR code with suffix length 2 
 
For the suffix sub-decoders in the second category, decoding becomes more 

complex because the suffix lengths are now linearly associated with the prefixes.  
The length of each suffix varies with the length of the corresponding prefix.  
Therefore, although we consider such UPCs to be fixed suffix codes, in fact their 
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suffix length is variable, but in a way that is completely linked to the length of the 
prefix.  Thus to decode a suffix, we need the decoded prefix to act as a reference.  
For these UPCs the length of each suffix could be easily be generated from the 
corresponding prefix and the LUTs are not required in order to perform the 
decoding.  What must be added, when comparing this to the suffix sub-decoders in 
the first category, is a shifting scheme to remove the suffixes already decoded.  The 
fixed k-bit register is no longer able to perform this task because now the suffix 
lengths vary with the prefixes. Figure 4-5 shows an example of the suffix sub-
decoder for EG codes with k=0. Here we assume that the maximum suffix length is 
15 bits.  

 
Figure 4-5 Example of EG suffix sub-decoder (k=0) 

 
The suffix sub-decoder functions as follows. 
The sub-decoder in Figure 4-5 contains one 15-bit register (D7), one 4-bit 

register D8, two 15-bit 2:1 multiplexers (MUX1 and MUX2), two 30-bit barrel 
shifters (BS0 and BS1), two 4-bit subtractors (SUB1 and SUB2), and a 4-bit greater 
than & equality comparator (COMP1). 

The suffixes are first loaded in the lower half of the two barrel shifters, the 
first 15 bits in BS0 and the following 15 bits in BS1. The upper half of the barrel 
shifters are both loaded with 15 bit zeros. D8 is originally loaded with 15 ("1111" 
in binary), which is the maximum suffix length. BS0 shifts the suffix series to its 
upper half according to the first suffix length generated from the prefix sub-
decoder. The first suffix is then generated from the upper half of BS0. At the same 
time, SUB2 outputs the length of the rest of the suffix sub-sequence after the first 
suffix has been shifted out. This length is stored in D8, to be used for the decoding 
of the next suffix. In the next clock cycle, the lower half of BS0 is loaded with the 
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shifted suffix series and the upper half is cleared into all zeros. Therefore the 
decoding of the next suffix can be performed. The same operations are then 
repeated. When suffix decoding is performed until the end of the first 15 bits is 
reached, the length of the suffix sub-sequence left in BS0 will be equal to or smaller 
than the length of the next suffix. This will make the output of COMP1 become "1". 
A new 15-bit suffix sub-sequence will then be loaded to the suffix input. The 
contents of BS0 and BS1 are both shifted according to the length of the next suffix. 
The two separated parts of the last suffix in BS0 can be merged by the or-gates and 
MUX1 so that the complete suffix can be generated. MUX2 is used to load new data 
into BS0. Decoding can then be performed continuously. 

 
Now we use an example to demonstrate how this sub-decoder works. 

Suppose we have a suffix sub-sequence {10010010101110100......} to be decoded. 
Table 4-3 shows the performance of the decoding in the suffix sub-decoder. 

 

 
Table 4-3 Example of a suffix decoding process 

 
In Table 4-3, X14...X0 indicates the new data arriving after the first 15 bits. In 

our example, X14X13 are actually "00".  
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The suffix sub-decoder outputs the suffixes as they are, the actual integer to 
be decoded still need to be handled.  For the UPCs in the second category, 
decoding of the integer is similar to that in the first category. No LUTs are needed 
because the suffixes are completely associated with the prefixes and therefore the 
decoding could also be done by manipulating the prefixes and the suffixes 
arithmetically.  Hence, the decoding of the integers could also be simplified and 
accelerated at this level.  

Table 4-4 gives an example of how to decode the coded integer value using 
arithmetic operations on the prefixes and the suffixes. The example is a set of EG 
codes with k=0.  As shown in this table, the decoding of the actual integer could be 
performed using a set of arithmetic calculations 

Value  EG  Unary 
prefix 

Prefix 
Length m 

Suffix Suffix 
Length m-1 

Value=2m-1-
1+Suffix 

0 0 0 1 - 0 20-1+0=0 
1 100 10 2 0 1 21-1+0=1 
2 101 10 2 1 1 21-1+1=2 
3 11000 110 3 00 2 22-1+0=3 
4 11001 110 3 01 2 22-1+1=4 
5 11010 110 3 10 2 22-1+2=5 
6 11011 110 3 11 2 22-1+3=6 
7 1110000 1110 4 000 3 23-1+0=7 
8 1110001 1110 4 001 3 23-1+1=8 
9 1110010 1110 4 010 3 23-1+2=9 

10 1110011 1110 4 011 3 23-1+3=10 

11 1110100 1110 4 100 3 23-1+4=11 
12 1110101 1110 4 101 3 23-1+5=12 
13 1110110 1110 4 110 3 23-1+6=13 
14 1110111 1110 4 111 3 23-1+7=14 
… … … … … … … 

Table 4-4 EG code with parameter k=0 
 

In later sections we will see applications of the ALT decoders where these 
calculations are implemented using code converters.  

