

 Doctoral Thesis
Sundsvall 2005

Alternating Coding and its Decoder Architectures for

Unary-Prefixed Codes

Shang Xue

Supervisors: Associate Professor Bengt Oelmann
 Associate Professor Mattias O’Nils

Electronics Design Division, in the
 Department of Information Technology and Media

Mid Sweden University, SE-851 70 Sundsvall, Sweden

ISSN 1652-893X
Mid Sweden University Doctoral Thesis 1

ISBN 91-85317-08-X

A dissertation submitted to the Mid Sweden University, Sweden, in partial
fulfillment of the requirements for the degree of Doctor of Technology.

Alternating Coding and its Decoder Architectures for Unary-
Prefixed Codes

Shang Xue

© Shang Xue, 2005

Electronics Design Division, in the
Department of Information Technology and Media
Mid Sweden University, SE-851 70 Sundsvall
Sweden

Telephone: +46 (0)60 148600

Printed by Kopieringen Mittuniversitetet, Sweden, 2005

To my husband Nan, my father Mr. Peiding Xue and
my mother Ms. Wannan Wang

i

ABSTRACT

The entropy coding of high peak, heavy-tailed probability distributions such as
the Laplacian, Cauchy, and generalized Gaussian have been a topic of interest
because they are able to provide good models for data in many coding systems,
especially in image and video coding systems. This thesis studies the entropy coding
of such high peak, heavy-tailed probability distributions. By summarizing the
encoding of such distributions under the concept “Unary Prefixed Codes” (UPC), the
thesis depicts the encoding via a different approach. By extending the concept of
UPC, the thesis proposes a universally applicable coding algorithm “Unary Prefixed
Huffman” (UPH) that could be applied to both finite and infinite sources. The code
set resulting from the UPH algorithm has a coding efficiency which is upper-
bounded by entropy + 2 given that the entropy is finite, and is able to provide sub-
optimal encoding of the sources studied in the thesis. The thesis also proposes
several different variations of UPCs that are simple in structure yet efficient for use
for several variations of the high peak, heavy-tailed distributions that are commonly
found in image and video coding systems.

By applying the concept of the UPC, the thesis further proposes a coding
method named the “Alternating Coding” (ALT) method. The ALT coding provides
a coding pattern that is different from the conventional method which enables the
extraction of special properties of the UPCs. Using the extraction of the special
property of the UPCs, decoding could be greatly simplified and parallel decoding
could be a possibility. Moreover, for the highly structured UPCs that are widely
used in image and video coding systems, the ALT coding enables an error resiliency
mechanism to be applied, which helps to improve the error tolerance of these UPC
packets to a significant extent. Simulations and actual application results of the ALT
coding are discussed in the thesis.

By applying the ALT coding, the hardware architecture of the decoder
changes accordingly. The ALT decoder is different to the conventional variable
length decoders that have been applied in the decoding of UPCs, as it is able to
utilize the special properties of the UPCs and thus simplify the decoder architecture.
As shown in the thesis, the ALT decoders are smaller in size, faster in speed and
consume much less power compared to the conventional decoders. This is
particularly true for those highly structured UPCs that are commonly used in image
and video coding systems. Actual realizations of several ALT decoders are
discussed in the thesis, and comparisons are made to the conventional decoders. The
improvements are shown to be very evident.

iii

ACKNOWLEDGEMENTS

I want to say that, studying in Sweden was a pleasant journey. I feel blessed

to have this opportunity to experience this beautiful country and its amiable people
while at the same being able to complete my Ph.D. study. The years spent in
Sweden would definitely be a sparkling memory of my life. I will definitely come
back to this peaceful land again when I have the chance.

First of all, I would like to express my gratitude toward Docent Bengt
Oelmann in the first place. It was him who helped me make my way through out
my Ph.D. study at Mid-Sweden University. For a non-Swedish student like me,
Dr. Oelmann, as my supervisor, not only provided me with a lot of guidance and
various opportunities in my study and research, but also helped me adapting to the
life in Sweden as a foreigner. I would not have completed my Ph.D. study without
his support and considerations. I would also like to thank Professor Youzhi Xu for
introducing me to this opportunity to start my Ph.D. at Mid-Sweden University,
and for his wise advices at the beginning of my Ph.D. study. I am also very
grateful to Professor Hans-Erik Nilsson and Docent Mattias O’Nils for their
support and help. Also many thanks shall be given to the people in our department:
Cao, Jon, Henrik, Mats, Krister, Munir and many more. Thank you for your
kindness and friendliness and thank you for the happy parties.

I also want to thank all my Chinese fellows whom I met in Sundsvall: Cris
Ding and Xiaoou Song, Guangjiong Dong and Juanwen, Tao Feng and Yan Song,
Lixin Ning and Xiaoli Hou. Life is much easier and more fun with all your help
and accompany. It is really lucky to get to know all of you.

The Mid-Sweden University and the KK-foundation are greatly
acknowledged for their financial support.

Most of all, I want to share this thesis with my dear husband Nan Gu, my

father Mr. Peiding Xue and my mother Ms. Wannan Wang back in China. Without
a supportive and caring family, life would have been much tougher for me,
especially during those lonely, homesick days far far away from my beautiful
homeland.

Sundsvall, April 2005

Shang Xue

v

TABLE OF CONTENTS

ABSTRACT... I

ACKNOWLEDGEMENTS .. III

TABLE OF CONTENTS .. V

ABBREVIATIONS AND ACRONYMS...VII

GENERAL.. VII

LIST OF FIGURES .. VIII

LIST OF PAPERS ..1

1 INTRODUCTION...3

1.1 BACKGROUND ...3
1.1.1 The statistical models of some image/video data..................................9
1.1.2 The architecture of the variable length decoder11

1.2 MOTIVATION BEHIND THE STUDY ...14
1.2.1 Improvement in the entropy coding ..14
1.2.2 Simplification of the decoder architecture ..15

1.3 THESIS OUTLINE ..16

2 UNARY-PREFIXED CODES..17

2.1 THE EXISTING UPCS ...17
2.1.1 Run-Length Encodings ...17
2.1.2 The Golomb Rice codes..21
2.1.3 The Exponential-Golomb codes..25

2.2 THE HYBRID GOLOMB CODE ..28
2.3 THE CONCEPT OF UPC ..34

2.3.1 General concept ..34
2.3.2 The optimality of the unary prefixes...34
2.3.3 The Unary-Prefixed Huffman coding algorithm.................................37
2.3.4 Modifying the UPH codes into codes with simpler structures............43

2.4 THE APPLICATIONS OF THE UPCS ...45
2.5 THE WEAK LOWER BOUND OF THE UPH CODES......................................56

3 ALTERNATING CODING ...60

3.1 THE ALT CODING IN GENERAL...60

vi

3.1.1 The ALT encoding..63
3.1.2 The ALT decoding..67

3.2 THE ERROR RESILIENCY OF THE ALT CODING..74
3.2.1 Bi-directional decodability..74
3.2.2 Error Speculation ..77
3.2.3 Combining bi-directional decoding and Error Speculation80

3.3 APPLICATIONS OF THE ALT CODING ..84
3.4 THE PROS AND CONS OF ALT CODING ..90

4 ALT DECODER ...91

4.1 THE VLC DECODER STRUCTURES ...91
4.2 THE GENERAL ALT DECODER STRUCTURE ...95

4.2.1 The prefix sub-decoder ...97
4.2.2 The suffix sub-decoder and decoding of the entire UPC100

4.3 APPLICATIONS OF THE ALT DECODER..109
4.3.1 An ALT decoder for GR codes ...109
4.3.2 An ALT decoder for EG codes ...115
4.3.3 Parallel ALT decoder for GR codes..118

4.4 THE PROS AND CONS OF THE ALT DECODER ..125

5 THESIS SUMMARY..126

5.1 UPCS...126
5.2 ALT CODING ...126
5.3 ALT DECODERS...126
5.4 FUTURE WORK...127

6 REFERENCES..128

vii

ABBREVIATIONS AND ACRONYMS

GENERAL

AC…...………. Alternating Current
ALT..………. Alternating Coding
ASIC………… Application-Specific Integrated Circuit
BDL………… Boundary Detection Logic
BER…………. Bit Error Rate
BSC…………. Binary Symmetric Channel
CABAC……. Context-Based Adaptive Binary Arithmetic Coding
CAVLC……. Context-Based Adaptive Variable Length Coding
CDL………… Codeword Disabling Logic
CMOS………. Complementary Metal Oxide Semiconductor
CODEC……… Encoder and DECoder
CR…………… Correct Ratio
DC…………… Direct Current
DCT………… Discrete Cosine Transform
EG………….. Exponential Golomb Code
EIB…………. Even-Indexed Bits
EOB…………. End Of Block
ES…………… Error Speculation
FGS…………. Fine Granular Scalability
FIFO………… First In First Out
FPGA……….. Field-Programmable Gate Array
FSM………… Finite State Machine
GG…………… Generalized Gaussian
GR.………… Golomb Rice Code
HG…………. Hybrid Golomb Code
HVS…………. Human Visual Systems
IDCT………… Inverse Discrete Cosine Transform
LB…………… Length Buffer
JPEG………… Joint Photographic Experts Group
KLT…………. Karhunen-Loeve Transform
LE…………… Length Extraction unit
LUT…………. Look-Up Table
MC………….. Motion Compensation
ME…………… Motion Estimation
MPEG……….. Motion Pictures Experts Group
OIB…………. Odd-Indexed Bits
PCLE………… Parallel Codeword Length Extractor

viii

pdf…………… Probability Density Function
PISO………… Parallel-Input Serial Output
PLA………….. Programmable Logic Array
PLS………… Fast variable length decoder using Plane Separation
PSNR………… Peak-Signal-to-Noise Ratio
RLD…………. Remaining Length Detector
RT-level Register Transfer Level
RVLC……….. Reversible Variable Length Codes
UPC…………. Unary-Prefixed Code
UPH…………. Unary-Prefixed Huffman Code
UVLC………... Universal Variable Length Code
VHDL……….. Very High Speed Integrated Circuit Hardware Description

Language
VLC………… Variable Length Code
XOR................ exclusive OR

LIST OF FIGURES

Figure 1-1 Image CODEC ...4
Figure 1-2 Block based DCT ..5
Figure 1-3 Zigzag reordering ..6
Figure 1-4 Video encoder ...7
Figure 1-5 Histogram of a certain image data...10
Figure 1-6 Block diagram of a VLC encoder ...11
Figure 1-7 The tree-based architecture ...11
Figure 1-8 VLC decoder type one...12
Figure 1-9 VLC decoder type two ..12
Figure 1-10 VLC decoder type three ..12
Figure 2-1 GR code (k=1) ...25
Figure 2-2 EG code (k=0) ...27
Figure 2-3 HG code (k=0)...29
Figure 2-4 Comparison of coding efficiencies of HG, GR and EG codes for

quantized GG sources with 0.1υ = ...30
Figure 2-5 Comparison of coding efficiencies of HG, GR and EG codes for

quantized GG sources with 0.3υ = ...31
Figure 2-6 Comparison of coding efficiencies of HG, GR and EG codes for

quantized GG sources with 0.5υ = ...31
Figure 2-7 Comparison of coding efficiencies of HG, GR and EG codes for

quantized GG sources with 0.7υ = ...32
Figure 2-8 Comparison of coding efficiencies of HG, GR and EG codes for

quantized GG sources with 0.9υ = ...32

ix

Figure 2-9 Efficiency difference between HG codes and EG codes (k=0)33
Figure 2-10 Scalar quantization of the GG pdf...46
Figure 2-11 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 0.1υ = ..51
Figure 2-12 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 0.3υ = ..51
Figure 2-13 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 0.5υ = ..52
Figure 2-14 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 0.7υ = ..52
Figure 2-15 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 0.9υ = ..53
Figure 2-16 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 1.0υ = ..53
Figure 2-17 Comparison of the redundancies of the EG codes and the modified

UPH codes ..55
Figure 2-18 Lower bound of UPH code for quantized GG with shape parameter 0.1

..56
Figure 2-19 Lower bound of UPH code for quantized GG with shape parameter 0.3

..57
Figure 2-20 Lower bound of UPH code for quantized GG with shape parameter 0.5

..57
Figure 2-21 Lower bound of UPH code for quantized GG with shape parameter 0.7

..58
Figure 2-22 Lower bound of UPH code for quantized GG with shape parameter 0.9

..58
Figure 2-23 Lower bound of UPH code for quantized GG with shape parameter 1.0

..59
Figure 3-1 The ALT coding for fixed-length-suffix UPCs.....................................64
Figure 3-2 The GR code example ...64
Figure 3-3 The EG code example ...66
Figure 3-4 The ALT coding for variable-length-suffix UPCs66
Figure 3-5 ALT encoding of the HG code sequence (k=0).....................................67
Figure 3-6 ALT decoding for UPCs with fixed suffix length.................................69
Figure 3-7 ALT decoding for UPCs with variable suffix length72
Figure 3-8 Bit error propagation of a VLC sequence ...74
Figure 3-9 Bit error propagation of a VLC sequence ...75
Figure 3-10 Comparison of CR...79
Figure 3-11 Comparison of CR of ALT coded EG and EG under different BERs.82
Figure 3-12 Further separation of ALT packet in DCT coding85
Figure 3-13 Comparison of the visual quality of reconstructed images89
Figure 4-1 The PLS decoder ...92
Figure 4-2 Detecting prefixes by a row of xor operations95

x

Figure 4-3 Function diagram of an ALT decoder ...96
Figure 4-4 General architecture of an ALT prefix sub-decoder..............................97
Figure 4-5 Example of EG suffix sub-decoder (k=0) ...102
Figure 4-6 ALT decoder for GR codes ...110
Figure 4-7 The PLS decoder ...112
Figure 4-8 Comparison of performances of PLS and ALT decoder114
Figure 4-9 ALT decoder for UVLC..115
Figure 4-10 The reconfigured PLS decoder..117
Figure 4-11 Overall decoder architecture ...118
Figure 4-12 Detailed decoder architecture..119
Figure 4-13 Parallel codeword length extraction ..121
Figure 4-14 Codeword length detection unit. ...122
Figure 4-15 Number of parallel LEs for maximum throughput...........................123
Figure 4-16 Area for computational logic...124

1

LIST OF PAPERS

This thesis is mainly based on the following ten papers, herein referred to by their
Roman numerals:

Paper I

Unary Prefixed Huffman Coding for a Group of Quantized
Generalized Gaussian Sources
Shang Xue and Bengt Oelmann,
Submitted to IEEE Transaction on Communications

Paper II

Unary-Prefixed Encoding of the Lengths of Consecutive Zeros in a
Bit Vector
Shang Xue and Bengt Oelmann,
IEE Electronics Letters, vol.41, no.6, pp.346-347, 2005

Paper III Efficient Decoding of Variable Length Encoded Image Data on the

Nios II Soft-Core Processor
Peter Mårtensson, Jens Persson, Shang Xue, and Bengt Oelmann,
In the proceedings of the International Workshop on Applied
Reconfigurable Computing, Algarve, Portugal, February 2005

Paper IV Efficient VLSI Implementation of a VLC Decoder for Golomb-

Rice Code using Alternating Coding
Shang Xue and Bengt Oelmann,
In the proceedings of the IEEE Norchip’03, Riga, Latvia, November,
2003

Paper V Parallel Variable-Length Decoder Architecture for Alternated

Coded GR-Codes
Shang Xue and Bengt Oelmann,
In the proceedings of the IEEE Norchip’03, Riga, Latvia, November,
2003

Paper VI Error Resilient coding of DCT coefficients using alternating coding

of UVLC
Shang Xue and Bengt Oelmann,
In the proceedings of Norsig, Bergen, Norway, October, 2003

Paper VII A Coding Method for UVLC Targeting Efficient Decoder

Architecture
Shang Xue and Bengt Oelmann,

2

In the proceedings of the 3rd IEEE International Symposium on Image
and Signal Processing and Analysis, Rome, Italy, September, 2003

Paper VIII Alternating Coding for Universal Variable Length Code

Shang Xue and Bengt Oelmann,
In the proceedings of the IEEE International Conference on Image
Processing, Barcelona, Spain, September, 2003

Paper IX Efficient VLSI Implementation of a VLC Decoder for Universal

Variable Length Code using Alternating Coding
Shang Xue and Bengt Oelmann,
In the proceedings of IEEE Annual Symposium on VLSI, Tampa,
Florida, USA, February, 2003

Paper X Hybrid Golomb Codes for a Group of Quantized GG Sources

Shang Xue, Youshi Xu and Bengt Oelmann,
IEE Proceedings -- Vision, Image and Signal Processing, vol.150, no.
4, pp. 256-260, August, 2003

1

3

1 INTRODUCTION

This chapter is an introduction of the entire thesis work, which includes the
background and motivation associated with the thesis work, and a brief description
of the thesis study.

1.1 BACKGROUND

The work in this thesis originated from a study of the entropy coding of

some image and video data. The encoding and decoding of image and video data,
especially video data, requires an entire complex system which is an integration of
many different functional parts. To convert image/video into electronic signals that
are suitable for physical transmission is no easy task. Especially for image/video,
the high bit rates that result from the various types of digital video make their
transmission through their intended channels very difficult. Compression coding
bridges a crucial gap between the user’s demands (high-quality still and moving
images, delivered quickly at a reasonable cost) and the limited capabilities of
transmission networks and storage devices. For example [43], a “television
quality” digital video signal requires 216 Mbits of storage or transmission capacity
for one second of video. Transmission of this type of signal in real time is beyond
the capabilities of most present-day communications networks. A two-hour movie
(uncompressed) requires over 194 Gbytes of storage, equivalent to 42 DVDs or
304 CD-ROMs. In order for digital video to become a plausible alternative to its
analogue predecessors (such as the analogue television), it is necessary to develop
methods to reduce or compress this prohibitively high bit-rate signal.