 
For the suffix sub-decoders in the third category, decoding becomes even 

more complex because the suffix lengths are not only variable in length, but also 
have no evident association with the prefixes.  This forces the decoding of the 
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suffixes to follow the manner of a VLC decoding procedure.  However, this suffix 
VLC decoder is still greatly reduced in size and is much more efficient in LUT 
searching because part of the searching reference has already been decoded from 
the prefix sub-decoder.  The LUT needed in the suffix sub-decoder is greatly 
reduced in size because only one prefix per prefix group needs to be stored.  This 
actually yields a natural prefix-predecoding of the UPC packet.   

Table 4-5 gives the LUT of a set of HG codes. Table 4-6 gives the LUT in 
the suffix sub-decoder in the ALT decoder.  

 LUT n 

Prefx Suffix 

0 0 - 
1 10 - 
2 0 
3 10 
4 

 
110 

11 
5 00 
6 01 
7 10 
8 110 
9 

 
 

1110 

111 
10 11110 000 
Table 4-5 LUT of HG codes 

 

 LUT Prefix 
length Suffix 

 - 0 00 01 10 110 111 000 
1 0        
2 1        
3  2 3 4     
4   5 6 7 8 9  
5        10 

Table 4-6 Reduced LUT in the suffix sub-decoder 
 

In the original LUT, one HG codeword matches one integer, so the table 
increases with the number of codewords.  In the reduced LUT, however, the shaded 
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cells represent the cells that are absolutely necessary.  We see here that a group of 
suffixes share one prefix and thus the prefixes do not need to be repeatedly stored.  
Hence the LUTs will be greatly reduced in size.  The LUTs are used to search for 
the encoded integers, in the LUT in Table 4-5, the search must be accomplished by 
looking through all the codewords and matching them up with the buffered code 
sequence, which may lead to long delays because there is no previous knowledge 
concerning the whereabouts of the codeword in the LUT .  Take the HG code in 
Table 4-5 and 4-6 as an example, suppose codeword 1110111 is to be decoded, in 
Table 4-5, we must search 10 rows for this code and then decode it as integer 8. 
However 1110110 has a prefix length of 4, and the suffix is 111, when we know 
that the prefix is of 4 bits, only the fourth row of the LUT needs to be searched  and 
there are only 4 cells to be searched until it is possible to decode the integer 8.  And 
as mentioned in section 4.1, a full codeword table also makes the decoder power 
intensive.  

The average energy consumption per codeword in the LUT can be modeled 
by the following equation: 

 
1

n

LUT i i
i

E P E
=

= ⋅∑  (4.1) 

Where LUTE  represents the average energy consumption per codeword in 
the LUT, n  is the number of codewords in the LUT, iP  is the probability of the 
codeword i  and iE  is the energy required to decode codeword i .   

In conventional approaches, the energy required to decode a VLC in a LUT 
does not greatly vary over the codeword probability. (i.e., constant, iE i≈ ∀ ).  This 
is because the VLC table is implemented in a single LUT and the whole table has 
to be charged and discharged every cycle.  For the UPCs, however, the single LUT 
method does not exploit the fact that decoding the unary prefixes requires only a 
few xor operations and searching for the prefixes is unnecessary.  Besides, such a 
single LUT method also neglects to take into account the frequent occurrence of 
short codeword. Therefore, the average energy in (4.1) is dominated by codewords 
which have high probability of occurrence.  

For the ALT coded packet, to analyze the energy consumption of the LUT 
searching, we need to modify equation (4.1) into: 

 
1

( )
na p s

LUT i i i
i

E P E E
=

= +∑  (4.2) 

where 
a
LUTE  stands for the energy consumed by the ALT decoder in the LUT 

searching, p
iE represents the energy consumed by decoding the prefix, and s

iE  
represents the energy consumed by decoding the suffix.  In the ALT decoder, the 
prefixes are decoded simply by a row of xor operations, and the LUT does not 
require to be searched for prefixes, thus we can regard the energy consumed by 
decoding the prefixes to be almost zero (i.e., 0, p

iE i≈ ∀ ).  It is obvious that 



107 

a
LUT LUTE E<  since part of the LUT search is almost completely eliminated by the 

separation of the prefixes and suffixes.  
 
On the other hand, the ALT decoder also provides a low power approach 

that exploits the variable length codeword statistics, making the energy to decode a 
codeword dependent on the codeword probability.  This is achieved naturally by 
also decoding the prefix and the suffix separately.  Due to the nature of the high 
peak, heavy tail sources that are suitable for the UPCs, the UPCs with variable 
length codes, such as the HG code, UPH codes and the modified UPH codes, 
shorter prefixes are usually associated with shorter suffixes and thus fewer 
codewords.  The HG code set in Table 4-5 is an example.  Thus, by extracting the 
prefixes, we make a natural partition of the original single LUT into several 
variable size tables with respect to their energy consumption and frequency of 
occurrence. By having such variable size tables, the energy required to decode a 
codeword will vary according to the size of the partitioned table.  Low power can 
be achieved if the dominant term in (4.1) is made small.  For the UPC case here, 
shorter prefixes are associated to shorter suffixes and the numbers involved in this 
case are small. Therefore for the short codewords which have higher occurrence 
probabilities, the searching range is smaller, thus the dominant term in (4.1) could 
be reduced.  Taking into consideration that the energy consumed by searching the 
prefix is almost 0, the energy consumption of an ALT decoder could then be 
expressed as:  

 1 (1) 2 (2) ( )
1

...
na s p s p s p s

LUT i i r r
i

E P E P E P E P E
=

= ⋅ = ⋅ + ⋅ + + ⋅∑  (4.3) 

Here ,  1p
iP i r≤ ≤  is the occurrence probability of the prefixes, and r is the 

number of different prefixes in the code set. ( )  1
s
iE i r≤ ≤ is the energy required to 

search for a suffix in prefix i, and we know that for codewords with higher 
occurrence probabilities, ( )  

s
iE is reduced  by  having a smaller search range, which 

obviously assists in the   reduction of power consumption. 
 
It can be seen from the above analysis that, even though for the UPCs in the 

third category, decoding in the suffix sub-decoder is more complex, we are still 
able to achieve faster decoding, smaller decoder size and less power dissipation.  
To decode the suffixes, as previously mentioned, involves a regular VLC decoding 
procedure, but the VLC decoding is greatly reduced in scale thanks to the separated 
prefixes.  

As a matter of fact, any parallelization and optimization possible for a 
general VLC decoder could still be applied to the suffix sub-decoder.  For instance, 
the rapid PLS VLC decoder mentioned in previous sections [28] could be modified 
and applied to the suffix sub-decoder.   
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In general, we see that, for any type of UPC, the ALT decoding could greatly 
assist in the reduction of the decoding complexity and efficiency.  The resulting 
ALT decoders are also smaller, faster and less power consuming.  
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4.3 APPLICATIONS OF THE ALT DECODER 

 
In the previous section we have discussed the architecture of the ALT 

decoder and have seen that by exploiting the ALT coding method, the decoder built 
on this basis could be greatly simplified leading to a reduction in size, power 
consumption and increase in decoding speed. In this section, we give examples of 
applications of the ALT decoding in the decoding of GR codes and one type of EG 
codes. A parallel decoding structure of the GR decoder is also proposed, which 
enables the decoding of multi-codewords per clock cycle.  
 
 
4.3.1 An ALT decoder for GR codes 

 
GR codes are very often encountered in image/video data, thus developing a 

special decoder for the GR codes will lead to improvements in the overall 
performance of the image/video decoder. As described in chapter one, there are 
different sets of GR codes depending on the suffix lengths. In order to examine the 
improvement of the ALT decoder, three designs were made for GR codes with 0 
bit suffix, 1 bit suffix and 2 bit suffix. The designs are shown in Figure 4-6. The 
maximum prefix length is assumed to be 16 bit, which is sufficiently long for the 
image/video codes.  
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Figure 4-6 ALT decoder for GR codes 

 
The ALT decoder has two inputs for the separated prefix and suffix sub-

sequences. One is the prefix input and the other is the suffix input. The decoder 
consists of one 16-to-4 priority encoder (PE0), one 4-to-16 decoder (DEC0), two 
16-bit buffers (D0 and D1), one 15-bit register D2, one 4-bit register D3, one 15-bit 
comparator (COMP0), one 4-bit subtractor (SUB0), one 1-bit 2:1 multiplexer 
(MUX0), one n-bit register Ds (n is the length of the suffix) and two 1-bit registers 
(D4 and D5).  