The drive to solve this problem has taken decades and massive efforts in
research, development and standardization. Significant gains in storage,
transmission, and processor technology have been achieved in recent years, and it
is primarily the reduction of the amount of data that needs to be stored, transmitted,
and processed that has made widespread use of digital video a possibility.

Modern image/video coding standards have adopted comprehensive

compression methods to remove the redundancy in image and video data and thus
compress the amount of data to be stored and transmitted. Compression could be
performed at the encoder for transmission and then decompressed at the decoder to
restore the original signals. The decompressed signal may be identical to the
original signal (lossless compression) or it may be distorted and degraded (lossy
compression). Compression of image and video signals is based on the fact that
there are always spatial, temporal or statistical redundancies that could be removed.
For instance, neighboring pixels in an image or a video frame tend to be highly
correlated and so there is significant spatial redundancy. Neighboring regions
within successive video frames also tend to be highly correlated and thus
significant temporal redundancy exists. These statistical redundancies could be

4

modeled by using proper source models. A good source model then attempts to
exploit the properties of video or image data and to represent it in a form that can
be readily compressed by an entropy encoder. A source model may also take
advantage of subjective redundancy, exploiting the sensitivity of the human visual
system (HVS) to various characteristics of image and video. For example, the
HVS is much more sensitive to low rather than to high frequencies and so it is
possible to compress an image by eliminating certain subjectively redundant
components of the information. Although the decoded image is no longer identical
to the original, the information loss is hardly perceived by the human viewer.

There are many different techniques of compression in the image and video
coding systems. In an image coding system, there are three basic parts of
compression: transform coding, quantization and entropy coding. In a video coding
system, frame differencing and motion-compensated prediction are also applied to
further reduce the temporal redundancies.

Figure 1-1 shows an example of the block diagram of the image enCOder
and DECoder (CODEC).

TransfromSource
image Quantize Reorder Entropy

encoding

Inverse
Transfrom

Decoded
image Rescale Reorder Entropy

encoding

Store/
Transmit

Encoder

Decoder

Figure 1-1 Image CODEC

In an image CODEC, the transform coding stage transforms the image from

the spatial domain into another domain in order to make it more amenable to
compression. The transform may be applied to discrete blocks in an image (block
transform) or to the entire image. In a video coding system, a block transform is
usually applied. The Karhumen-Loeve transform (KLT) has the “best”
performance of any block-based image transform. The coefficients produced by the
KLT are decorrelated and the energy is packed into a minimal number of
coefficients. However, KLT is very computationally complex and is impractical
for use. The discrete cosine transform (DCT) performs nearly as well as the KLT
and is much more computationally efficient and therefore DCT is usually applied.
The DCT are usually applied as block-base transforms. Figure 1-2 shows an
example of a block-based DCT. In the original block, it can be seen that the energy
is distributed across all the samples but after the DCT, the energy is concentrated

5

into a few significant coefficients (at the top left). Other types of transforms such
as the wavelet transform are also commonly found in the image coding systems.

Figure 1-2 Block based DCT

The quantization stage in an image encoder removes those components of

the transformed data unimportant to the visual appearance of the image but retains
the visually important components. This is typically done by dividing each
transformed coefficient by an integer and then discarding the remainder.

6

80 012 0 0 0 0 0

0 00 1 0 0 0 0

10 00 0 0 0 0 0

0 00 0 0 0 0 0

0 00 0 0 0 0 0

0 00 0 0 0 0 0

0 00 0 0 0 0 0

0 00 0 0 0 0 0

80 012 0 0 0 0 0

0 00 1 0 0 0 0

10 00 0 0 0 0 0

0 00 0 0 0 0 0

0 00 0 0 0 0 0

0 00 0 0 0 0 0

0 00 0 0 0 0 0

0 00 0 0 0 0 0

8x8 quantized DCT coefficeints Zigzag reordering

Figure 1-3 Zigzag reordering

After the image is transformed and quantized, the quantized coefficients are
reordered so that the non-zero values can be grouped together in sequence. The
non-zero quantized coefficients are usually clustered around the “top-left” corner
containing mainly the low frequency coefficients and thus by means of a zigzag
scan, the non-zero coefficients can be grouped together. Figure 1-3 illustrates the
zigzag ordering of the quantized transformed coefficients. The reordered
coefficient array usually consists of a group of non-zero coefficients followed by
mostly zeros. For the example in Figure 1-3, the zigzag scanned DCT coefficients
appear as follows:

80, 0, 12, 0, 0, 10, 0, 0, 0, 0, 0, 1, 0, 0, ..., 0.

Such a pattern is usually coded using the run length coding where the length
of zeros between non-zero values and the non-zero value are coded as a (run, level)
pair instead of coding every single repeating zero in the array. So for the example
in Figure 1-3, the (run, level) pair appears as:

80, (1, 12), (2, 10), (5, 1), EOB (End Of Block).

Statistical models are then applied to the run length coded data and entropy

coding of the statistical models is performed. The entropy coding of these data
involves different statistical models and different coding algorithms. The statistical
models are usually source distributions with high peaks, heavy tails, and coding
algorithms involving variable length encoding and arithmetic coding. Variable
length encoding is a common technique used in coding any discrete source, which
assigns shorter codewords to frequent symbols and longer codewords to infrequent
symbols in order to reduce the average code length. Arithmetic coding achieves
variable length encoding by mapping a series of symbols to a fractional number
which is then converted into a binary number. It has proved to be very efficient,
and the match to the actual statistical model can be very accurate, but the algorithm
is in general computationally complex.

7

The output of the entropy encoder is a sequence of binary codes that
represent the original image in compressed form. To recreate the image, decoding
of the compressed image is performed. The inverse procedure is taken step by step
as Figure 1-1 shows.

The video coding system is even more complicated than the image coding

system with the image encoder being a mere part of the video encoder. Figure 1-4
shows the block diagram of a video encoder.

A video signal consists of a sequence of individual picture frames in which
each frame may be compressed individually using an image encoder (intra-frame
coding). However, consecutive frames usually have strong temporal correlations
and therefore could be further compressed by predicting and compensating for the
current frame using previous frame references (inter-frame coding). The main
difference between the video and image CODEC lies here. Predicting the current
frame using those previously transmitted is called frame differencing. A residual
frame is produced by subtracting the previous frame from the current frame in a
video sequence, and the residual frame is compressed and transmitted instead of
the current frame itself. This is the simplest predictor in a video coding system.
Frame differencing enables good compression to be achieved when successive
frames are similar. But when there is a significant change between the previous and
current frames, significantly better predictions could be achieved by estimating the
movement and compensating for it. Motion estimation and compensation assist in
achieving these goals.

Motion-compensated

prediction
+
_

Prediction

Current
frame

Image
encoder

Previous
frames

Motion
estimation

Prediction

Image
decoder

+
_

Decoded
frame

Encoded
frame

Motion
vectors

Image
decoder

Previous
frames

Figure 1-4 Video encoder

The entropy coding in the video coding system involves more types of data

in comparison to the image encoders. In the video encoder, an image transform is

8

applied to the residual frame and the coefficients are quantized, reordered and run-
length coded. The result of the run-length coding is entropy coded as in an image
encoder. However, the statistical models are generally different for intra- and
inter-coded frames. Moreover, if motion compensated prediction is to be followed
through, motion vector information must also be sent in addition to the run-length
coded data. Therefore the motion vectors must also be entropy coded. There are
also other data types such as quantizer parameter, headers and parameters etc,
which all need to be entropy coded to remove the statistical redundancy. For
different data types, variable length coding of proper statistical models as well as
arithmetic coding could both be applied. For instance, in H.264 [44][45][49],
entropy coding could be performed using fixed- or variable length codes, or
context-based adaptive arithmetic coding (CABAC) [46][47][48] (which is a low-
complexity adaptive binary arithmetic coding technique with context modeling),
and context-based adaptive variable length coding (CAVLC) [50] and exp-Golomb
codes.

From the above we see that, entropy coding is one of the key parts involved

in image/video compression. Proper statistical models need to be applied to
perform entropy coding efficiently.

With reference to the implementation of the video CODEC, there are many

issues requiring to be taken into consideration. Video compression and
decompression are known to be computationally intensive tasks that require special
hardware or very powerful general-purpose processors. It is possible to implement
the video coding mostly in hardware and use a micro controller to implement high-
level control functions in software. However, it is also possible to implement the
codec completely in software and use a high-end, high-performance micro
controller or digital signal processor (or both) [58]. A special hardware solution is
always better from a performance, area and power point of view as the architecture
can be designed to implement a specific algorithm. A software-based solution, on
the other hand, is often considered more appealing as it is flexible and easier to
develop. The availability of low-cost and low-power hardware with sufficiently
high performance is essential for the popularization of image and video coding
applications. Thus, efficient hardware implementations in VLSI are of vital
importance. However, image and video coding algorithms are characterized by
very high computational complexity. Real-time processing of multi-dimensional
image and video signal involves operating continuous data streams of huge
volumes. Such critical demands cannot be fulfilled by conventional hardware
architectures without specific adaptation [66]. Therefore any tradeoff between the
software and hardware solutions should be studied carefully before the system
architecture is designed.

In [59], an MPEG-4 video codec is designed using a combination of RISC
and dedicated hardware engines in order to satisfy the requirements for both low
power and programmability. This is because dedicated hardware is much better
from power- and area-efficient standpoints and software programmability whereas

9

an embedded reduced instruction set computer processor is preferable in order to
cope with the MPEG standardization. The dedicated engines in [59] are adopted
for computationally intensive functions in MPEG4, such as DCT, inverse DCT
(IDCT), Motion Estimation (ME), Motion Compensation (MC), and the Variable
Length Code (VLC) CODEC, while the embedded RISC processor is included to
provide flexibility for other tasks. By doing so, together with several levels of low-
power techniques, such as parallel operation, clock gating, etc, the design in [59]
achieved 70% power saving when compared to a conventional design. In their
design, it was shown that the power dissipated by the VLC decoder alone consisted
of approximately 9% of the total power dissipation even using a dedicated
hardware design. The DCT and IDCT module are also energy consuming
components which between them consume respectively 6% and 13% of the total
power dissipation. In [67], the computational load of MPEG decoder was analyzed
and it was shown that the VLC decoding and inverse quantization utilize up to 24%
of the total computational load, the IDCT approximately 28% of the computation,
and the MC 48%. This also shows that the VLC decoding is one of the
performance limiting components and requires careful consideration. It is
commonly accepted that the DCT/IDCT, ME/MC, quantization and VLC decoding
are the performance limiting modules in a video CODEC or multimedia system
[68] [69] [70]. Almost all MPEG-4 CODEC designs [60] [61] [62] [63] [64] [65]
[67] adopt dedicated module architectures for the computationally intensive
ME/MC, DCT/IDCT, and the VLC CODECs. In [63], dedicated module
architectures are even adopted for all coding tasks including CODEC control.

From the above we have seen that the VLC CODEC part in a video CODEC

is usually designed using dedicated modules that are able to work independently, as
it is one of the most computational intensive parts of the video CODEC. Therefore
an efficient VLC decoder plays an important role in a video CODEC. The
simplification of the VLC decoder dedicated to video systems then becomes an
interesting topic to study.

1.1.1 The statistical models of some image/video data

To efficiently perform entropy coding in image and video coding systems,

an accurate model of the image and video data need is a necessity regardless of
which entropy coding algorithm is to be applied. The modeling of the different
types of image/video data is a massive subject and has involved a great deal of
effort by many researchers. The work in this thesis does not involve the modeling
of image/video data. Our emphasis is to study and improve the entropy coding of
some specific probability models that are often encountered in image/video
encodings.

10

Many different types of image/video data could be modeled with probability
distributions having high peaks and heavy tails. For instance, several studies on
the statistical distribution of the AC coefficients have been proposed, in which the
AC coefficients were conjectured to have Gaussian [34] [35], Laplacian [36] [37],
or more complex distributions [38][39]. The work in [40] also indicates that the
AC coefficients can be suitably modeled using Cauchy distribution. It is generally
believed that the distribution of the luminance components of a transformed image
block is also Laplacian [52][53]. [51]confirmed the Laplacian distribution for both
the luminance and chrominance channels of DCT encoded images and video
sequences. Gaussian and Laplacian distributions are the most popular statistical
models used for DCT coefficients [54][55] and DCT residuals [56]. A mixed
Laplacian model was proposed in [57] as an accurate statistical model for DCT
residuals for the MPEG4 FGS (Fine Granular Scalability) enhancement layer. In
[12], scalar quantized, run-length-coded image sub-bands are modeled using a
generalized Gaussian (GG) distribution and it has proved to be a more flexible
model. In [15], another discrete distribution has been designed for the length of
each run of zeros in a uniformly quantized sub-band of a wavelet transformed
image.

The shapes of all of these probability distributions used in the modeling of

image/video data contain high peaks and heavy tails. They provide accurate
models for some of the image/video data and therefore provide a reasonable model
for the entropy coding of these image/video data. Figure 1-5 [51] shows an
example of the distribution of some image data. Its high peak, heavy-tailed shape
is very obvious.

Figure 1-5 Histogram of a certain image data

11

1.1.2 The architecture of the variable length decoder

VLC are codes with variable code lengths. The basic concept of the entropy

coding is to assign shorter codewords to symbols with higher appearance
frequencies and longer codewords to symbols with lower appearance frequencies,
thus reducing the average length of the codes. To encode and decode VLCs
efficiently, different types of VLC encoders and decoders have been developed.

The design of VLC encoders is straightforward. We can simply describe

VLC encoders using block diagrams as are shown in Figure 1-6. The input symbol
is fed into a look up table and then the corresponding codeword is read out from
the table. With an output buffer, codewords with variable lengths can be output at a
constant rate.

Figure 1-6 Block diagram of a VLC encoder

Decoding of the VLCs is in much more difficult since the variable lengths

make the codewords difficult to separate. The codeword boundary cannot be
determined until previous codewords have been decoded. This recursive
dependence results in an upper bound on the iteration speed and limits the decode
throughput.

The most straightforward means of implementing a VLC decoder is to use
a "tree-based architecture" as shown in Figure 1-7 .

Figure 1-7 The tree-based architecture

Such a tree-based structure is based on the fact that the decoding process

actually is a traversal along the directed path of the code tree. One can map the
code tree directly as shown in Figure 1-7 . The branching function at each internal

12

node can be modeled as a 1-to-2 demultiplexer. Obviously, this structure has an
output of one bit per cycle.

Pipelining can increase the throughput of the tree-based decoder, as
discussed by Shih-Fu Chang and David G. Messerschmitt in [41]. The most
straightforward method is to partition the decoder into pipeline stages where each
one includes one level of the code tree. Then the decoder can be implemented by
simply cascading several ROMs, where the number of ROMs is equal to the depth
of the code tree.

Although pipelining could be achieved, this direct implementation using a

tree-based architecture is obviously inefficient. Many other different methods and
concepts have been proposed in VLC decoder implementations. Different types of
VLC decoders are developed according to the different ways in which the code
word boundaries are determined. Figure 1-8, Figure 1-9 and Figure 1-10 show
block diagrams of three types of decoders.

Figure 1-8 VLC decoder type one

Figure 1-9 VLC decoder type two

Figure 1-10 VLC decoder type three

The VLC decoder in Figure 1-10 is the most commonly used VLC decoder

architecture. It is a general VLC decoder structure that could be used for any VLC.
It involves the input buffer, a shifting scheme and Look-Up Tables (LUT) that

13

provide references for the codeword lengths as well as the decoding of the actual
data. It is possible to decode one codeword per clock cycle.

The bottleneck of the decoding throughput of VLC decoders is caused by the

sequential dependencies of the codewords. Therefore, to break the dependency to
attempt to achieve concurrency is of great importance in increasing the decoding
throughput. To balance the tradeoff between throughput and complexity, the
papers by H. D. Lin and D. G. Messerchmitt [42] introduced several general
methods for parallel decoding processes. However, a general VLC architecture will
always suffer for complexity as it is necessary to consider all the possible cases
which could happen in the VLC. Such complexity leads to large, slow and power
consuming designs.

14

1.2 MOTIVATION BEHIND THE STUDY

The motivations behind the study of this thesis are based on the following

two considerations:
1. To improve the entropy coding of those probability distributions that are

used to model image/video data;
2. A simplification of the VLC decoder for these image/video codes

1.2.1 Improvement in the entropy coding

As was described in section 1.1.1, there are several different probability

distributions that are used to model some of the image/video data. Even for one
type of image/video data, such as the DCT coefficients, there are different
probability models used to model them. The entropy coding for each probability
model, is usually at least slightly different. Therefore different entropy codes have
been developed for these different probability distributions and have been applied
to the coding of some image/video data. Considering these distribution and code
variations, it is sometimes difficult to select an optimal match or indeed a sub-
optimal one. For instance, optimal entropy codes exist for the Laplacian
distributions, yet for the GG distributions, no optimal codes could be constructed.
Therefore, to efficiently model and encode the image/video data source, it is
necessary to not only match the data to a good statistical model, but also alter the
entropy encoding of these statistical models.

It is well known that the Huffman encoding algorithm [1] has proved to be

optimal for any finite source. Therefore, it might be considered possible to apply
the Huffman encoding algorithm to the different statistical models thus avoiding
the need to select another efficient entropy code. However, the distributions of
these image/video data are all modeled using infinite sources which are not
applicable to the Huffman algorithm. The reason behind this is that the Huffman
algorithm requires the encoding to be initiated through the merger of the two
symbols with the least probability values, whereas for infinite sources, there are no
“least” probability values.

In order to tackle these infinite sources while at the same time still being

flexible in order to adapt to the change caused by using different statistical models
in the encoding procedure, in this thesis we have attempted to study and improve
the entropy coding of these high-peaked, heavy-tailed probability distributions and
have proposed new codes as well as coding algorithms.

15

Moreover, the resulting entropy codes are, in the majority of cases VLCs.
The VLC has the disadvantage of being vulnerable to transmission errors, as will
be demonstrated in Chapter 3. The work in this thesis also attempts to improve the
error-resiliency of the entropy codes for the probability distributions used to model
some of the image/video data.

1.2.2 Simplification of the decoder architecture

As we have mentioned in the previous section, the most commonly used, and

most efficient VLC decoder structure involves buffering, shifting and table-look-up
in its architecture. The shifting scheme and the LUTs are usually large, slow and
power consuming and these all limit the performance of parts of the VLC decoder.

The key point in a VLC decoder is the determination of the variable code
lengths, which is necessary in order to proceed with the decoding. For a common
VLC decoder, determining the lengths of the decoders is only possible by
searching the LUT, matching the codewords and reading out the code lengths of
these codewords. With the decoded code length, the shifting scheme would be able
to shift out the decoded codewords and immediately restart decoding. However,
there are certain VLCs where the very structure of the codes provides additional
information concerning the lengths of the code lengths. For the widely used
image/video entropy codes, it is worthwhile studying the code structure and
attempting to extract useful information from it. The other part of the work in this
thesis is devoted to the study of the code structures of the image/video entropy
codes, involving an attempt to extract useful code length information and thus
simplify the decoder architecture for these entropy decoders.

16

1.3 THESIS OUTLINE

There are five chapters in this thesis. The first chapter consists of an

introduction and provides the background and motivation behind the thesis. The
last chapter consists of a brief summary of the entire work. The main work of this
thesis is described in chapters two, three and four, respectively.

In chapter two, we focus on the efficient entropy encoding of particular

sources that are commonly found in modeling image and video data. In this
chapter, we introduce a general concept which summarizes one type of
image/video entropy codes, and then different variations of this concept are
introduced and discussed.

Chapter three introduces a coding method developed on the basis of the
coding concept introduced in chapter two. Some applications of the coding method
are then shown and its advantages and disadvantages are discussed.

Chapter four of this thesis focuses on the decoder architecture built on the
coding method introduced in chapter three. The variations of the decoders in
accommodating different image/video entropy code sets are discussed and
applications of such decoders are also shown. The advantages and disadvantages
of such decoders are also discussed in the chapter.

Chapter five is a brief summary of the thesis and suggestions are also made
concerning several possible future continuations of the thesis work.

17

2 UNARY-PREFIXED CODES

The starting point for the study of the entropy coding of the typical sources
in image/video coding systems is with the existing codes used in the coding of
these sources. As mentioned in the introduction, these source probability
distributions, such as Laplacian, generalized Gaussian, Cauchy etc., are all of
similar shapes, i.e., all with high peaks and heavy tails. Therefore the optimal or
nearly optimal entropy codes for these sources, also share some common
properties. In this chapter, we study the optimal and nearly optimal codes of some
typical probability distributions and summarize the entropy codes of these sources
under the common name: “Unary-prefixed Codes” (UPC). Based on the study of
previous work, we propose a new type of UPC as well as an adaptive coding
algorithm for these sources, the resulting codes from the adaptive algorithm could
also belong to the UPC family.

In this chapter, we first introduce the existing UPCs. Then we introduce the

new UPC and the adaptive coding algorithm proposed. While introducing the
adaptive algorithm, several possible coding strategies are discussed, which result in
code sets with different properties. Finally, we present the applications of different
UPCs.

2.1 THE EXISTING UPCS

2.1.1 Run-Length Encodings

Consider repeatedly performing a success-failure experiment having a
probability of success 1 , (0 1)θ θ− < < until the first success appears. For
example, flipping a coin (with the probability of getting head to be1 θ−) until you
get a head, or receiving a binary sequence bit by bit (with probability of getting “1”
to be 1 θ−) till you get a “1”. Let random variable X denote the number of failures
until a success appears, then the probability distribution of X can be given by:
 () (1), 0,1, 2,3, 4kP X k kθ θ= = − = L (2.1)
Such a discrete probability distribution is called a geometric distribution and the
random variable X here has an infinite positive integer sample space:
{0,1,2,3,4, }LL .

Now let us consider the entropy coding of an integer source with the

geometric probability distribution given in Eq.(2.1). It is well known that by
applying the Huffman coding algorithm, we are able to encode the letters of a finite
source alphabet into Huffman codes [1], which are uniquely decipherable codes
with minimum expected codeword length. However, for an integer source of the
geometric distribution, the alphabet is infinite and the Huffman algorithm cannot

18

be applied directly. This is due to the fact that the Huffman algorithm requires the
encoding to start by ‘merging’ the least probable letters in the alphabet.

S.W. Golomb initiated the early work [2] in coding infinite alphabets of non-

negative integer sources, which follow the geometric distribution in Eq.(2.1), into
optimal codes. He named the random variable X as “the run lengths between
successive unfavorable events” and studied the case when θ satisfies 1

2
mθ = ,

where m is some positive integer. Under such conditions, θ could only take values
in the set: 1 1 1 131 2 4

2 2 2 2{ , , , }L .

Since we have 1

2
mθ = , then the probability of the run length n m+ is:

 1
2
1
2

() (1)
(1)

()

n m

n

P X n m

P X n

θ θ

θ θ

+= + = −

= −

= =

 (2.2)

This means that a run length n m+ occurs with a probability of exactly one half of
run length n. Suppose a run length n is coded using a binary code of l-bit, then it is
obviously very reasonable to encode a run length n m+ using a binary code of
length (1l +). Intuitively, every m codeword, apart from the initial few, should
have the same code length. Golomb has pointed out that, this argument, though not
rigorous, leads to the correct conclusion that for geometric distributions with

1
2

mθ = , the optimal code set should include m codewords of each possible code
length, except for the shortest code lengths, which are not used at all if 1m > , and
possibly one transitional code length, which is used fewer than m times. This
argument, as also indicated by Golomb, could easily be verified by mathematical
induction.

In general, let k be the smallest integer satisfying 2 2k m≥ , then we have

exactly m codes for each code length longer than k. There are 12k m− − codewords
for code length 1k − .

A quick proof of this argument would be as follows. According to the Kraft

inequality [3], for prefix codes, codewords with length n occupy 1 2n of the total
leaves of the binary code tree. Therefore for the above allocation of the code
lengths, all codewords with length longer than k bits occupy 12km − of the total
leaves. This is because:

 1 2 3 12 2 2 2 2k k k k k

m m m m m
+ + + −+ + + + =L

Therefore, the rest of the codes must be occupying proportionally:

19

1

1 1

21
2 2

k

k k

m m−

− −

−
− =

of the total leaves. Thus, it follows that, the number of codewords with length
1k − must be 12k m− − .

When m is a power of 2, i.e., 12km −= , we have 12 0k m− − = . Thus there

are no codewords with length 1k − and every code length will have exactly m
codewords.

For instance, if we have 4m = , then 4 1

2θ = , the run length codes will
appear as shown below:

N)1(θθ −n Run Length Codes

0 0.151 000
1 0.128 001
2 0.109 010
3 0.092 011
4 0.078 1000
5 0.066 1001
6 0.056 1010
7 0.048 1011
8 0.040 11000
9 0.034 11001

10 0.029 11010
Table 2-1(a) Run length codes with 4m =

However for 3m = , i.e., 3 1

2θ = , the run length code will be:

20

N)1(θθ −n Run Length Codes

0 0.206 00
1 0.164 010
2 0.130 011
3 0.103 100
4 0.081 1010
5 0.064 1011
6 0.051 1100
7 0.041 11010
8 0.032 11011
9 0.026 11100

10 0.021 111010
… … …

Table 2-1(b) Run length codes with 3m =

Note that in Table 2-1(a), the shortest code length has four codewords,

which is equal to m; whereas in Table 2-1(b), the shortest code length has one
codeword, which is not equal to m.

Now we have discussed the case when log 2 logm θ= − is an integer.

However, in most cases, log 2 logθ− is not an integer. Under such circumstances,
the number of codewords having the same code lengths will then oscillate between
⎣ ⎦m and ⎣ ⎦ 1+m . Golomb pointed out that, when m is very big, θ approaches 1,
and it would be possible to choose an integer closest to m and still perform run
length encoding; which will not lead to a bad result.

If we look closely at the run length codes, it is not difficult to find out that,

starting from the very first codeword; every m codewords in the run length code set
contain exactly the same leading bits. For instance, in Table 2-1(b), when 3m = ,
the first three codewords have the same leading bit “0”, the second three
codewords have the same leading bits “10”, the third three codewords have the
same leading bits “110” and so on. In fact, every codeword in a run length code set
can be expressed as the concatenation of the common leading bits in an m-
codeword group and some binary codes.

21

Let us now investigate this interesting property from another approach by
looking at the case when 1m = . The following table shows the run length code
when 1m = .

n)1(θθ −n Run Length Codes

0 1/2 0
1 1/4 10
2 1/8 110
3 1/16 1110
4 1/32 11110
5 1/64 111110
6 1/128 1111110
7 1/256 11111110
8 1/512 111111110
9 1/1024 1111111110

10 1/2048 11111111110

Table 2-2 The run length code when 1=m

When 1

2
kθ = , the sum of every k-codeword group will have a probability

distribution as shown in Table 2-2. This is easily verifiable since the sum of the
first k probabilities is:

1

0

1(1) 1
2

k
i k

i
θ θ θ

−

=

− = − =∑ (2.3)

And therefore the sum of the j-th group of k probabilities is 1 2 j
For the distribution in Table 2-2, we can see that, every codeword is a unary

code of the integer n plus a “0”. We can simply call it a unary prefix since the bit
“0” exists for every codeword. This unary prefix is exactly the common leading
bits we have talked about. Then it is obvious that for 1

2
mθ = , the run length code

can be expressed as a unary prefix plus a 2log m⎢ ⎥⎣ ⎦ -bit or ⎣ ⎦ 1log2 +m -bit suffix.

2.1.2 The Golomb Rice codes

Until now, in the run length encodings, we have been discussing the

situation when 1
2

mθ = , where m is an integer. Under such conditions, Golomb has

22

proved that the run length codes are optimal for the geometric distribution in
Eq.(2.1). Golomb has indicated that in most cases, θ cannot satisfy this condition,
but run length coding strategy could still be used. Gallager and Van Voorhis [4]
generalized Golomb’s idea to the entire interval when 10 << θ and proved that
optimal code exists for any probability distribution with 10 << θ .

Gallager and Voorhis pointed out that, the run length codes are not only

optimal for 1
2

mθ = , but also optimal for any θ that satisfies:

 1 11m m m mθ θ θ θ+ −+ ≤ ≤ + (2.4)
It is obvious that, for any θ satisfying 10 << θ , there exists a unique m such that
the inequality (2.4) is satisfied. Therefore, Gallager and Voorhis’s result indicates
that for 10 << θ , optimal codes can be constructed using Golomb’s run length
encoding algorithm.

Now let us look at a particular θ such that 10 << θ . From inequality(2.4),

we could find out the corresponding integer m. For this specific θ and m, we
define a discrete source that has 1n m+ + symbols, and has a probability
distribution given by:

(1) , 0

() (1) , .
1

k

k
n

m

k n
P k

n k n m

θ θ

θ θ
θ

⎧ − ≤ ≤
⎪= ⎨ −

< ≤ +⎪ −⎩

 (2.5)

Here n can be any integer. In fact, the last m probability values in such a

discrete source can be considered to be the sum of all probability values in Eq.(2.1)
with k m> . That is:

0

(1) (1) .
1

k
k jm

m
j

θ θ θ θ
θ

∞
+

=

−
= −

− ∑ (2.6)

Now let us consider the optimal coding of this discrete source with

1++ mn symbols. The first 1+n symbols of this discrete source have
probability values that decrease as n increases; similarly, the last m symbols also
have decreasing probability values. Therefore we know that, the (mn +)-th
probability value is smaller or equal to the (1−n)-th probability value:

 1(1) (1) .
1

n m
n

m

θ θ θ θ
θ

+
−−

≤ −
−

 (2.7)

Whereas the (1−+ mn)-th probability value is bigger than the n-th probability
value:

1(1) (1) .

1

n m
n

m

θ θ θ θ
θ

+ −−
> −

−
 (2.8)

23

Eq.(2.7) can be derived from the left hand side of Eq.(2.4), and Eq.(2.8) can

be derived from the right hand side of Eq.(2.4). Thus we can conclude that the
(mn +)-th probability value and the n-th probability value are the two smallest
probability values in the probability sequence. As we know that the Huffman
coding algorithm is initiated by merging the two smallest probability values,
therefore the (mn +)-th symbol and the n-th symbol will be merged first, and the
probability value after merging will be (1) 1n mθ θ θ− − . Now we assign “1” to
the (mn +)-th symbol and “0” to the n-th symbol. The resulting probability
distribution becomes a discrete source in the form of Eq.(2.5), with now n
becomes 1−n . Following the above steps, we can continue our encoding
until 0=n . Finally the discrete source becomes:

1

1
(1)() , 0 1

1

n m

mP k k mθ θ
θ

+ −

−

−
= ≤ ≤ −

−
 (2.9)

Now from Eq.(2.4), we know that in the probability distribution defined by

Eq.(2.9), the sum of the two smallest probability values exceeds the biggest
probability value. Therefore the optimal code for such distribution can vary by only
one bit in length. Then for 2log 12 mk m+⎢ ⎥⎣ ⎦< − in Eq.(2.9), the code length would be

2log m⎢ ⎥⎣ ⎦ , and the rest of code would be of length ⎣ ⎦ 1log2 +m . Now for every
k n≤ , the optimal code could be considered to be the optimal code of k mod m
concatenated with the unary code of k m⎢ ⎥⎣ ⎦ . And as n can be any integer, we can
conclude that this is the optimal encoding for the geometric distribution.

Thereupon, we can summarize the above encoding algorithm as follows.

Express the source integer k of a geometric distribution using a quotient j and
reminder r:
 k mj r= + (2.10)
where m satisfies Eq.(2.4), then the optimal code for the geometric distribution can
be constructed using the unary expression of j plus the Huffman code of r, and the
length of the Huffman code is ⎣ ⎦m2log or ⎣ ⎦ 1log2 +m .

By studying some special but representative cases, Rice [5] proposed one

type of sub-optimal codes for the geometric distribution in Eq.(2.1). This type of
code, which was latterly referred to as the Golomb Rice (GR) code, is highly
structured and has found a variety of applications in many coding systems such as
the coding of Laplacian distributed prediction errors in lossless image coding
algorithms [6].

The special case studied by Rice involved m being a power of 2, i.e. km 2= .

Under this condition, the run length code becomes a unary code for j plus a fixed k-

24

bit length code. The k-bit suffix of the codeword represents one of the reminders in
the interval [0, 12 −k]. For instance, when 2=k , the integer 9 will be coded as
11001. From Gallager and Voorhis’s analysis, it is obvious that the GR codes

works optimally only when 2 1
2

k

θ = and if we are to apply the GR codes for any
10 << θ , it will not always be possible to achieve optimality. However, the GR

codes are able to perform almost optimally for all 10 << θ . Its advantage is its
simplicity of structure which makes it easy to construct and decode.

Table 2-3 gives an example of the GR codes.

n Unary Prefix Suffix Length

0 0 0 2
1 0 1 2
2 10 0 3
3 10 1 3
4 110 0 4
5 110 1 4
6 1110 0 5
7 1110 1 5
8 11110 0 6
9 11110 1 6

10 111110 0 7
11 111110 1 7
12 1111110 0 8
… … … …

Table 2-3 GR code (k=1)

The GR code can also be shown in a code tree format, as Figure 2-1

demonstrates. Figure 2-1 shows a GR code tree with suffix length one, which is an
exact set of unary codes.

25

...
Figure 2-1 GR code (k=1)

2.1.3 The Exponential-Golomb codes

Although it is not possible for the GR codes to achieve optimality in most
cases, they have been shown to be applicable in the coding of geometric
distributions and have been found to be nearly optimal for geometric distributions
and sources associated with the Laplacian distributions. For the GR code, every
code length has exactly k2 codewords. This matches the geometric distribution or
Laplacian distributions reasonably well because the geometric distribution
“decays” at some constant exponential rate. In many real-world coding systems,
however, the probability distributions with higher peaks and heavier tails are
usually found to better fit empirical data models. For instance, the Generalized
Gaussian family with given source parameters, the Cauchy distributions, and so on,
are all shapes with higher peaks and heavier tails. Such distributions and the
sources associated with them no longer have constant “decay” rates, on the other
hand, the “decay” rate of the distribution functions are usually steep for bigger
density values, and flat for smaller density values. Thus to encode such sources, it
is more reasonable to consider codes that have fewer codewords of shorter code
lengths and more codewords of longer code lengths.

Bearing such concerns in mind, Teuhola [7] proposed another type of code,

attempting to provide better matches for these high peak and heavy tail
distributions. The code is called an Exponential-Golomb (EG) code. The EG code,
in contrast to the GR codes, has an exponentially increasing number of codewords
for each code length.