The prefix input of the decoder is put into the two buffers D0 and D1, the first 
two bytes in D1 and the second two bytes in D0. The first two-byte prefix series is 
then fed to the xor-gates in the "Boundary Detection Logic" (BDL) where two 
consecutive bits are xored with each other. As the prefixes are now denoted in 
alternating all-one and all-zero codes, only at each prefix boundary will a "1" be 
generated by the xor operations. Therefore, each "1" indicates a prefix boundary. 
The output after the BDL is then fed into the priority encoder PE0 in order to 
generate the position of the first codeword boundary. Register D3 is originally 
loaded with the number 16 (that is "0000" in a 4-bit binary code). The length of the 
first prefix is then calculated by SUB0 and at the same time D3 is updated with the 
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position of the first codeword boundary. The 4-to-16 bit decoder DEC0 generates 
the position of the first codeword boundary and disables the first "1" of the input of 
the priority encoder by using the or-gates and the "Codeword Disabling Logic" 
(CDL). In the next clock cycle, the second codeword boundary is encoded into PE0. 
Again the second codeword boundary is put to D3 and its position is decoded by 
DEC0. The same operations are then repeated.  

As discussed in chapter one, the prefix of a GR code is the unary expression 
of a quotient, which can itself be easily generated by offsetting the integer which 
represents the prefix length. Therefore, by offsetting the output of SUB0, the value 
of the quotient can be generated. The suffix of a GR code is already a binary 
expression, so the actual integer a GR code represents can be generated simply by 
concatenating the suffix and the decoded prefix.  

When decoding is performed until the end of D1, the output of D2 will then 
be accumulated to make it the same as the output of BDL, and the output of 
COMP0 is set to high. The operation D1[0] xor D0[15] is used to find out whether 
the prefix in D1 still continues in D0. If the prefix continues, the "load" signal is 
generated immediately and new data are loaded into the buffers. If the end of D1 is 
the end of a prefix, then the load signal needs to be delayed to the next clock cycle. 
A multiplexer MUX0 and a 1-bit register D4 are used to complete this. 

To handle different lengths of suffixes, what requires to be changed is the 
size of the register Ds, which when handling GR codes without any suffixes, is 
completely eliminated. 

This ALT decoder belongs to the first category discussed in the last section. 
The design in Figure 4-6 is almost exactly the same as for a general prefix sub-
decoder. Neither look-up tables nor shifting scheme are necessary, and it is capable 
of decoding one codeword per clock cycle. 

 
In order to determine the performance of this decoder, its performance is 

compared to the PLS decoder developed by Jae Ho Jeon et al [28].  Their decoder 
is scaled for the GR codes that are studied.  Figure 4-7 shows the modified PLS 
decoder.  
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Figure 4-7 The PLS decoder 

 
For a set of GR codes with maximum codeword length of 16 bits, the 

decoder consists of two separate planes. Each plane consists of a barrel shifter, a 
32-bit 2:1 multiplexer, and a 32-bit output register. The codeword table in this case 
is loaded with a GR codeword table and so is the code length table. This decoder is 
capable of decoding one codeword per clock cycle and the design makes the 
coding process parallel by using an "or plane". However, feeding the codeword 
length from the look-up tables back to the barrel shifters still limits the decoding 
throughput. All the possible codewords, codeword lengths and decoded integers 
need to be implemented in the look-up tables, and two types of barrel shifters are 
included. These all limit the efficiency of the PLS decoder. According to our 
synthesis results, look-up tables and barrel shifters utilize as much as a minimum of 
67% of the total area of the PLS decoder.  

 
We compare the delay, area and power consumption of the ALT decoder to 

those of the PLS decoder. Both of the decoder types have been implemented in 
synthesizable VHDL and their performance has been estimated according to the 
synthesis results. For each type, three decoders for GR codes have been 
implemented: without a suffix, with 1-bit suffix and 2-bit suffix. The maximum 
prefix length is kept constant at 16 bits. The results are shown in Figure 4-8. Both 
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types of decoders are implemented in VHDL and synthesized using Design 
Compiler from Synopsys. The delay has been obtained from static timing analysis 
and the figures for power consumption from Synopsys' Power Compiler. A 
standard cell library in a 0.5 mµ  CMOS process has been used. 
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Figure 4-8 Comparison of performances of PLS and ALT decoder 
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In Figure 4-8, the numbers 1, 2 and 3 on the x-axis represent three different 
sets of GR codes, 1 stands for GR codes without a suffix, 2 for GR codes with 1-bit 
suffix, and 3 for GR codes with 2-bit suffix. From these graphs it is obvious that 
the ALT decoder performs much better than the PLS decoder with regards to area, 
power and delay. The improvements are dramatic for area and power. For GR 
codes without a suffix, the ALT decoder receives only 87% of the delay, uses 51% 
of the area and 28% of the power consumption compared to those of the PLS 
decoder. For GR codes with 2-bit suffix, the related performances are as good as 
65% of the delay, 25% of the area and 20% of the power consumption compared to 
that of the PLS decoder. Moreover, the performances are constant for different sets 
of GR codes, whereas the performance of the PLS decoder degrades quite rapidly 
as the suffix length grows. When the maximum codeword length increases from 16 
bits to more than 16 bits yet less than 32 bits, the barrel shifters in the PLS decoder 
require 5 bits instead of 4 bits to count the number of bits needing to be shifted. 
Therefore, when 1-bit suffix is added to the prefix that has the maximum prefix 
length of 16 bits, there are abrupt increases in delay, power and area in the PLS 
decoder, and this makes the ALT decoder comparatively better. 