The EG codes could also be viewed as a unary prefix concatenated with a

fixed length suffix, where only the length of the suffix is no longer fixed for all
prefix lengths. In contrast to the GR codes, the EG codes have longer suffix lengths
for longer prefix lengths, shorter suffix lengths for shorter prefixes. Such suffix
structures enable more codewords for longer code lengths. The suffix of the EG
code could be further separated into two parts, one part associated with the unary
prefix where its length is fixed once the prefix length is fixed and the other part is

26

of arbitrary length k. The group of codes that have the same prefix are of the same
code length, so we could group these codes using an index j, where j equals 0, 1, 2,
and so on. For the j-th code group, the prefix length is actually 1j + , the part of
the suffix that is associated with the prefix is one bit shorter than the prefix and
therefore it is j bits; the arbitrary part of the suffix is k bit long. Therefore for an
EG code, the prefix is of 1j + bits, the suffix is of j k+ bits, and each EG code
yields a length of 12 ++ kj bits. Table 2-4 shows the EG code with 0k = .

n EG code Length

0 0 1
1 100 3
2 101 3
3 11000 5
4 11001 5
5 11010 5
6 11011 5
7 1110000 7
8 1110001 7
9 1110010 7

10 1110011 7

11 1110100 7

12 1110101 7

… … …

Table 2-4 EG code with k=0

From Table 2-4, we can see that, the j-th “group” of codes has the same code

length 12 ++ kj , and there are in total kj+2 codewords in the group. It is obvious
that the number of the codewords in the group increases exponentially with the
group number j.

In a similar manner to the GR codes, we can also represent the EG codes by

a code tree.

27

...

Figure 2-2 EG code (k=0)

The EG code is actually a special case of the Elias code [8]. As Teuhola
mentioned, the EG code cannot perform optimally for any distribution, however, it
works reasonably well for almost all exponential distribution, in general, by
carefully selecting the suffix length. Moreover, the construction of the EG codes is
also very simple, which makes it very practical for applications.

28

2.2 THE HYBRID GOLOMB CODE

On the basis of the GR codes and the EG codes, we proposed another type of

code which we called Hybrid Golomb codes in [9]. The HG codes are hybrids of
the GR codes and EG codes, which also perform sub-optimally for exponentially
distributed sources.

From the previous sections we know that for the GR codes with k-bit

suffixes, every code length group has k2 codewords; whereas for the EG codes
with k-bit arbitrary suffixes, every code length has kj+2 (where j is the group
number). Both the GR and EG codes are constructed using a unary prefix and a
fixed length suffix. For the GR codes, with a fixed number of codewords for each
code length group, the codeword length increases linearly as the probability value
decreases; for the EG codes, on the other hand, the codeword length increases
exponentially as the probability value decreases. Such properties of GR and EG
codes make them suitable for application to slightly different sources. As we have
discussed in previous sections, GR codes are more suitable for application in those
sources with a fixed exponential decay rate, and EG codes are more suitable for
sources with higher peaks and heavier tails. However, in many practical
application situations, the sources are usually not fixed but vary under different
situations. For example, in image and video coding, the image and video data may
change significantly due to the nature of the image or video. Therefore, it may be
more practical to design one type of code that generally works in a satisfactory
manner. The HG codes are designed with such concerns in mind.

In constructing the HG codes, we also assign a unary prefix (or a group

number) to each codeword, however the suffix will be a hybrid of the GR suffix
and the EG suffix. For the codewords with lengths 2 j k+ , 1j > , the number of
codewords increases exponentially for the same length, which is 12 1 −−+kj for
codeword group j; however for the codewords with lengths 2 1j k+ + , 2j > , the
number of codewords remain the same as for 12 +k . For the initial two codeword
groups (0=j and 1=j), the number of codewords are kept at k2 . Thus, the code
length integrated the properties of both the GR code and the EG code. Table 2-5
gives a comparison of the three types of codes with 0=k .

29

n GR Length EG Length HG Length

0 0 1 0 1 0 1
1 10 2 100 3 10 2
2 110 3 101 3 1100 4
3 1110 4 11000 5 11010 5
4 11110 5 11001 5 11011 5
5 111110 6 11010 5 111000 6
6 1111110 7 11011 5 111001 6
7 1111110 8 1110000 7 111010 6
8 11111110 9 1110001 7 1110110 7
9 111111110 10 1110010 7 1110111 7

10 1111111110 11 1110011 7 11110000 8
… … … … … … …

Table 2-5 Comparison of GR, EG and HG codes

Again, we can also express the HG codes by a code tree.

...

Figure 2-3 HG code (k=0)

With integrated properties from GR and EG, the HG codes works efficiently
for a wide variety of sources with high peak and heavy tail distributions and the
performances are comparable to both GR and EG codes.

We applied the HG codes to the quantized generalized Gaussian sources

with given source parameters (and /υ δ σ) suitable for use in the modeling of
image and video data. The generalized Gaussian sources are found to provide good
models for image and video data. We will discuss these sources in detail in later
sections. A comparison study is performed for HG codes, GR codes and EG codes.

30

The comparison results in a wide range of source parameters are shown in Figure
2-4 through to Figure 2-8. We see here that the HG codes perform robustly well
for these different sources. Although it is noticeable that the HG codes are more
comparable to the EG codes with k equal to 0, in fact they outperform the EG
codes for the source parameters we studied.

Figure 2-9 shows the efficiency difference between HG codes and EG codes

with k=0 since the performance of these two sets of codes are very close to each
other and both appear to be the most robust codes. The efficiency difference is
calculated as:

(, /) (/) (, /) (/)

()
(, /) (/)

b b

HG EGa a
b

EGa

d d
D

d

η υ δ σ δ σ η υ δ σ δ σ
υ

η υ δ σ δ σ

−
= ∫ ∫

∫
 (2.11)

where ()D υ is the efficiency difference, which is a function of the source
parameter υ , (, /) and (, /)HG EGη υ δ σ η υ δ σ are the efficiencies of the sets of HG
codes and EG codes that are both functions of source parameters and /υ δ σ and
(,)a b is the range of the integration. We see here that the HG codes perform better
than EG codes for the source parameters we have studied.

G R , k= 0

G R , k= 1

G R , k=2

G R , k= 3

E G, k= 0
EG, k= 1

EG, k= 2
EG, k= 3

H G, k= 0

Figure 2-4 Comparison of coding efficiencies of HG, GR and EG codes for

quantized GG sources with 0.1υ =

31

G R , k=0

G R , k=1

G R , k= 2

G R , k=3

EG, k=0

E G, k= 1

EG, k= 2

EG, k= 3

H G, k= 0

Figure 2-5 Comparison of coding efficiencies of HG, GR and EG codes for

quantized GG sources with 0.3υ =

G R , k=0

GR , k= 1

G R , k= 2

G R , k= 3

EG, k= 0

EG, k= 1

EG, k= 2
E G, k= 3

H G, k= 0

Figure 2-6 Comparison of coding efficiencies of HG, GR and EG codes for

quantized GG sources with 0.5υ =

32

G R , k= 0

GR , k= 1

G R , k= 2

GR , k= 3

EG, k= 0

EG, k= 1

EG, k= 2

EG, k= 3

HG, k= 0

Figure 2-7 Comparison of coding efficiencies of HG, GR and EG codes for

quantized GG sources with 0.7υ =

GR , k= 0

G R , k= 1

GR , k= 2

GR , k= 3

E G, k= 0
E G, k= 1

EG, k=2

EG, k= 3

H G, k= 0

Figure 2-8 Comparison of coding efficiencies of HG, GR and EG codes for

quantized GG sources with 0.9υ =

33

Figure 2-9 Efficiency difference between HG codes and EG codes (k=0)

34

2.3 THE CONCEPT OF UPC

2.3.1 General concept

In the previous sections, we have discussed the GR codes, EG codes and HG
codes. These codes are all optimal or nearly optimal codes for sources with high
peaks and heavy tails. We have also seen that, the constructions of these codes all
involve concatenations of unary prefixes and suffixes. Each suffix can be of a
fixed or variable length. It is obvious that these codes are of similar structures. We
therefore give a common name to these codes: the Unary-Prefixed Codes.

By the term Unary-Prefixed Codes (UPC), we mean any code that is

constructed by the concatenation of a unary prefix and a suffix. The suffix can be a
fixed-length code, or can be any form of variable length code. As we will show in
the following sections, the GR, EG and the HG codes are not the only codes which
belong to this category as many different codes could be designed with such a
structure. These differ from the Huffman coding algorithm as all UPCs could be
constructed using a top-down approach, which does not require coding to start
from the least probably source symbols and therefore the UPCs are suitable for
application to sources with infinite alphabets. Moreover, the unary prefixes of
UPCs provide good matches for exponentially shaped distributions (high peak and
heavy tail distributions). Therefore in the coding of infinite sources with geometric
distributions, or sources associated with the Laplacian, generalized Gaussian,
Cauchy distributions etc, applying the UPCs is reasonable and natural.

To fully reveal the reason why the UPCs are efficient and suitable for use

with these high peak and heavy-tailed distributions, some analysis must be
conducted.

2.3.2 The optimality of the unary prefixes

As we have described in the previous sections, each UPC consists of a unary

prefix and a binary suffix. To understand why the UPCs are able to provide a
reasonably efficient compression, we firstly need understand the reason why and
how well the unary prefixes are able to match an infinite discrete probability
distribution. This section will show that, for any infinite discrete source, it is
possible to segment the discrete probability distribution associated with it and that
the result of such segmentation is able to be optimally encoded using unary codes.

Suppose we have a probability distribution 1{ }k kp ∞

= . Let us always assume

that 1{ }k kp ∞
= is a decreasing sequence, which it usually is for any reasonable

35

applications. A segmentation of this probability distribution results in subsets of
probabilities 1{ }k kP ∞

= , where

1 11 2{ , , , }.
k k kk s s sP p p p

− −+ += K

Let us denote the summations of each subset by 1{ }k kS ∞
= , where

1 1

k

k

s
k ii s

S p
−= +

= ∑

No matter how we segment this probability distribution, the result of these
summations 1{ }k kS ∞

= is a new probability distribution, since the summation of all

kS is also one. Now let us perform the segmentation by finding ks in the following
manner:

1) Start with 0k = and 0 0s =
2) For the current k , let

1k

k i
i s

S p
∞

−
= +

= ∑

3) Find 1ks + such that:

1

1

1
2

k

k

s
i

i s k

p
S

+

= + −

−∑

is minimized

4) Let 1k k= + and repeat from step 2).

This iterated process could also be described as the following. Suppose that

we have already obtained the first k segments. In finding the next segment, we first
normalize the set of probabilities that are left:

 1 2
,1 ,2 ,{ , , , }k k ks s s j

k k k k j
k k k

p p p
P p p p

S S S
+ + +

− − −

= = = =L L

Then we find the index j such that the summation from ,1kp to ,k jp will be

closest to1 2 , and we let 1k ks s j+ = + . In another words, each time we are
attempting to achieve a subset of the remaining probabilities, such that the
summation of the probabilities in the subset will be as close to one half of the
remaining total as possible.

It is easy to see that this segmentation process results in a new probability

distribution 1{ }k kS ∞
= that is very close to 1{1 2 }k

k
∞

= . It is obvious that for the

probability distribution 1{1 2 }k
k
∞

= , unary codes are optimal. So now the question is,

36

are the unary codes also optimal for the new probability distribution 1{ }k kS ∞
= ? To

verify this, we have the following lemma and theorem.

Lemma 1: For any infinite source with probability distribution given by

1 2 3{ , , , }Q q q q= K with ()H Q < ∞ , let Q
n kk n

S q∞

=
= ∑ . Unary codes are optimal

for sources that satisfy the following condition:
 2 for any 3Q

n nq S n− > ≥ (2.12)
Proof: It is obvious that, under the above hypothesis, for any truncated

probability distribution
 1 2 1{ , , , , }, 3;Q

n n nQ q q q S n−= ≥K
The Huffman codes are equivalent to the unary codes. Then from the result in [12],
we can conclude that the optimal codes for the probability distribution satisfying
(2.12) converge to unary codes.□

Theorem 1: For the segmentation 1{ }k kP ∞
= of a probability distribution

1{ }k kP p ∞
== with ()H P < ∞ described above, unary codes are optimal for the

probability distribution given by the summations 1{ }k kS S ∞
== .

Proof: Let
1

() logk kk
H S S S∞

=
= −∑ , we will have:

 1 1

1 1 1 1

1

1 21

1 1 2 21

() log

() log

(log log log)

()

k k k

k k k k k k

k kk

s s s kk

s s s s s sk

H S S S

p p p S

p p p p p p

H P

− −

− − − −

∞

=

∞

+ +=

∞
+ + + +=

= −

= − + + +

< − + + +

= < ∞

∑
∑
∑

L

L

As described in the segmentation process, ks is decided by

minimizing 1
(1) 2k kS S− − − . If 1

(1) 2k kS S− − ≥ , we have:

1

2(1) (1) (1)

2(1) (1)

2

jk k

j kk k k

jk

j kk k

k j
j k

SS S
S S S

SS
S S

S S

∞
+

= +− − − − − −

∞

= +− − − −

∞

= +

≥ +

>

>

∑

∑

∑

37

If 1
(1) 2k kS S− − < , we must have 1

1 (1) 2()
kk s kS p S+ − −+ > . Let 1 ,

ksp a b+ = +
such that:

 1

(1) (1)

1 1and
2 2

jj kk

k k

b SS a
S S

∞

= +

− − − −

++
= =

∑

It is clear that a b≤ , for otherwise 1
(1) 2k kS S− − − is not minimized.

Therefore we have:

1(1) (1) (1) (1)

2(1) (1)

2

1 1
2 2

jk

j kk k k k

jk

j kk k

k j
j k

SS a b
S S S S

SS
S S

S S

∞

= +− − − − − − − −

∞

= +− − − −

∞

= +

= − ≥ − =

≥

≥

∑

∑

∑

Hence condition (2.12) is satisfied by 1{ }k kS S ∞
== . Now we can apply

Lemma 1 to S to show that the unary codes are indeed optimal.□

The above theorem shows that, by segmenting a countably infinite discrete

probability distribution into proper probability subsets, it is possible for the
summations of the subsets to be optimally coded by the unary codes. Therefore,
properly assigning the unary prefixes to one probability distribution may lead us
towards an efficient coding. If we are able to achieve an optimal suffix coding for
each prefix group, optimal coding may be achieved. GR, EG and HG codes,
although not grouping the probability distribution exactly as given for the five
steps, actually results in a similar segmentation for the high-peaked and heavy-
tailed distributions. This partially reveals the general reason for the efficiency of
GR, EG and HG codes.

Now we have seen that for any countably infinite discrete distribution, we

are able to assign optimal unary prefixes, the question remaining is how to make
the suffix as efficient as possible?

2.3.3 The Unary-Prefixed Huffman coding algorithm

In this section, we propose a coding algorithm named the “Unary-Prefixed

Huffman Coding” (UPH). The UPH is designed on the basis of the optimal prefix
assignment discussed in the previous sub-section. We will show that the UPH
algorithm guarantees an overall efficient encoding. Also, for geometric
distributions, the UPH code becomes the codes described in [4], and is therefore
optimal.

38

The basic idea of the UPH, is to firstly attempt to segment a probability
distribution 1{ }k kp ∞

= into subsets 1{ }k kP ∞
= ,

1 11 2{ , , , }
k k kk s s sP p p p

− −+ += K , where the

summation of each subset
1

11
{ }k

k

s
k i ki s

S p
−

∞
== +

= ∑ should be as close to 1{1 2 }k
k
∞

= as

possible. The segmentation process is exactly as described in the previous sub-
section. Then within each probability subset kP , a normalization process is applied,
and the Huffman coding is performed. For each codeword within the subset kP , the
UPH code is expressed as the concatenation of a unary prefix for length k and the
corresponding Huffman suffix within kP .

By extending the four-step process described in the previous sub-section, the

UPH algorithm is fully described by the following steps:
1) Start with 0k = , let 0 0s = .
2) For the current value k , let

1k

k i
i s

S p
∞

−
= +

= ∑ (2.13)

3) Find 1ks + such that the difference

1

1

1
2

k

k

s
i

i s k

p
S

+

= + −

−∑ (2.14)

is minimized

4) Let:

1

1

1

1 1 2

1 1 2

1 2
1

1 1 1

{ , , }

ˆ { , , , }

k k k

k k k

k k k

k s s s

k s s s

s s s
k

k k k

P p p p

S p p p

p p p
P

S S S

+

+

+

+ + +

+ + +

+ +
+

+ + +

=

= + + +

=

K

L

K

Note that now 1k̂P + is obtained by normalizing 1kP + into a discrete

probability distribution. Performing a Huffman coding to the distribution given by

1k̂P + ; we obtain 1k ks s+ − Huffman codes. In the future when we refer to the

Huffman codes within 1kP + , we mean those codes obtained from 1k̂P + . For each

39

Huffman code within 1kP + , we attach a unary prefix 111 10
k

L123 (or

equivalently 000 01
k

L14243) to it.

5) Let 1k k= + and repeat from step 2).

Let us take a simple example. Suppose we have an infinite probability

distribution: 3
1{ 1 (3 2)}n

n np ⎡ ⎤ ∞⎢ ⎥
== ⋅ , which looks like:

 1 1 1 1 1 1 1 1 1
6 6 6 12 12 12 24 24 24{ , , , , , , , , , }L (2.15)

where each set of three probabilities can be summed to a value that is a power of
1
2 . Thus we have 1{ 1 2 }k

k kS ∞
== , and 1{ {1 (3 2) ,1 (3 2) ,1 (3 2)}}k k k

k kP ∞
== ⋅ ⋅ ⋅ .

For this example, each kP has three equivalent probability values. Therefore the
Huffman codes within each kP are: {1,00,01} or{0,10,11}. The UPH code is then
a concatenation of a unary code of k and one of the codes within {1,00,01}
or{0,10,11}.

The UPH algorithm is actually performing the encoding in two optimal steps,
it can be proved that the code sets constructed by UPH have average code lengths
upper bounded by () 2H P + .

Theorem 2: The UPH codes have average code lengths upper bounded

by () 2H P + , given that the entropy ()H P is finite.
Proof: Let us look at the result of UPH coding for the first n segmentations.

We have n probability subsets 1 2, , , nP P PL . Let

 1 2
n

nP P P P= ∪ ∪ ∪L

We normalize these n subsets 1 2, , , nP P PL :

1

1 1 2

1 1

1 2
1

1 1 1

1 2
2

2 2 2

1 2

ˆ { , , , }

ˆ { , , , }

ˆ { , , , }n n n

s

s s s

s s s
n

n n n

pp pP
S S S
p p p

P
S S S

p p p
P

S S S
− −

+ +

+ +

=

=

=

K

K

M

L

For each kP ,1 k n≤ ≤ , the partial entropy ()kH P is defined as:

40

1 1

() log
k

k

s

k i i
i s

H P p p
−= +

= − ∑

Then for each k̂P , we have:

()
1

1 1

1

1 1

ˆ log

log log

() log

k

k

k k

k k

s
i i

k
i s k k

s s
i i

i k
i s i sk k

k
k

k

p pH P
S S

p pp S
S S

H P S
S

−

− −

= +

= + = +

= −

= − +

= +

∑

∑ ∑

The UPH performs Huffman coding on every probability segment kP ,
1 k n≤ ≤ . As Huffman coding is optimal and is upper-bounded by entropy+1, for
each normalized probability set k̂P , we have:

 $ ()ˆ() 1 log 1,k
k k k

k

H PL H P S
S

≤ + = + +

where ˆ
kL is the average code length of the Huffman code for each k̂P . For each set

of Huffman codes in k̂P we assign a k-bit prefix, therefore the average code length
of UPH for the truncated probability set P is satisfied by:

1 1 1

()ˆ() (log)
n n n

n k
UPH k k k k k

k k kk

H PL S L k S S k S
S= = =

= + ≤ + + +∑ ∑ ∑

i.e.:

1
{ () (log)} (1)

n
n
UPH k k k n

k

L H P S k S S
=

≤ + + + −∑ (2.16)

From the formula given in Eq.(2.13), we know that the probabilities in nP

are summed as
1

1n
k nk

S S−=
= −∑ . So we can normalize nP as:

 1 2ˆ { , , , }
1 1 1

nsn

n n n

pp pP
S S S− − −

=
− − −

K

We then have:

41

1

1 1

1

ˆ() log
1 1

log log(1)
1 1
() log(1)

1

n

n n

s
n i i

i n n

s s
i i

i n
i in n

n
k

n
k n

p pH P
S S

p pp S
S S

H P S
S

= − −

−
= =− −

−
= −

= −
− −

= − − −
− −

= + −
−

∑

∑ ∑

∑

Hence:

1

ˆ() (1){ () log(1)}
n

n
k n n

k

H P S H P S− −
=

= − − −∑

Now we can rewrite the inequality (2.16) as:

1

ˆ(1){ () log(1) 1} (log)
n

n n
UPH n n k k

k
L S H P S S k S− −

=

≤ − − − + + +∑ (2.17)

As n → ∞ , 0nS− → , ˆ() ()nH P H P→ , and n
UPH UPHL L→ , the average

code length of UPH. It should also be recalled that ()H S denotes the entropy of
the source 1{ }k kS ∞

= , therefore as n → ∞ , the inequality (2.17) becomes:

1

1

() 1 (log)

() 1 { ()}

() 2

UPH k k
k

k
k

L H P S k S

H P kS H S

H P

∞

=

∞

=

≤ + + +

= + + −

≤ +

∑

∑

 The last inequality is attempted because the unary codes are optimal for

1{ }k kS ∞
= and ()H S < ∞ . Therefore, when ()H P < ∞ , the average code length of

the UPH is bounded by () 2H P + . The theorem is proved.□

Here we see that when we concatenate a unary code and a Huffman code, no

matter to what source our codes are applied, the coding efficiency will never fall
below () 2H P + . It can be shown that, for geometric distribution, the UPH codes
will become the codes proposed by Gallager and Voorhis [4], which are optimal.

Theorem 3: For the geometric distribution, the code set resulting from the

UPH algorithm is equivalent to Gallager’s code set in [4], which is optimal for
geometric distributions.

Proof: Let us first recall that in [4], Gallager and Voorhis showed that, the
run length codes are optimal for any geometric distribution with parameter θ that
satisfies:
 1 11m m m mθ θ θ θ+ −+ ≤ ≤ + (2.18)

42

It is obvious that, for any θ which satisfies 10 << θ , there exists a unique
m such that the inequality is satisfied. Therefore, their result indicates that for

10 << θ , optimal codes can be constructed using Golomb’s run length encoding
algorithm.

Now to prove this theorem, we only need to show that for all k ,

1k ks s m+ − = , where m is the integer satisfying the inequality (2.18). Since for
every probability segment, both the proposed algorithm and Gallager’s algorithm
perform a Huffman coding on the segment. Hence if the segmentations of the two
codes are the same, the two code sets are equivalent.

For consistency, let us shift the index of geometric distributions by 1,

namely, let 1
1{ (1)}i

i ip θ θ− ∞
== − be our geometric distribution with parameterθ .

For 0 k≤ < ∞ , we have:

1 1

1
k

k

k

s
s

k i i
i s i

S p p θ
∞

−
= + =

= = − =∑ ∑ (2.19)

and hence:

1 2 3 4

2 3

1

{ , , , , }

{(1), (1) , (1) , (1) , }
{ }

k k k k

k k k k

s s s s
k s s s s

k k

p p p p
P

p

θ θ θ θ
θ θ θ θ θ θ θ

+ + + +

∞
=

=

= − − − −

=

L

L

This means that we have exactly the same pattern of data to work with for
each of the iterations. Hence it is sufficient to study the case 0k = , and
show 1s m= . Now let 0k = , from formula(2.14), we must have:

1 1

1 1

1
1

1 1

1 1 1 1(1) (1)
2 2 2 2

s s
s s

i i
i i

p pθ θ
−

−

= =

− − = − ≤ − = − −∑ ∑ (2.20)

and

1 1

1 1

1
1

1 1

1 1 1 1(1) (1)
2 2 2 2

s s
s s

i i
i i

p pθ θ
+

+

= =

− − = − ≤ − = − −∑ ∑ (2.21)

From(2.20), we have:

1 1

1 1 1 1

1 1

12 21 1
2 2

1 2 2 2

2

() ()

1 1 1(1) (1)(1)

s s

s s s s

s s

θ θ

θ θ θ θ

θ θ
θ θ θ

−

− −

− ≤ −

− ≤ −

− ≤ − +

43

As 0 1θ< < , then 1 111 s sθ θ−≤ + . Similarly, from (2.21) we find
that 1 1 1 1s sθ θ ++ ≤ . Now there is a unique integer m satisfying the condition(2.18),
thus 1s m= . □

Until now, we have shown that the UPH algorithm is able to perform a two-

step optimal encoding locally for any countably infinite discrete source. Although
local optimality does not necessarily lead to global optimality, the UPH codes are
able to achieve high efficiency despite source variations. In particular, the UPH
codes could reach optimality for geometric distributions.

2.3.4 Modifying the UPH codes into codes with simpler structures

In the previous sub-section, we have seen that the construction of UPH codes

could be summarized in two steps. The first involves dividing the probability
distribution into subsets that could be optimally coded using a set of unary codes,
and then secondly a Huffman coding is performed on each of these subsets. It is
obvious that, unlike the GR, EG and HG codes, which all have code structures in
closed forms, to construct the UPH codes requires a great deal of computation.

To simplify the UPH codes, we could relax the second step and use a set of
pseudo-fixed length codes as suffixes for each unary prefix. By compromising the
optimality of Huffman codes in the second step, we are able to greatly simplify the
encoding procedure and still keep the optimality achieved from the first step. In the
second coding step, we replace the Huffman coding by the pseudo-fixed length
codes, which are constructed using the Huffman algorithm and by assuming that
the probabilities in the probability subsets are equal. It is obvious that this is not
true in most cases; however, since the Huffman codes for equal probability values
are almost fixed length codes, this will result in a much simpler code structure.

The modified UPH algorithm could be described using similar steps as the

UPH, by merely modifying the fourth step:
1) Start with 0k = , let 0 0.s =
2) For the current value k , let

1k

k i
i s

S p
∞

−
= +

= ∑

3) Find 1ks + such that the difference

1

1

1
2

k

k

s
i

i s k

p
S

+

= + −

−∑

is minimized

44

4) Let:

1

1

1 1 2

1 1 2

{ , , }
k k k

k k k

k s s s

k s s s

P p p p

S p p p
+

+

+ + +

+ + +

=

= + + +

K

L

For the probability set 1kP + , there are 1k k kn s s+= − probability values. We
assume that these kn probabilities are equal to each other and then perform
Huffman coding. The resulting codes will be binary codes either of length

2log kn⎢ ⎥⎣ ⎦ or 2log 1kn +⎢ ⎥⎣ ⎦ . We then attach a common unary prefix of length 1k +
to all these binary codes to complete the encoding of this segment.

5) Let 1k k= + and repeat from step 2).

In this modified UPH code, the suffix length differs by at most one bit, thus
it is called the pseudo fixed length codes. While performing Huffman codes for kn
equal probabilities values, we only need assign fixed length codes with length

2log kn⎢ ⎥⎣ ⎦ to the first 2log 12 kn
kn+⎢ ⎥⎣ ⎦ − probability values and fixed length codes with

length 2log 1kn +⎢ ⎥⎣ ⎦ to the remainder of the probability values, as previously
mentioned. No actual Huffman encoding algorithm is required. Thus the coding
process could be greatly simplified.

The proof for Theorem 3 will also show that, for geometric distributions, the

modified UPH codes also becomes the optimal codes proposed by Gallager in [4].
The modified UPH coding process is exactly the same as that of Gallager’s codes
within each segment, while the segmentation of the modified UPH is the same as
the original UPH algorithm.

45

2.4 THE APPLICATIONS OF THE UPCS

In the previous section, we introduced the UPCs. We have seen that, the

UPCs are actually one type of general methods of coding. It generalizes the GR,
EG and HG codes into a much wider concept. Moreover, by extending this concept,
we are able to find a more general algorithm – the UPH algorithm. The UPH has
been proven to be efficient in coding the countably infinite discrete sources. With
proper modification of the UPH algorithm, we are also able to simplify the code
construction. However, as has been mentioned previously, the UPCs are designed
for sources with high peaks and heavy tails. Although we have found an upper
bound of the coding efficiency for the UPH codes, this upper bound is not strong
enough for us to conclude that the UPH algorithm is indeed always efficient for
any infinite source. Now the focus shifts to the high-peaked, heavy-tailed
distributions that are commonly seen in image/video coding systems in order to
show that the UPCs in general provide good compression for such distributions.

In this section, the UPCs including the GR, EG, HG and the UPH codes are

all applied to the quantized Generalized Gaussian (GG) distributions and
comparisons of their coding efficiencies are made.

The GG probability density function (GG pdf) can be expressed using the
following expression and parameters.
 1 2() exp()xf x c c x υ= − (2.22)

where,

 []
1 2

1 2
(,) 1 (3), (,) , and (,)

2 (1) (1)
c c υυη σ υ υη σ υ η σ υ

υ σ υ
⎡ ⎤Γ

= = = ⎢ ⎥Γ Γ⎣ ⎦
 (2.23)

In Eq.(2.23), Γ is the gamma function.

The GG pdf is a function of υ and σ . Parameter υ is called the “shape

parameter”, and σ is the standard deviation. When 1υ = , the generalized GG
becomes a Laplacian distribution; when 2υ = , the pdf becomes a Gaussian
distribution and as υ → ∞ , the distribution becomes a uniform distribution. Here
we see that, the GG family includes a large variety of distributions when the shape
parameter varies. All, however, have high peaks and heavy tails. For 1υ > , the
distribution “decays” more rapidly and thus has a thinner tail. For 1υ = , the
distribution “decays” at a constant exponential rate, and for 0 1υ< < , the
distribution “decays” more slowly and thus has a thicker, or heavier tail.

46

Figure 2-10 Scalar quantization of the GG pdf

The GG distributions are continuous distributions; therefore to map the GG

pdf into a practical integer source, it is necessary to apply quantization methods.
Different quantization methods have been developed in associating a continuous
pdf to a discrete source [10] [11]. In this thesis, we use a uniform scalar quantizer
with a deadzone at the origin as shown in Figure 2-10 [12]. The quantization step
size is δ and the width of the deadzone at the origin is (1) , 0α δ α+ ≥ . Such
uniform scalar quantizers with a deadzone are common in many coding systems.
As also shown in Figure 2-11, there are three different types of mappings following
the quantization results: positive, non-negative, and two-sided non-zero discrete
sources, which provide appropriate matches for different sources. For instance, “in
many wavelet, JPEG, and MPEG image and video coding applications,
transformed, scalar quantized image data is raster scanned to generate a description
using pairs of the form (RUN, LEVEL) where “run” is the number of zero-valued
coefficients encountered before the next significant coefficient, and “level” is the
magnitude and sign of the integer representing the significant coefficient. The run
values are restricted to the non-negative integers, or, if runs of zero are not encoded,
to the positive integers. The “levels”, on the other hand, are two-sided, nonzero
integers [12]. While studying the theoretical properties of the UPCs, in this thesis,
we use the positive mapping. It is obvious that no generality is lost.

A quantized GG source is specified by the shape parameter υ , the

normalized quantizer step sizeδ σ , the deadzone parameter α and the mapping.

From Figure 2-10, and Eq.(2.22), we formalize the quantization to be:

… …

(1+α)δ

δ

δ

δ

δ
0

+1

+2

+3

-1

-2

-3

ABS

ABS

Discard 0

Discard 0 {1,2 ,3,…}

{0,1,2,3…}

47

(2 1)

2
1 2(2 1)

2

2() exp() , 1, 2,3,
1 (0)

k

k
P k c c x dx k

P

δα υ
δα

+ +

− +
= − =

− ∫ K (2.24)

And:

(1) 2

1 20
(0) 2 exp()P c c x dx

α δ υ+
= −∫ (2.25)

The quantized GG sources have been shown to be able to provide efficient

and accurate models for many different types of image and video data. For instance,
recent works in subband image coding have resulted in the high-peaked, heavy-
tailed distributions such as GG and some others previously mentioned in [10] [11]
[13] [14]. It was pointed out that wavelet transformed image data can be modelled
using GG sources with a shape parameter within the range 0 1υ< < . When 1υ = ,
we know that the GG pdf becomes Laplacian, which has been shown to provide
good models for many image video systems, such as in the modelling of the
prediction errors in lossless image coding algorithms. Therefore, in this thesis we
will focus on the study of GG sources with the shape parameter within the
interval (]0,1 .

When 1υ = , the GG pdf becomes Laplacian, the quantization, then becomes:

(2 3)
2

1 2(2 1)
2

2
(2 1)

2
1 2(2 1)

2

exp()
(1) exp()

() exp()

k

k

k

k

c c x dx
P k c

P k c c x dx

δα υ
δα

δα υ
δα

δ

+ +

+ +

+ +

− +

−
+

= = −
−

∫

∫
 (2.26)

Here)exp(2δc− is a constant that is smaller than 1 but larger than 0 and

we can see that after the quantization, the GG pdf becomes a geometric distribution
with 2exp()cθ δ= − . We have shown and proved in the previous section that, the
codes by Gallager in [4], UPH codes, and the modified UPH codes are all optimal
in the coding of geometrically distributed discrete sources, therefore, for the
quantized GG source with 1υ = , optimal coding could be achieved.

Now let us look, in a similar manner, at the GG pdf with 0 1υ< < . Firstly

we simplify the expression in Eq.(2.24) as:

 0 1 2() exp() , 1,2,3,......k

k

a

a
P k c c c x dx k

δ υ+
= − =∫ (2.27)

where (2 1) 2ka k α δ= − + . Then, we have:

48

0 1 2 2

2 2

0 1 2 2

2

2

exp() exp()()
(1) exp() exp()

exp()

exp(())

k k

k k

k k

k k

k

k

k

k

a a

a a
k a a

a a

a

a
a

a

c c c x dx c x dxP kR
P k c c c x dx c x dx

c x dx

c x dx

δ δυ υ

δ δυ υ

δ δ

δ υ

δ υδ

+ +

+ +

+ +

+

+

− −
= = =

+ − −

−
=

− +

∫ ∫
∫ ∫

∫
∫

 (2.28)

It can be shown that 1exp()kR aυυ δ −< ⋅ ⋅ . Therefore for 0 1υ< < , the

probability values in the quantized GG source decrease at a higher rate for
probability values near zero, and decrease at a lower rate when the probability
value is far from zero. Consequently, this results in a quantized GG source with
higher peaks and heavier tails.