 
 

4.3.2 An ALT decoder for EG codes 
 
For this design, we designed a decoder for the UVLC, which as mentioned in 

chapter two, is a reversible version of the EG code with k=0. For the UVLC, the 
prefix of the EG code becomes the Odd Indexed Bits (OIB), and the suffix of the 
EG which for k=0 is one bit shorter than the prefix, becomes the Even Indexed Bits 
(EIB). The design of the entire decoder is based on the architecture discussed in the 
last section for the UPCs with variable lengths that are linearly related to the length 
of prefix. The complete design could be described by Figure 4-9 below. In the 
design, the maximum UVLC length is 31 bit.  

 
Figure 4-9 ALT decoder for UVLC 

 
The OIB decoder functions exactly like the example in Figure 4-4 and the 

EIB decoder functions exactly like the example in Figure 4-5. The EIB output is 
equivalent to the suffix output and the OIB output is equivalent to the prefix 
output. The code converter applies the relationship in Table 4-4 in order to decode 
the encoded integer. Table 4-7 shows the details of the truth table of the code 
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converter. The output of the code converter is added to the output of the decoded 
EIB using the 16-bit adder (ADD) to generate the actual code number.  

 

Input (4 bit)  Output (16 bit) Output in 
decimal 

0000 0000000000000000 20 
0001 0000000000000001 21 
0010 0000000000000011 22 
0011 0000000000000111 23 
0100 0000000000001111 24 
0101 0000000000011111 25 
0110 0000000000111111 26 
0111 0000000001111111 27 
1000 0000000011111111 28 
1001 0000000111111111 29 
1010 0000001111111111 210 

1011 0000011111111111 211 

1100 0000111111111111 212 

1101 0001111111111111 213 

1110 0011111111111111 214 

1111 0111111111111111 215 

Table 4-7 Truth table of the code converter 
 
This ALT decoder is also compared to the PLS decoder. However now it 

requires reconfiguration to a UVLC whose maximum codeword length is 31 bits.  
The reconfigured PLS decoder is shown in Figure 4-10.  
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Figure 4-10 The reconfigured PLS decoder 

 
The decoder consists of two separate planes.  For UVLC, each plane consists 

of a 62-bit barrel shifter, a 62-bit 2:1 multiplexer, and a 62-bit output register. The 
codeword table in this case is loaded with a UVLC codeword table and so is the 
code length table. This decoder is capable of decoding one codeword per clock 
cycle and the design makes the coding process parallel by using an "or-plane".  All 
the possible codewords, codeword lengths and decoded code numbers are 
implemented in the look-up tables, and two types of barrel shifters. These all limit 
the efficiency of the PLS decoder. According to our synthesis results, look-up 
tables and barrel shifters use as much as 75% of the total area of the PLS decoder. 

 
We compare the delay, area and power consumption of the ALT decoder to 

those of the PLS decoder. Both types of decoders are implemented in VHDL and 
synthesized using Design Compiler from Synopsys. The delay has been obtained 
from static timing analysis and the figures for power consumption from Synopsys' 
Power Compiler. A standard cell library in a 0.5 mµ  CMOS process has been used. 
The results are shown in Table 4-8. 
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  ALT PLS Ratio 
(ALT/PLS) 

Delay (ns) 8.96 12.0 75% 
Area (gates) 1855 3146 59% 
Power (mW) 6.74 15.0 45% 

Table 4-8 Comparison of performances 
 
It can be seen that the ALT decoder outperforms the PLS decoder for all 

factors:   speed, area and power. The reduction of size and power consumption of 
the ALT decoder is due to the elimination of huge codeword tables and code length 
tables and the reduction of the size of the shifting scheme in the conventional VLC 
decoders. This is also part of the reason why the ALT decoder increases in speed. 
Another factor for the speed increase of the ALT decoder is because the coding 
procedure is parellelized by separating the decoding of OIBs and EIBs. 
 
 
4.3.3 Parallel ALT decoder for GR codes  

 
We have seen from the previous sections that for the GR codes, the LUTs 

and the shifting scheme could be completely eliminated.  The GR decoder involves 
simply a prefix sub-decoder and a buffer.  This structure could easily be expanded 
to a high-level of parallelization by decoding.  If we treat the ALT GR decoder as a 
one functional unit, many of these units may result in an extension of the decoder 
structure that can help to parallelize the decoding.  In this parallel ALT decoder, 
the design enables multi-codewords per clock cycle decoding.  
 