We would like to apply the different types of UPCs to the quantized GG
sources with a shape parameter in the range (0,1] and compare their performances.
It must be noted, however, that the quantized GG sources have finite entropy,
according to the following theorem:

Theorem 4: Let 1{ ()}kP P k ∞

== be the quantized GG source, then
()H P < ∞ .

Note that according to this theorem, the finite entropy hypothesis is satisfied

by the quantized GG source; hence we can directly apply our previous theoretical
results concerning the code efficiency to this source. We will return to this at a
later stage.

Proof: We want to show that

1

() () log ()
k

H P P k P k
∞

=

= − < ∞∑ (2.29)

where ()P k is defined as in Eq.(2.27).

It is easy to check that multiplying ()P k by a constant will not change the

finiteness of ()H P , thus it can be assumed that 0 1c = . As 2exp()c xυ− is a
decreasing function, we have:
 2 2() ()k kc ce P k e

υ υα δ αδ δ− + −< < (2.30)

Let 1{ () }k kQ q P k δ ∞
== = , then

49

1

1 1 1() log () logk k
k

H Q q q H P
δ δ δ

∞

=

= − = +∑ (2.31)

It is obvious that if ()H Q is finite, then ()H P must be finite. Now
since (2 1) 2ka k α δ= − + , we can find fixed integers ,n m , such that:
 1() () .k k kk n a a a k mδ δ δ+− < < = + < + (2.32)

We then have:
 2 [()] ()0 log [()] ()c k n D k n

k kq q k m e C k m e
υ υδυ υδ − − − −< − < + = + (2.33)

where ,C D are constants. However, it is a simple matter to check that the
infinite series
 ()

1 1
() andD k n Dk

k k
k m e k e

υ υυ υ∞ ∞− − −
= =

+∑ ∑

 has the same convergence. Hence to prove the theorem, it suffices to show that

1
Dk

k
k e

υυ∞ −
=∑ is a convergent series.

Now since the function Dxx e

υυ − is eventually decreasing, we can use the
integral test for this infinite series. We obtain:

1 1 1

1() .
D

Dx Dx Dxx ex e dx d e e dx
D D D

υ υ υυ

υ υ υ

−∞ ∞ ∞− − −−
= = + < ∞∫ ∫ ∫ (2.34)

The last term is finite because Dxe
υ− is essentially a probability density function.

Hence it has been shown that
1

Dk
k

k e
υυ∞ −

=∑ is convergent.□

Now we are ready to apply the UPCs to the quantized GG sources. In

comparing the performances of the several types of UPCs, we used the coding
efficiency defined as:

av

h
L

η = (2.35)

Where h is the entropy of the quantized GG sources:

 2
1

() log ()
k

h P k P k
∞

=

= −∑ (2.36)

And the average code length is:

1

() ()av
k

L P k l k
∞

=

= ∑ (2.37)

The comparison results are given in Figures 2-11, 2-12, 2-13, 2-14, 2-15, and
2-16. For each υ , the standardized stepsize δ σ is chosen within the range
[2 010 ,10], which is adequate for modelling image and video data [12].

50

Figure 2-11 shows the performances of the UPCs for quantized GG source
with 0.1υ = . Here, it can be seen that the EG code with 0k = , HG codes and the
UPH codes, all perform very efficiently for these sources. The GR codes and EG
codes with larger k values are comparatively inefficient. The UPH codes, in this
case, achieve coding efficiencies very close to the entropy and are obviously
superior to the remaining codes.

Figure 2-12 and 2-13 show the performances of the UPCs for quantized GG

source with 0.3υ = and 0.5υ = . The comparison results are similar to those in
Figure 2-11. However, the GR codes are more efficient, when comparing the larger
shape parameters. The UPH codes still show comparatively better performances for
these quantized GG sources.

Figure 2-14 and 2-15 shows the performances of the UPCs for quantized GG

source with 0.7υ = and 0.9υ = . Here it can be seen that, as opposed to the
sources with smaller shape parameters, for these quantized GG sources, the GR
codes take over. In the figures, we see that GR codes produce efficiency peaks that
are much higher than those for EG and HG codes. This is because the “decay” rate
becomes constant. However, the UPH codes, as we expected, still outperform all
other type of UPCs. In the figures, we also see that, for the quantized GG sources
with increased δ σ values, all UPCs appear to have lower coding efficiency.

Figure 2-16 shows the performances of the UPCs for quantized GG source

with 1.0υ = . Now the quantized GG become geometric distributions, and as has
been proven, the UPH codes now become the optimal codes. GR codes are now
simply special cases of the UPH codes. Therefore, the efficiency curve of the UPH
code becomes the envelope for those of the GR codes. Between the efficiency
peaks of the GR codes, the UPH codes are able to provide constant coding
efficiency.

51

Figure 2-11 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 0.1υ =

Figure 2-12 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 0.3υ =

52

Figure 2-13 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 0.5υ =

Figure 2-14 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 0.7υ =

53

Figure 2-15 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 0.9υ =

Figure 2-16 Comparison of coding efficiencies of different UPCs for quantized GG

sources with 1.0υ =

54

We can also see from these figures that the UPH codes perform exactly as
the GR, EG codes for some υ and δ σ . This means that, for some source
parameters, the GR and EG codes are actually special cases of the UPH codes,
whereas, because of the flexibility of the UPH algorithm, the UPH codes are able
to achieve better matches to the GG sources and thus perform consistently well for
all source parameters.

From these results, we see that these different types of UPCs are all highly

efficient in coding the high-peaked and heavy-tailed distributions such as the
quantized GG. Due to the unary prefixes, the UPCs are able to match the
exponential decrease of the distribution reasonably well and hence are in general
efficient.

The GR, EG and HG codes are highly structured and thus simple in
construction. However, they do suffer from compromised performances for some
source parameters. The UPH codes, on the other hand, are robust in performance.
The UPH codes, however, are unable to provide a closed form code structure and
are therefore more difficult to build.

In section 2.3.4, we introduced the modified UPH codes. The modified UPH

codes, with only one optimization step, cannot provide an improvement on the
coding efficiency of the UPH codes. The modified UPH codes, by applying the
pseudo fixed length codes for each unary prefix, yield similar code structures to
those of the GR codes and the codes in [4] for many circumstances. However, the
modified UPH codes are still able to provide better coding efficiency when
compared to the GR and, in particular, the EG codes.

It has been proved that there does not exist discrete sources that could be
optimally coded using the EG codes. However, the authors in [15] designed a class
of pdfs that are well matched to the EG codes and they also showed that these pdfs
are good probability models for empirically observed integer sources, such as in
the coding of the quantised subband of wavelet-transformed images [4]. These
integer sources can be expressed using the discrete pdf:

 21() () , 1, 2,3,
'()

P k k kα α
ψ α

−= + = KK (2.38)

where 0α > , 'ψ is the first derivative of the digamma function
() '() ()y y yψ = Γ Γ , and ()yΓ is the Euler gamma function.

A random variable, whose probability distribution is given by Eq.(2.38) .,
has infinite mean and entropy and thus, in relation to the performances of the EG
codes and the modified UPH codes, we compare the estimated coding redundancies
of these two different of UPCs.

Figure 2-17 shows a comparison of the estimated redundancies of the

modified UPH codes and the EG codes with different k values in coding the pdfs
in Eq.(2.38) for a wide range of different α values. From the figure, it is obvious

55

that the modified UPH codes are better, with reference to compression, when
compared to the EG codes. Moreover, since the UPE algorithm works more
adaptively according to different pdfs with different parameters than do the EG
codes, it is unnecessary to make selections of k to achieve a better performance,
which is the case for the EG codes.

Figure 2-17 Comparison of the redundancies of the EG codes and the modified

UPH codes

56

2.5 THE WEAK LOWER BOUND OF THE UPH CODES

In section 2.3.3 we have shown that the coding efficiency of the UPH code is

lower bounded by entropy + 2. In the last section of this chapter, we want to
demonstrate that this bound is fairly weak given the outstanding performances of
the UPH codes. This is particularly true for the high-peaked, heavy-tailed sources
studied in this thesis.

Here in this section, we still use the quantized GG sources with shape

parameter in the range (0,1] and δ σ is chosen within the range [2 010 ,10−].
Figures 2-18, 2-19, 2-20, 2-21, 2-22 and 2-23 show the coding efficiency of the
UPH codes and the corresponding lower bound for quantized GG sources with
different shape parameters. It can be seen that it is possible for the lower bound to
be as low as 40% or even worse, when the coding efficiency of the UPH codes is
still near the entropy. This shows the weakness of the lower bound when we are
studying such high-peaked, heavy-tailed sources. It seems that one could develop
still better bounds and this is an obvious extension area for the work in this thesis.

Figure 2-18 Lower bound of UPH code for quantized GG with shape parameter 0.1

57

Figure 2-19 Lower bound of UPH code for quantized GG with shape parameter 0.3

Figure 2-20 Lower bound of UPH code for quantized GG with shape parameter 0.5

58

Figure 2-21 Lower bound of UPH code for quantized GG with shape parameter 0.7

Figure 2-22 Lower bound of UPH code for quantized GG with shape parameter 0.9

59

Figure 2-23 Lower bound of UPH code for quantized GG with shape parameter 1.0

60

3 ALTERNATING CODING

In this chapter, we introduce a coding method called “Alternating Coding”
(ALT). The ALT is built for the UPCs and on the basis of the UPCs. The UPCs are
variable length codes (VLC). In the encoding and decoding procedures, the UPCs
are usually treated the same as any other type of VLCs. The VLCs in general, are
difficult to decode because of their variable lengths. However, we have seen in the
previous chapter that, the UPCs have specific structures and, in taking advantages
of these, it may assist in relaxing the constraints of the decoding procedure and
thus be beneficial. The ALT coding method is thus designed with such concerns in
mind. The ALT, by extracting the unary properties of the prefixes of the UPCs,
provides a different approach to the encoding and decoding and thus enables a
simpler means of decoding as well as a possible mechanism for error resiliency. In
this chapter, we introduce the ALT coding method and discuss its applications.

3.1 THE ALT CODING IN GENERAL

From the previous chapter, we have seen that, a UPC consists of a unary

prefix and a variable length suffix. Any UPC code, no matter whether it is GR, EG,
HG, UPH or modified UPH, is in such a form. Although the code lengths of UPCs
vary, the unary prefixes provide a natural grouping of the codes and thus each
unary prefix conveys certain information about the codes. For instance, for GR
codes with suffix length equal to three, every prefix group includes exactly 8
codewords. Therefore, when a codeword is given, by checking the unary prefix,
we will be able to locate the codeword within only 8 codes. The ALT coding, then,
attempts to extract such information, which is conveyed by the unary prefixes. The
basic concept of the ALT coding is to code the unary part of the UPC and the
variable length part of the UPC separately. Such separation should provide
convenience in the extraction of the information in the unary prefixes. However on
the other hand, such separation should not break the dependencies of the prefixes
and the suffixes; neither should it complicate the encoding and decoding to any
extent. The ALT, does indeed attempt to take care of all these aspects.

Now let us look at how ALT actually works. By applying the ALT coding,

a UPC sequence is split into two sub-sequences: a unary prefix sub-sequence and a
variable length suffix sub-sequence as illustrated in Figure 3-1. The unary prefix
sub-sequence contains only the prefixes, and the variable length suffix sub-
sequence contains only the variable length suffixes. The order of the codewords is
kept intact. Now in the unary prefix sub-sequence, the prefixes are easily separated
by extracting the zeros. For instance, if we have a sequence of GR codes with
suffix length k equal to 2, the prefix sub-sequence may appear as follows:
 {10,110,111110, 0,111110,110,10, 0, 0,11110}.

61

We know that every prefix is of the form {11....10
n

, where n can be 0,1,2,3,

etc. Therefore each zero in the prefix indicates the last bit of one prefix. Such
information makes it is easy to decode the unary prefixes. The unary prefixes, as
we have seen, relate to the suffixes of the UPCs in particular ways and once the
unary prefixes have been successfully separated, it is possible to use such relations
between the prefix and the suffix of each UPC to direct us to further separations of
the suffixes. Once the prefixes and the suffixes are both successfully separated,
complete UPCs are then successfully separated. In general, the unary prefixes
provide an index to a group of suffixes, which naturally provides a more rapid
location of the UPCs. However, different UPCs have different prefix-suffix
relations, therefore the ALT coding must be modified slightly to adapt to these
differences. This is particularly true for the highly structured UPCs such as the GR
codes and the EG codes, where the prefix-suffix relation is very special and
therefore enables great freedom in the simplification of the decoding. Moreover,
for these highly structured codes, we are able to implement a comparatively more
efficient error handling mechanism.

By separating the prefixes and suffixes, we have two separate sequences,

prefix sub-sequence and suffix sub-sequence instead of one. We have shown that
in the prefix sub-sequence, the direct concatenation of the unary prefixes already
offers us simple prefix boundary detection. However, we would like to change
such direct concatenation into a different, yet equivalent form. The reason for this
will become clear in subsequent discussions. We will show that such modification
in the prefix sub-sequence allows for the possibility for equipping the error
handling mechanism. Instead of the direct concatenation, we change the unary
prefixes in the prefix sub-sequence into two sets of codes, one set containing all-
one codes and the other all the zero codes. The unary prefixes in the unary prefix
sub-sequence are then coded in an alternating manner using the all-one codes and
all-zero codes. As the prefix is a unary code, the code length uniquely identifies
the unary prefix itself and thus we can use any code with the same length to
represent the unary codes. By alternating the all-zero and all-one codes, the
codeword boundaries are indicated by changes from one to zero or zero to one.
Thus the code boundary detection is still as simple as in the original form.

Let us look at a simple example of alternating the coding of the unary

prefixes using the all-one codes and all-zero codes. This example is illustrated by
the GR codes. Table 3-1 gives the code table of the GR code with suffix of length
2.

62

n GR Unary
prefix

Prefix
Length

All-one/All-
zero codes

Suffix Suffix
Length

0 000 0 1 1/0 00 2
1 001 0 1 1/0 01 2
2 010 0 1 1/0 10 2
3 011 0 1 1/0 11 2
4 1000 10 2 11/00 00 2
5 1001 10 2 11/00 01 2
6 1010 10 2 11/00 10 2
7 1011 10 2 11/00 11 2
8 11000 110 3 111/000 00 2
9 11001 110 3 111/000 01 2

10 11010 110 3 111/000 10 2

11 11011 110 3 111/000 11 2
12 111000 1110 4 1111/0000 00 2
13 111001 1110 4 1111/0000 01 2
14 111010 1110 4 1111/0000 10 2
15 111011 1110 4 1111/0000 11 2
… … … … … … …

Table 3-1 GR code with suffix length 2

Suppose we are to code an integer sequence consisting of 11 integers {5, 6,
3, 1, 0, 1, 2, 0, 11, 0, 15} using the GR codes, then we obtain a GR sequence:

{1001, 1010, 011, 001, 000, 001, 001, 000, 11011, 000, 111011}.
For this GR sequence, the unary prefixes are:

{10, 10, 0, 0, 0, 0, 0, 0, 110, 0, 1110}.
Now, by alternating the all-zero codes and the all-one codes from the unary

prefixes it forms the unary prefix sub-sequence:
{11, 00, 1, 0, 1, 0, 1, 0, 111, 0, 1111}.

For the suffixes, no modification is applied, and they are simply

concatenated to form a suffix sub-sequence. Then these two sub-sequences are
concatenated to form an ALT packet and the decoding of an ALT coded UPC
sequence is based on this entire ALT packet.

63

By using this GR code example and, as has been previously mentioned, the
suffixes for the GR codes are fixed length codes, thus in this case, the “variable
length” suffixes are merely a set of 2-bit codes {01, 10, 11, 01, 00, 01, 01, 00, 11,
00, 11}. For the ALT coding, these suffixes are kept intact and concatenated to the
prefix sub-sequence. Therefore the ALT packet of this GR code example becomes:

{11, 00, 1, 0, 1, 0, 1, 0, 111, 0, 1111, 01, 10, 11, 01, 00, 01, 01, 00, 11, 00, 11}.
In this example the prefix sub-sequence is underlined.

 As is indicated by the name “Alternating Coding”, the key part of this

coding method relies on the separation of the two sub-sequences and the alternating
coded prefix sub-sequence.

3.1.1 The ALT encoding

From the simple example above, we have seen how a UPC sequence is

separated into two sub-sequences to form an ALT packet. The example uses the
GR code set and the encoding is performed by simply concatenating the two sub-
sequences. However, this varies for different types of GR codes. In this section we
describe how an ALT packet is completely encoded from any UPC sequence
packet and indicate the differences for different types of UPCs.

Before discussing the ALT encoding, the UPCs must be separated into two

categories. For some UPC codes, the suffixes are of variable length, such as the
HG codes, the UPH codes and the modified UPH codes. For others, the suffixes
are of fixed length or the suffix lengths are fixed for each prefix, such as in the GR
codes and the EG codes. The encoding of a UPC sequence is slightly different for
these two types of UPCs.

For UPCs with fixed suffix lengths, the code length information is entirely

conveyed by the unary prefixes. However, “fixed suffix length”, does not
necessarily mean that the suffix must be of fixed length, but means that the suffix
contains completely redundant information regarding the code length. For instance,
the length of a GR code is the length of the unary prefix plus the k-bit suffix. Here
the suffix length is indeed fixed. But the suffix length of an EG code is not fixed,
yet by knowing either the suffix or prefix, the code length is known. Suppose the
prefix length is j, the fixed part of the suffix is k, and then the code length
is 2 1j k+ − . Therefore although the suffix length varies, we are able to figure out
the length of the entire UPC codeword without knowing the length of the suffix
given that we have the prefix.