Here we target a decoder architecture with constant input rate and variable 
output rate. It decodes all codewords in an arbitrarily large input buffer in parallel. 
The output of the symbols is delivered serially at a variable rate and can be fed to 
an external FIFO buffer. The overall architecture is shown in Figure 4-11. 

 

 
Figure 4-11 Overall decoder architecture  

 



119 

Even though it can decode an arbitrarily large input buffer with constant 
delay, the throughput has an upper limit which is defined by the maximum speed 
that the output buffer can deliver a serial sequence of symbols. The decoder is 
implemented in RT-level VHDL code and from the synthesis results, the maximum 
throughputs are more than 300M Symbols/s and 800M Symbols/s for FPGA and 
ASIC implementations respectively. 

 
For ALT-coded GR-codes the decoding is reduced to length extraction of the 

prefixes. For each clock cycle of clkf  the decoder takes in a new set of codewords 
of N bits to the Prefix Buffer. The lengths of the prefixes are extracted in parallel 
by the Parallel Codeword Length Extractor. At most, when all the codewords are of 
a minimum length of one bit, N codewords are decoded. The output buffer is 
therefore designed to receive N codeword lengths ( 1Nl −  to 0l ). For normal image 
data the codeword lengths are distributed within the range of one to a maximum 
prefix codeword length of M. This means that normally, not all positions in the 
output buffer will be occupied. An empty-indicator, called ie , is generated and 
shows whether a buffer position is empty or occupied. The decoded codeword 
lengths are serially placed in the outputs of the Output Buffer which is a Parallel-
Input Serial Output (PISO) register. The maximum output rate is when the prefix 
codeword lengths are all of one bit which makes it necessary to clock the Output 
Buffer at clkN f� .  The empty-indicator from the Output Buffer is used to indicate 
the existence of data taken out from the Output Buffer. The Suffix Buffer is a PISO 
where the shifting of k steps takes place when ie  is true. 

 
Figure 4-12 Detailed decoder architecture 
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Under the condition that the codeword length extraction can be parallelized, 
the critical timing path in this architecture is in the Output 
Buffer: critical mux DFFt t t= + , where muxt is the delay in a 2-1 multiplexer and DFFt  is 
the delay in a D-flip/flop. 

Before detailing how the proposed Parallel Codeword Length Extractor 
(PCLE) is designed, an example is presented showing the working principle in 
Table 4-9. The input buffer contains the alt-coded prefixes, of maximum length 
four bits ( 4M = ), in the vector C. The rightmost bit in the buffer is considered to 
be the first bit. From C the boundary vector B is computed where a ‘1’ indicates the 
position of the last bit in a prefix code. The length extraction is segmented to 
windows of M bits. Based on the first four bits ( 0i = ) in the B vector, the first 
occurrence of a boundary, i.e. a ‘1’ at position 0 gives us the length 0 0l = . It is 
guaranteed that the shortest prefix, which is one bit long, is extracted from this 
window. The next window can therefore be positioned one bit to the left of the 
previous window. In general, there will be N M-bit windows for a prefix buffer of 
N bits. In the next window ( 1i = ) a boundary is found at position 3 ( 1 3l = ). This 
boundary is also found in the windows 2, 3,i = and 4. These types of boundaries 
must be disabled by providing an offset for the above decoder architecture, the key 
part of which is the “Parallel Codeword Length Extractor” (PCLE) which is used to 
extract the GR prefixes in a parallel manner.  

 

 
Table 4-9 Example of parallel length extraction 

 
In order to achieve parallel length extraction, each window has a Length 

Extraction (LE) unit. It contains three functions:  
1) A length extraction function providing the prefix length ( il ); 
2)  Computation of the disable mask ( id ) that is fed to the following 

LE-units; 
3) Computation of the empty-indicator ie .  
 
The offset is computed exclusively on the basis on B. The length is based on 

B and the offsets from the M-1 previous LE-units. The block diagram of the PLCE 
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is shown in Figure 4-13. The delay in a parallel architecture cannot be dependent 
on the size of the prefix input buffer (N). For the proposed architecture the delay is 
dependent on the maximum codeword length (M) and not on N which allows 
unlimited parallelization. 

In the LE-unit the offset iD , based on the disable masks from the M-1 
previous LE-units, is computed as:   

 
1

1
( )

i

i j jl M
D shr d

−

− +
= ∧  (4.4) 

where the functions ( )j jshr d  shifts jd  positions to the right with ‘1’ shifted 
in from the left. When implemented, this is done by wiring. The prefix codeword 
length is computed as: ( ) ( )i i i il length D C length D= ∧ − . 

In this case iC  is the prefix code for the i-th window and the length function 
is returning the position of the first occurrence of a ‘1’ from the right in the vector. 

 
Figure 4-13 Parallel codeword length extraction 

 
The empty-indicator is computed as: ( )i i ie D C= ¬ ∧  
The Critical timing path comes from computing the length il  and is 

implemented as shown in Figure 4-14. 
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Figure 4-14 Codeword length detection unit 
It is possible that only the first part of the last prefix code resides in the 

Prefix Buffer with the rest being loaded during the next clock cycle. The function 
Remaining Length Detector (RLD), shown in Figure 4-11, decodes the length of 
the partial code from the M-1 empty-indicators and it is stored in the Length Buffer 
(LB) to be used for the next set of data loaded in the Prefix Buffer. 

The alternating coding enables simple logic for length extraction. This is 
important, even though the architecture can be parallelized without any limitations; 
it will affect the required clock frequency of the output buffer and the area-cost for 
the ASIC or FPGA implementation. 

 
The computational logic for the PLCE and the RLD are implemented in the 

RT-level VHDL. Logic synthesis using Synopsys’ Design Compiler for the ASIC 
implementation in a 0.5 µm CMOS technology and WebPack for the FPGA 
implementation in Xilinx’s Spartan IIe device. The delays have been obtained from 
pre-layout timing analysis with wire-load models from the silicon vendors. 

When designing a decoder with maximum throughput, the minimum size of 
the Prefix Buffer is determined by the maximum clock frequency of the Output 
Buffer. This will determine the number of LE-units that is equal to the number of 
bits in the Prefix Buffer. The number of LE-units required for maximum decoding 
throughput is: 

 
1
LE RLD

LE
outbuff

t tN N
f

⎡ ⎤+
= =⎢ ⎥

⎢ ⎥⎢ ⎥
  

where LEt  is the delay of one LE-unit and RLDt  is the delay of the RLD. The 
delays LEt  and RLDt  are dependent on the maximum prefix codeword length M. 
Decoders for maximum codeword lengths of 4, 8, 12, 16, 24 and 32 have been 
designed and evaluated. The suffix length (k) does not affect the computational 
logic and different values of k are therefore not investigated. In Figure 4-15 the 
number of parallel LE-units required for maximum throughput is shown. 
Maximum throughput for the ASIC and FPGA implementations are 810 
MSymbols/s and 340 MSymbols/s respectively. For large values of M, the FPGA 
requires more LE-units compared to the ASIC implementation to reach a maximum 
throughput. The main reason for this is the larger increase in wire delays for the 
FPGA.  
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Figure 4-15  Number of parallel LEs for maximum throughput 

 
The areas required for both ASIC and FPGA implementations of the 

decoder, for different values of M, are shown in Figure 4-16. The area grows 
linearly for the ASIC implementation.  However, for the FPGA implementation the 
area increases rapidly for 32M =  because the delay of the LE-unit is large and 
must be compensated for by increasing the parallelism that requires more LE-units. 
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Figure 4-16 Area for computational logic 
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4.4 THE PROS AND CONS OF THE ALT DECODER 

 
The ALT decoders are built on the basis of the ALT coding method and as 

shown in the previous sections, the ALT coding is able to extract the structured 
pattern in the UPC codes and thus leave greater freedom to simplify the decoder 
architecture to boost its performance. However, these improvements are offset by a 
cost of loss of generality and flexibility. It has both advantages and drawbacks.  

 
The advantages of the ALT decoders have been discussed throughout this 

chapter and are now summarized. By separating the decoder into two sub-decoders 
– the prefix sub-decoder and the suffix sub-decoder, it is possible to eliminate both 
the LUTs and the shifting scheme (usually barrel shifters) in the prefix sub-
decoders; the LUTs in the suffix sub-decoder are also able to be eliminated or 
reduced.  The LUTs and the shifting unit are actually the parts causing the greatest 
limitations on the performance. For the highly structured UPCs where the suffixes 
are of fixed lengths and are independent of the prefixes, immediate multi-codeword 
decoding could be a possibility because of the ALT coded prefixes.  