It is possible to illustrate the encoding of a UPC sequence with fixed length
suffixes by Figure 3-1. This figure shows a UPC sequence enclosed by two
synchronization markers. The synchronization markers are commonly found in the
coding of VLCs. The synchronization markers are used to resynchronize the

64

decoding at intervals where there are concerns about errors. The encoding is
simply separating the prefix and suffix of each code, collecting the prefixes and
suffixes to form a prefix sub-sequence and a suffix sub-sequence, respectively. The
prefix sub-sequence is then placed in front of the suffix sub-sequence and the
synchronization markers are kept intact. Some ALT packet information may need
to be added to the encoded ALT packet, indicating how many codewords there are
in the entire packet, which is very important if parallelization and error resiliency
are required in the decoding procedure. In many real cases where UPCs are
applied, such information is already included in the header, therefore it is only
necessary to resort the prefixes and suffixes.

Sync Sync

Sync Sync

Unary prefixes coded using
all-one and all-zero codes

Fixed length suffixes

UPC sequence

THE ALT CODING

Packet
info

Figure 3-1 The ALT coding for fixed-length-suffix UPCs

Figure 3-2 shows the GR code example from the previous section. The

prefixes are underlined. For the GR codes, the suffixes are completely fixed length
codes, so only the prefix sub-sequence is a variable length sequence.

Sync Sync1001 1010

Sync Sync0001 10 11 01 01 01

Fixed length suffixes

Packet
info

011 001 000 001 001 000 11011 000 111011

11 00 1 0 1 0 1 0 0111 1111 00 11 00 11

Unary prefixes coded using
all-one and all-zero codes

Original GR code sequence

Figure 3-2 The GR code example

65

For the EG codes, the suffix length varies with the prefix. So both the prefix
and the suffix sub-sequences are variable length codes. Table 3-2 shows a set of
EG codes.

n EG Unary
prefix

Prefix
Length

Suffix Suffix
Length

0 0 0 1 - 0
1 100 10 2 0 1
2 101 10 2 1 1
3 11000 110 3 00 2
4 11001 110 3 01 2
5 11010 110 3 10 2
6 11011 110 3 11 2
7 1110000 1110 4 000 3
8 1110001 1110 4 001 3
9 1110010 1110 4 010 3

10 1110011 1110 4 011 3
11 1110100 1110 4 100 3
12 1110101 1110 4 101 3
13 1110110 1110 4 110 3
14 1110111 1110 4 111 3
… … … … … …

Table 3-2 EG code with parameter k=0

It is again obvious from this table that although the suffix length of the EG
codes are not exactly fixed; it is linearly related to the length of the prefixes.
Therefore the suffix length could still be deemed to be fixed.

Figure 3-3 shows the EG code example using the code table above. The

prefixes are underlined.

66

Sync Sync101 11000

Sync Sync10 110

Variable length suffixes

Packet
info

0 0 11010 1110110 0 11011 0 0

11 000 1 0 111 0000 1 000 0

Unary prefixes coded using
all-one and all-zero codes

Original HG code sequence

1 001 11

 Figure 3-3 The EG code example

We see that the resulting ALT packet for this example is:
{11, 000, 1, 0, 111, 0000, 1, 000, 1, 0, 1, 00, 10, 110,11}.

For the UPCs with variable suffix lengths, the role of the prefix is no more

than a code group index, so the encoding of a UPC sequence with variable length
suffixes can be illustrated as shown in Figure 3-4. The only difference in the ALT
coding for such codes is that the packet information is placed in between the prefix
sub-sequence and the suffix sub-sequence. In this case the packet serves as a
separation between the two sub-sequences, which is crucial in the decoding
procedure; therefore it is no longer optional.

Sync Sync

Sync Sync

Unary prefixes coded using
all-one and all-zero codes

variable length suffixes

UPC sequence

THE ALT CODING

Packet
info

Figure 3-4 The ALT coding for variable-length-suffix UPCs

For this type of UPC, an HG code sequence is taken as an example. The set

of HG codes are shown in Table 3-3.

Suppose an HG sequence {10, 1100, 0, 10, 1100, 1110110, 0, 11010, 10, 0}

is encoded using the ALT method. This encoding is illustrated in Figure 3-5 and
the unary prefixes are underlined. The resulting ALT packet for this example is:

{11, 000, 1, 00, 111, 0000, 1, 000, 11, 0, 0, 0, 10, 10}.

67

n HG Unary
prefix

Prefix
Length

All-one/All-
zero codes

Suffix Suffix
Length

0 0 0 1 1/0 - 0
1 10 10 2 11/00 - 0
2 1100 110 3 111/000 0 1
3 11010 110 3 111/000 00 2
4 11011 110 3 111/000 01 2
5 111000 1110 4 1111/0000 00 2
6 111001 1110 4 1111/0000 01 2
7 111010 1110 4 1111/0000 10 2
8 1110110 1110 4 1111/0000 110 3
9 1110111 1110 4 1111/0000 111 3

10 11110000 11110 5 11111/00000 000 3

… … … … … … …
Table 3-3 HG code with parameter k=0

Sync Sync10 1100

Sync Sync10 10

Variable length suffixes

Packet
info

0 10 1100 111010 0 11010 10 0

11 000 1 00 111 0000 1 000 011

Unary prefixes coded using
all-one and all-zero codes

Original HG code sequence

00

Figure 3-5 ALT encoding of the HG code sequence (k=0)

3.1.2 The ALT decoding

All UPCs are variable length codes and as such are usually decoded using

general VLC decoding methods. Decoding of the VLCs is, in general, inefficient
because the variable code lengths make it difficult to detect the codeword
boundaries. In a VLC sequence, decoding of the current codeword depends on the
completion of the decoding for the previous codewords because the end of a

68

codeword cannot be found until it is decoded. This makes the decoding of the VLC
packet a serial procedure and it is thus usually very difficult to parallelize.
Moreover, to detect the codeword boundaries of VLCs, we must also introduce
codeword tables, or look up tables (LUT) in the decoding procedure, which include
all possible codewords in the VLC sequence, in order to match the codeword and
enable decoding to continue. The codeword tables are usually very large and thus
to search for and match a codeword with one specific code in the table makes the
decoding computationally complex.

However, we have seen that the UPCs are of a particular pattern and the

ALT coding may help to simplify the decoding procedure. This is especially true
for UPCs with fixed suffix lengths. Thanks to their highly structured code pattern,
the decoding procedure can be greatly simplified when comparing it to the
traditional VLC decoding.

In the previous section we have seen that the ALT encoding is a packet-

based procedure; therefore, decoding is also based on packets. Since the encoding
procedures are slightly different for UPCs with fixed suffix lengths to those of
variable suffix lengths, the decoding procedures for these two types of UPCs are
also slightly different. A description of the decoding of these two types of UPCs
now follows.

For UPCs with fixed suffix length such as the GR codes and EG codes, the

ALT coding enables a very simple decoding structure that allows parallelization,
and the LUTs could be eliminated completely. To decode the ALT coded GR or
EG packets, buffering is required to store at least one entire packet. But since
buffering is almost a given in a VLC decoder, no extra functional component is
added to the ALT decoder.

The decoding of an ALT packet can be illustrated by Figure 3-6. It should be

remembered that packet information provides us with the number of codewords in
a packet. Since the suffix lengths of the UPCs are fixed and with the information
of the number of codewords in the packet, it is easy to determine how many bits in
the packet belong to the prefix sub-sequence and how many to the suffix sub-
sequence. It is then a simple matter to separate the prefix and suffix sub-
sequences. We have also indicated that the packet information is not a necessity
for the UPCs with fixed suffix lengths. When the packet information is not
provided, it is necessary for the decoding of the ALT coded UPC packet to be
performed from both ends and as a serial procedure, similar to that for the general
VLCs. Such cases are not dealt with here as, under these circumstances, the
advantages of the ALT method are not evident.

The prefix sub-sequence consists of all-one codes and all-zero codes and the

detection of the boundary is then easily achieved via a row of exclusive OR (XOR)
logics. This greatly simplifies the decoding and also makes it possible to

69

parallelize the decoding procedure because the xor logics does not depend
recursively upon previously decoded codewords and can be done simultaneously
for the entire packet. When the boundaries of the prefixes are detected, the length
of the suffixes can be easily calculated using the previous knowledge concerning
the suffix lengths or the linear relationship between the prefix and the suffix. With
the readily separated prefixes and suffixes, the UPC codewords can then be
restored. In the previous chapter it was shown that UPCs are designed for discrete
sources and, indeed, they are generally used to encode integers. For these UPCs
with fixed length suffixes, the inverse mapping from the UPCs back to the integers
can easily be done using algebraic calculations. Therefore the LUTs are no longer
required.

Sync Sync

Prefix sub-sequence Suffix sub-sequence

Packet
info

Prefix boundary detection (XOR logic)

…...

Sync Sync

ALT packet

Packet
info

of codewords

Prefix and suffix sub-
sequence separation

Code convertion

…...

Suffix boundary info.

Decoded suffixes

Decoded prefixes

Decoded integers

Figure 3-6 ALT decoding for UPCs with fixed suffix length

Two examples are now investigated, one from the GR codes and one from

the EG codes, respectively.
Suppose we have an ALT coded GR sequence with suffix length k equal to

2, and the packet information is provided, so it known that there are 8n =
codewords in the packet (the original GR code table is given in Table 3-4):

{11, 0, 11, 0, 1, 00, 111, 0000, 00, 10, 10, 11, 00, 11, 01, 10}

70

Coded
Integer

 GR Prefix
Length

0 000 1
1 001 1
2 010 1
3 011 1
4 1000 2
5 1001 2
6 1010 2
7 1011 2
8 11000 3
9 11001 3

10 11010 3
11 11011 3
… … …

Table 3-4 GR code with k=2

The decoding could be characterized using the following steps:

1) Upon receiving the packet, it is known that there are 2 8 16k n⋅ = ⋅ =

bits belong to the suffix sub-sequence, thus the two sub-sequences can be
separated as follows:

Prefix sub-sequence: {11, 0, 11, 0, 1, 00, 111, 0000}
Suffix sub-sequence: {00, 10, 10, 11, 00, 11, 01, 10}

2) Perform the xor operations to the prefix sub-sequence and obtain the

prefix boundaries and decode the prefix lengths simultaneously: {2, 1, 2, 1, 1, 2, 3,
4}

3) Separate the fixed-length suffixes and map them back to integer
values: {0, 2, 2, 3, 0, 3, 1, 2}

4) Decode the encoded integer by using:

kcoded integer (prefix length 1) 2 suffix= − ⋅ +
For instance, the first integer is coded as: 2(2 1) 2 0 4− ⋅ + = . The packet is

then decoded as: {4, 2, 4, 3, 0, 7, 9, 18}. Thus the decoding is complete.

71

Now, another example of the decoding of the EG codes will be looked at.

Suppose we have an ALT coded EG sequence with parameter k equals to 0, and the
packet information is provided, so it is known that there are 8n = codewords in
the packet (the EG code table is given in Table 3-2):

{11, 0, 11, 0, 1, 00, 111, 0000, 0, 1, 1, 11, 010}
The decoding could be characterized using the following steps:

1) Upon receiving the packet its length is counted first, which in this

example is 24 bits. We know that for EG codes 0k = , the suffix length equals the
prefix length 1− . Thus, with the information concerning the number of codewords
in the packet, it is possible to calculate the length of the suffix sub-sequence.
Suppose the length of the suffix sub-sequence is sl , the total length of the ALT
packet is then 2 2 8 24s sl n l⋅ + = ⋅ + = , thus 2 24 8 16sl⋅ = − = , and then 8sl = .
With the length of the suffix sub-sequence, we are then ready to separate the prefix
sub-sequence and the suffix sub-sequence:

Prefix sub-sequence: {11, 0, 11, 0, 1, 00, 111, 0000}
Suffix sub-sequence: {0, 1, 1, 11, 010}

2) Perform the xor operations to the prefix sub-sequence and obtain the

prefix boundaries and simultaneously decode the prefix lengths: {2, 1, 2, 1, 1, 2, 3,
4}

3) Now that the length of each prefix is known, it is possible to easily
determine the length of each corresponding suffix. Then the suffixes could be
separated and mapped back to integer values: {0, 1, 1, 3, 2}

4) Decode the encoded integer by using:
suffix lengthcoded integer 2 suffix 1= + − .

For instance, the first integer is coded as: 12 0 1 1+ − = and the packet is then
decoded as: {1, 0, 2, 0, 0, 2, 6, 9}. Thus the decoding is complete.

The decoding of ALT packets of UPCs with variable length suffixes is

somewhat more complicated and the LUTs cannot be eliminated because of the
variable suffixes. The decoding can be illustrated by Figure 3-7. When the suffix
lengths of the UPCs are not fixed, the separation of the prefix and suffix sub-
sequences must rely on separation codes. By checking the separation code, the
ALT packet between the two synchronization markers can be separated into a
prefix sub-sequence and a suffix sub-sequence. The prefix sub-sequence still
consists of alternating coded all-one codes and all-zero codes, so the detection of
the prefixes is the same as for the UPCs with fixed length suffixes. Once the
prefixes are detected, it is no longer possible to automatically separate the suffixes
by associating the prefix lengths to the suffix lengths because the variation in the

72

suffix lengths cannot be related to the lengths of the prefixes. Under such
circumstances, the LUTs are still required in order to decode the suffixes.
However, now the LUT is only required for the suffixes, thus the LUT table size
can be greatly reduced. As the LUT is reduced in size, the search for the codeword
can be accelerated. Table 3-5 is the LUT of a set of HG codes (k=0), and Table 3-6
shows the reduced LUT after ALT coding is applied.

Sync Sync

Prefix sub-sequence Suffix sub-sequence

Packet
info

Prefix boundary detection (XOR logic)

…...

Sync Sync

ALT packet

Packet
info

Separation of prefix and suffix sub-sequences

Reduced LUT

Decoded prefixes
Decoded integers

…...

Figure 3-7 ALT decoding for UPCs with variable suffix length

Coded Integer LUT

0 0
1 10
2 1100
3 11010
4 11011
5 111000
6 111001
7 111010
8 1110110
9 1110111

10 11110000
Table 3-5 HG code with parameter k=0

73

Coded
Integer

Prefix
Length

LUT

0 1 -
1 2 -
2 3 0
3 3 00
4 3 01
5 4 00
6 4 01
7 4 10
8 4 110
9 4 111

10 5 000

Table 3-6 HG code with parameter k=0

The next example concerns the decoding of the HG codes, using the code

table in Table 3-5 and 3-6. Suppose the ALT coded HG sequence appears as
follows: {11, 0, 11, 0, 1, 00, 111, 0000, 0, 1, 1, 11, 010}

The decoding could be characterized using the following steps.

1) Upon receipt of the packet plus information, the prefix and suffix

sub-sequences can be immediately separated.
Prefix sub-sequence: {11, 0, 11, 0, 1, 00, 111, 0000}
Suffix sub-sequence: {01, 01}

2) Perform the xor operations to the prefix sub-sequence and obtain the

prefix boundaries and simultaneously decode the prefix lengths: {2, 1, 2, 1, 1, 2, 3,
4}

With the length of each prefix, it is possible to match the associated suffix to
the reduced LUT. For instance, the first prefix has length two, from Table 3-6, it
can be seen that for this prefix, there is no suffix, and the integer represented by
this codeword is “1”. The last prefix has length four, thus the five possible suffixes
associated with this prefix are searched and it is found that suffix “01” with prefix
length four represents “7”. By this means, the entire ALT packet is decoded: {1, 0,
1, 0, 0, 1, 4, 6}.

74

3.2 THE ERROR RESILIENCY OF THE ALT CODING

It has been mentioned in previous sections that one advantage of the ALT

coding is the possibility of implementing an error resiliency mechanism for the
code packets.

A UPC sequence, belonging to the VLC family, is very vulnerable to
transmission over a noisy channel because of synchronization losses. Even one bit
error may cause loss of synchronization for the entire code packet. This is because
the bit error may cause the failure of decoding and as the decoding of the VLC
sequence is a serial procedure, failure to decode one codeword terminates the entire
decoding procedure. This is shown in Figure 3-8. Therefore, when an error is
detected in a VLC sequence, the entire decoded packet can no longer be trusted and
has to be retransmitted. One way to increase the error resiliency of the VLCs is to
replace them using fixed length codes. However fixed length codes are not
typically as efficient as traditional entropy codes, which are almost always VLCs,
in complexity and memory-constrained environments. Particularly in image and
video coding systems because of the development of image and video
communications, there is strong incentive to preserve the basic VLC coding
framework used in the standards while at the same time attempting to improve the
error resiliency.

Sync

VLC sequence

Sync Sync

Effect of error propagation

Bit error infection

Sync

Forward decoding

Figure 3-8 Bit error propagation of a VLC sequence

3.2.1 Bi-directional decodability

The considerations regarding the error resiliencies of the VLCs have led to a

growing level of interest in the error resilient coding of VLCs, such as the
Reversible Variable Length Code (RVLC). The RVLC was first proposed by
Takishima, Wada and Murakami in [16]. The idea behind the RVLCs is that
decoding can be performed by processing the received code sequence either
forwards or backwards. This is based on the fact that the RVLCs are VLCs which
can be uniquely decoded from both directions. By using the RVLC instead of the

75

VLC, the error resiliency of a code sequence can be improved by decoding both
from the beginning and the end of the code sequence. For example, a decoder can
begin by processing the received code sequence in the forward direction, and upon
detection of an error, proceed immediately to the end of the bit stream and decode
in the reverse direction. By this means, the error may be located in a much smaller
section of the code sequence and more codewords could be recovered from an error
infected sequence. Figure 3-9 shows how RVLC could retrieve codewords unable
to be retrieved by common one-way decodable VLCs.