 
The ALT decoders are designed for the ALT coded UPC codes. All the 

performance improvements in the ALT decoder are essentially the result of the 
separation of the unary prefix from the suffixes. However, from chapters two and 
three, it has been shown that not all VLCs are able to be efficiently converted to 
UPCs. Thus the ALT decoder is not necessarily a good choice for those VLCs. 
Moreover, although the advantages of the ALT decoder have been discussed 
throughout this chapter, the ALT coding does require the encoding to be done in a 
particular way, so the performance improvement of the decoder has a premise that 
the UPCs are coded by the ALT coding method and sent to the decoder as the ALT 
packet. This actually requires a more complex encoder because, in the ALT, 
decoding requires a separation of prefix and suffix sub-sequences. This means 
extra buffering and shifting. However, on the other hand, encoding does not curtail 
the process because we always have a priori knowledge of the codes and the 
codeword packet whilst encoding them.  

 
In general, it is possible to conclude that for the image/video data which is 

able to be efficiently encoded by UPCs and ALT coding method, the ALT decoder 
serves as high-efficiency tool to perform the decoding of the ALT packet.  
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5 THESIS SUMMARY 

In this thesis, the efficient entropy coding of some high-peaked, heavy-tailed 
source distributions which are often used in the modeling of image and video 
signals have been studied and a different coding method, the ALT coding,  has 
been proposed, and a different decoder architecture which can  be built on the basis 
of ALT.  In this chapter, we briefly summarize the main contribution of the thesis 
work.  

 
5.1 UPCS 

Image video data are often modeled using high-peaked, heavy-tailed 
probability distributions such as Laplacian, Cauchy and the GG family.  Sources 
with such distributions have an infinite alphabet and therefore the well-known 
optimal coding algorithm Huffman coding algorithm cannot be applied.  These 
infinite sources all have exponential “decay” rates.  Such a property makes the 
UPCs suitable for use in coding these sources.   It has been proved in this thesis 
that, from all the different UPCs, the UPH codes are able to provide the highest 
coding efficiency. The coding efficiency of UPH is lower bounded by entropy + 2.  
In applications, the UPH codes could actually provide coding efficiency much 
higher than entropy + 2.  However, the construction of UPH codes involves serious 
computation and therefore the UPH codes are not as convenient in applications as 
the other highly structured UPCs such as the GR, EG, HG codes.   

 
 

5.2 ALT CODING  

The ALT coding method is designed on the basis of the concept of the UPC.  
The UPCs are all in the form of unary prefixes concatenated with some sort of 
suffixes which could easily be resorted into a unary prefix sub-sequence and a 
suffix sub-sequence.  The code length information conveyed by the unary prefixes 
could then be utilized in the decoding of the UPCs and thanks to the simple 
structure of the unary codes, error resiliency could be improved by two-way 
decoding and the ES mechanism.  

Simulations testing the effect of the ALT decoding as well as practical  
applications of the ALT coding using UPCs both show that it is possible to 
significantly improve the error resiliency.  

 
 

5.3 ALT DECODERS 

One of the appealing advantages of the ALT coding is that the unary sub-
sequence in the ALT packet could be easily decoded and as this contains the code 
length information it could greatly reduce the complexity of the entire decoding 
procedure.  Such an advantage is especially beneficial when it comes to the 
hardware decoder architectures.  The unary prefixes partially breaks the sequential 
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dependencies of the variable length UPCs and therefore greatly simplifies the 
decoding of the entire ALT coded UPC packet.  For different types of UPCs, 
different ALT decoder architectures have been proposed.  By comparing these 
ALT decoders to the general VLC decoders, we have shown that the ALT decoders 
are fast, small and energy saving.  This is especially true for the highly structured 
UPCs such as the GR and EG codes. These codes are very widely used in practice, 
and are not merely restricted in the image and video coding system. 
 
 
5.4 FUTURE WORK 

The lower bound of the coding efficiency of the UPH codes has been found 
to be entropy + 2 in this thesis.  We have discussed in the thesis that this lower 
bound is comparatively weak, especially in the coding of the high-peaked, heavy-
tailed probability distributions.   Stronger bound should be able to be found by 
further careful study of the coding procedures. 

 
The ALT coding method has proved itself able to provide better error 

resiliency, particularly for the highly structured UPCs with fixed length suffixes 
such as the GR and EG.  This is because these codes, with fixed length suffixes, are 
easily able to be converted into two-decodable codes and bi-directional decoding 
could be applied with ease.  For those UPCs with variable length suffixes, the two-
way decoding is difficult because to make them decodable from both directions it 
is necessary to convert the suffixes into reversible codes, which may result in a 
lower coding efficiency.  By further extending these UPCs into reversible codes 
and studying the error resiliency obtained by making them two-way decodable 
should also prove to be interesting and useful.   

 
Much work has been done in this thesis in designing and comparing different 

ALT decoders with a general VLC decoder.  These decoders have been isolated 
from the peripheries of the entire coding system in order to study their 
performances clearly and fairly.  However, putting them back in to the big coding 
system and studying its compactness as well as compatibility on a grander scale is 
also a possible extension of the work in the thesis.  
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