In [16], Takishi et al. they studied the conditions for the existence of RVLCs
and proposed algorithms for their construction. Toshiba and Ericsson [17]
proposed two different schemes for constructing RVLCs with systematic structures
enabling easy coding and decoding. The RVLCs, must satisfy the suffix condition
for instantaneous backward decoding as well as the prefix condition for
instantaneous forward decoding. The suffix condition is that each codeword does
not coincide with the suffixes of longer codewords; while the prefix condition
expresses that there is no coincidence with the prefixes of longer codewords. It is
then obvious that, if a set of VLCs are of symmetric structures and they satisfy the
prefix condition, they will automatically satisfy the suffix condition and therefore
are automatically RVLCs. Not all VLCs could be modified into RVLC without
lengthening some of the original VLC codewords. However, by extending the
code length of necessary codewords, we are always able to modify VLCs into
RVLCs.

Sync

RVLC sequence

Sync Sync

Bit error infection

Sync

Forward decoding Backward decoding

Retrieved data

Figure 3-9 Bit error propagation of a VLC sequence

The authors in [18] proposed a class of parameterized RVLC that have

length distributions identical to those of GR codes and EG codes. Since it has been
proved that GR codes and EG codes are able to correspond to pdfs well matched to
the statistics of image and video data, such as Laplacian and GG pdfs, it follows
that the RVLC counterpart of GR and EG enables an increase in robustness in
order to channel errors while incurring no penalty in coding efficiency. Table 3-7(a)
and 3-7(b) shows the examples of RVLCs for GR and EG codes.

76

1k = 2k =

GR RVLC GR RVLC

Prefix Suffix Prefix Suffix Prefix Suffix Prefix Suffix
0 0 0 0 0 0 00 0 00
1 0 1 0 1 0 01 0 01
2 10 0 11 0 0 10 0 10
3 10 1 101 1 0 11 0 11
4 110 0 101 0 10 00 11 00
5 110 1 1001 1 10 01 11 01
6 1110 0 1001 0 10 10 11 10
7 1110 1 1001 1 10 11 11 11

… … … … … … … … …
Table 3-7(a) GR code and the RVLC counterpart

 EG RVLC

0 00 00
1 01 01
2 1000 1010
3 1001 1011
4 1010 1110
5 1011 1111
6 110000 100010
7 110001 100011
8 110010 100110
9 110011 100111

10 110100 110010

11 110101 110011

… … …
Table 3-7(b) EG code and the RVLC counterpart (1k =)

77

In the code table it can be seen that the RVLCs for GR and EG satisfy the
prefix and suffix condition simultaneously, and the code length distributions are
exactly the same as the original GR codes and EG codes. The authors in [18]
showed that by using the RVLCs, the bi-directional decoding gave an image
domain Peak-Signal-to-Noise Ratio (PSNR) that was on average 2.2 dB superior to
the PSNR obtained using forward decoding only, when the Bit Error Rates (BER)
was 410− . The average PSNR improvement at a 310− BER was 0.9 dB.

No changes were required to be made to an ALT packet in order to make the
UPCs with fixed suffix lengths, namely GR and EG codes, bi-directionally
decodable as the code structure for these UPCs is completely symmetric.
Therefore, there are greater increases in error resiliency for UPCs when they are
coded and decoded using the ALT method.

However, for UPCs with variable suffix lengths, such as HG codes, UPH
codes and modified UPH codes, although applying the ALT coding still keeps
their prefixes in a symmetric structure, modifications are still required to make the
variable length suffixes into RVLC in order for the code sequence to be bi-
directionally decodable. This may require extensions of suffix lengths. Therefore
not all UPCs can be converted to RVLCs without sacrificing the coding efficiency.
However for those UPCs with fixed suffix lengths, the ALT coding offers the bi-
directional decodablity as a free product without compromising the coding
efficiency.

3.2.2 Error Speculation

We have seen that, by applying the ALT coding, for UPCs with fixed length

suffixes, bi-directional decodablity could automatically be obtained without
penalty. But what is more appealing is that, by introducing an “Error Speculation”
(ES) mechanism, we are able to achieve even better error resiliency for the UPCs
with fixed length suffixes.

The ES mechanism is developed based on the fact that in an ALT packet, bit
errors in the suffix sub-sequence will not propagate. Taking GR and EG as
examples, we know that for GR and EG codes, the prefixes are unary codes, so any
single bit error within the prefix will cause loss of synchronization and therefore
cause the error to propagate. Whereas the suffixes of the GR and EG codes are
simply fixed or pseudo fixed length codes, with every bit in the suffix being either
“1” or “0”, thus a bit error in the suffixes is not detectable and will not propagate.
For instance, for a set of GR codes with 2k = , suppose we are to encode integers
{5, 3, 0, 2, 0} , the GR sequence would be {1001, 011, 000, 010, 000} , if a bit error
occurs in the prefix, say in the prefix of the first codeword, and the code sequence
becomes: {1 01, 011, 000, 010, 000}1 . Now the sequence would be parsed as:
{1 010, 11000, 010, 000}1 and then decoded as {10, 8, 2, 0}. Here we see that, this
one bit error in the prefix has caused the incorrect parsing of three codewords. On

78

the other hand, if, instead, there is one bit error in the suffix, then if the error
infected sequence appears as {100 , 011, 000, 010, 000}0 , parsing of the codewords
will not change, and the code sequence will be decoded as {4, 3, 0, 2, 0} . We see
that here only the codeword infected by the bit error was incorrectly decoded and
the other codewords were not affected.

Now in an ALT coded packet, the prefix sub-sequence consists of all-one

and all-zero codes, the simple code pattern could help us to identify bit errors. A bit
error in the prefix sub-sequence of an ALT packet will result in, at most, four
incorrect decodings of the prefixes.

To simplify the analysis, we assume that only one bit error occurs in a prefix
sub-sequence. The bit error will have four types of influences on the prefix sub-
sequence. Suppose there are N prefixes in the ALT packet.

1) An error occurring on the boundary of the prefix sub-sequence

causes an insertion or a deletion of one codeword. For example, the first codeword
1111 becomes 0111 or the first two codewords 0111 become 1111.

2) An error infects the shortest ALT coded prefix (i.e. one-bit prefix)
which sits in between two codewords. This results in a deletion of two codewords.
For example, 1110111 becomes 1111111. Then three prefixes become only one.

3) An error occurs in the middle of a prefix whose length is greater
than two bits. This results in the insertion of two codewords. For example, 1111111
becomes 1110111. Then one prefix becomes three.

4) An error occurs on the boundary of two prefixes. This is a non-
propagating error. For example, 1110000 becomes 1111000. This will not
influence synchronization.

When cases 1, 2 or 3 occur, the number of prefixes detected will not be equal

to N. When one of these cases is detected, we speculate where the error bit occurs
by the "error speculation".

If the number of prefixes is N-1 or N+1, then case 1 has occurred. The error
is then speculated to have occurred on the first or the last bit.

If the number of prefixes is N-2, then case 2 has occurred. If there exists a
prefixes that has a length longer than the longest possible prefix length, this prefix
must have been infected by a bit error. In this case, the error can be located
precisely. Otherwise, it is speculated that the location of the error is within the
longest prefix (as longer prefixes have less probability of occurrence.) in the prefix
sub-sequence, and randomly change the value of one bit in this prefix. By doing so,
resynchronization is achieved and many correct codewords can be resumed.

If the number of prefixes is N+2, then case 3 has occurred. It is assumed that
a one-bit prefix in between the two shortest prefixes is the error bit (this is
reasonable as the shorter the codeword is, the more probable it occurs in a
sequence and hence more probable to be infected by an error). Again,
resynchronization and error recovery can both be achieved.

79

Actually, no more than 4 codewords will be ruined even in the worst
speculation when only one bit error exists in the sequence. This makes the ALT
packet perform robustly when subject to a bit error.

Simulations were conducted to study the actual effect of bit errors with or

without the implementation of the ALT coding and the ES mechanism. In the
simulation, we chose the Universal Variable Length Codes (UVLC). UVLC is a
reversible version of EG code with 0k = , and will be discussed in greater detail in
later sections. For the original UVLC packet, two-way decoding is applied to
increase the error resiliency, and the ALT coded UVLC packet only involves the
ES and no two-way decoding is applied.

Figure 3-10 shows the comparison of performance in terms of Correct Ratio
(CR) between the ALT coded packets with ES implemented and the UVLC. In this
simulation, one bit error is inserted in code packet of different sizes.

The Correct Ratio is defined as:
Number correctly decoded codeword

CR=
Total number of codewords

Figure 3-10 Comparison of CR

From the results it can be seen that when the ES mechanism is applied, the

ALT coded decoding always achieves a CR of approximately 90%, yet that of the
original EG packet can even fall below 30%. Moreover, the CR of the ALT packet
shows much smaller variance than that of the UVLC packet and is therefore much
more robust.

80

3.2.3 Combining bi-directional decoding and Error Speculation

In the previous sections, we have talked about the bi-directional decoding

and the ES mechanism. The ES mechanism assumes only one bit error in an ALT
packet and deals with cases that could only happen under such circumstances. In
[19], the authors showed that for a Binary Symmetric Channel (BSC), the
crossover probability is below 310− , the possibility of having more than one bit
errors in a packet is thus very small. Therefore, the error speculation is able to
efficiently improve the error resiliency and robustness of an ALT packet.
However, in practice, we could not guarantee that only one bit error will occur in a
code packet. To deal with more than one bit error in a packet, yet still being able to
take advantage of the ES mechanism, would involve combining the ES with the bi-
directional decoding.

In an ALT packet for UPCs with fixed suffix lengths, to combine these two

error resilient methods, we first perform error speculation as described in the
previous section. However, the ES mechanism only works when there is one bit
error in an ALT packet. When more than one bit error occurs in a code packet, the
ES may or may not work since the ES is only able to handle four different error
patterns. When the error speculation fails, we perform a two-way decoding.

It is possible for two-way decoding and ES to be performed at the same time,
when ES fails; the result of the two-way decoding could then be used instead. The
result of the two-way decoding is based on the detection of the error in the packet.
Error detection is achieved by examining one of the following:

1) Upon decoding, the last bit of a packet does not coincide with the

end of a codeword.
2) When the number of decoded codewords is greater than the

number of codewords in the packet.
3) When an illegal codeword is detected.

When decoding is interrupted by one of the above, errors must have occurred

in one or all of the previously decoded codewords, so the previously decoded
codewords should not be trusted. Backward decoding results in a similar outcome.
The codewords able to be trusted then fall in the intersection of the forward and
backward decoding.

For UPCs with fixed length suffixes, the two-way decoding could be further

simplified thanks to the regular code structure and fixed suffix length. Since only
errors in the prefixes would cause error propagation, we only need to look at the
prefix sub-sequences to perform the two-way decoding. And as the prefixes are

81

coded using all-zero and all-one codes, there are much simpler ways to detect
errors.

Let us take the EG code with 0k = as an example. Suppose an ALT coded
EG packet consists of N codewords of L bits in length. The lengths of the
prefixes are denoted as 1 2 3, , ,...... Ml l l l . The lengths of the corresponding suffix
lengths are then 1 2 31, 1, 1,...... 1Ml l l l− − − − . M is the number of codewords
detected. Errors will be detected when one or more of the following cases are
encountered:

1) M N< .
Let f and b satisfy:

1 2

1

1 1 1
2

1 1 1
2

f

N N b

L Nl l l

L Nl l l−

−
− + − + + − ≥

−
− + − + + − ≥

Then let set A be the set: 1 2 1 1{ | (, ,......,) (,......,)}b f NA x x l l l l l− += ∈ ∪

2) M N> .
Let B be the set: 1 1 2{ | (,......,) (,......,)}N M N MB x x l l l l− − += ∈ ∪

3) Prefixes longer than the longest possible prefix are detected.
Assume that the prefixes which exceed the longest prefix are prefixes

numbered 1 2, ,......, kx x x . Then let set C be:

11 1 1{ | (,......,) (,......,)}
kx x NC x x l l l l− += ∈ ∪ .

Then the decoded prefixes will be:
, case 1

, case 1 and case 3
Decoded prefixes = , case 2

, case 2 and case 3
, case 3

A
A C

B
B C

C

∩

∩

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

Simulations are conducted to study the effect of the ES and the two-way

decoding. Figure 3-11 shows a comparison of the CR between an ALT coded
UVLC packet and an original UVLC packet. Both packets are subjected to
corruption using a BSC with a bit error rate (BER) of 10-4 and 10-3. The number of
codewords in a packet varies from 8 to 1024.

82

Figure 3-11 Comparison of CR of ALT coded EG and EG under different BERs

From Figure 3-11 it can be seen that the ALT packet always outperforms the

original EG packet. The CR of the ALT packet is almost always exceeds 80% and
has a much smaller variance. However the CR of the original EG packet falls
below 60% for large packet sizes and bigger BER and its variance is much bigger.
In addition, the advantage of the ALT packet is more evident when the packet is

83

subjected to a higher BER. It can be seen that the CR of ALT packet under 10-3
BER is comparable to that of the EG under 10-4 BER when the packet size is less
than 500.

84

3.3 APPLICATIONS OF THE ALT CODING

To demonstrate the error resiliency provided by the ALT coding, we applied

the ALT coding to specific UPCs and studied the results. Since the UPCs, which
are efficient entropy codes for sources with high-peaked, heavy-tailed probability
distributions very often found in image/video data, we applied the ALT coding to
the UVLC, which is commonly encountered in image/video systems. As we have
mentioned, the UVLC is actually a reversible version of the EG codes [20]. Table
3-8 gives an example of the UVLC. “x” represents a bit that can be either one or
zero.

Class UVLC Length Value to be expressed

1 1 1 1
2 0x00 3 ’x0’+ 2[2:3]
3 0x11x00 5 ’x1x0’+ 4[4:7]
4 0x21x11x00 7 ’x2x1x0’+ 8[8:15]
5 0x31x21x11x00 9 ’x3x2x1x0’+ 16[16:31]
… … … … … …

Table 3-8 An example of UVLC

The UVLC is used in H.26L to perform entropy coding. In [21], UVLC is
suggested to be used in the coding of DCT coefficients for H.26L. It is claimed to
be able to provide good performances in terms of coding efficiency, configurability
to various applications, and error resiliency. In H.26L, the UVLC uses one
infinite-extent codeword set rather than designing a different code for each element
of the H.26L syntax, only the mapping to the single UVLC code table is
customized to the probabilistic behavior of the data. However, extra bits need to be
added to indicate the signs of each LEVEL. To apply the ALT coding to DCT
coefficients, we make further separation of the UVLC coded "LEVELs", which
keeps the codeword of RUNs and LEVELs in accordance. This also helps to
simplify the decoding scheme. Table 3-9 and Table 3-10 give examples of RUN
UVLC and LEVEL UVLC [21]. We see that the code tables of RUNs and
LEVELs are actually identical except for the sign bits (marked by “s” in the tables)
at the end of each codeword in the LEVEL table.

85

Codeword Length Value of RUN

1 1 0
0x00 3 if x0=0, EOB

if x0=1, RUN=1
0x11x00 5 'x1x0'+ 2[2:5]

… … … … …
0x50x40x31x21x11x00 13 'x3x2x1x0'+ 62[62:125]

Table 3-9 RUN UVLC

Codeword Length Absolute value of
LEVEL

1s 2 1
000 3 EOB

010s 4 2
0x11x00s 6 'x1x0' + 3[3:6]

… … … … …
0x50x40x31x21x11x00s 14 'x5x4x3x2x1x0' +

63[63:126]
Table 3-10 LEVEL UVLC

To apply ALT coding to DCT coefficients, we further separate each packet

into one of ALT coded UVLCs and one of sign bits as the code tables of RUNs and
LEVELs are identical except for the sign bits. Figure 3-12 shows the separation.
By doing such a separation, the codewords in the "ALT coded UVLC packet" are
then kept in accordance and therefore can be decoded as described in previous
sections.

After the ALT coded UVLC packet is decoded, the sign bits can then be
imposed upon the LEVELs as the position of each LEVEL is then known.

Sync ALT coded UVLC packet SyncSign bits

Figure 3-12 Further separation of ALT packet in DCT coding

86

For the DCT coefficients, RUNs and LEVELs appear pairwisely, so the
number of codewords between two suffixes must be even. However, the error
speculation as well as ALT decoding itself, may result in an incorrect partition of
the code packet and therefore the number of codewords between two suffixes may
be odd. When the number of codewords between suffixes is detected to be odd, we
always discard one codeword to make it even. This results in the absence of some
high frequency components, which influence only the details of the block.

In DCT coding, the suffix plays a very important role as an error in the
suffix results in error propagation to the next block. The number of suffixes in the
image is also a key factor in reconstructing the image.

Assume there are X suffixes in a packet, and Y suffixes detected. We
perform the following to guarantee the reconstruction of the image.

1) X Y< . Discard the extra ones at the end of the packet.
2) X Y> . Put zeros at the end of the packet to fill up the absent

suffixes.

After the above are performed, the sign bits will then be matched to the
decoded codewords. Due to the error speculation, we may have inserted or deleted
some LEVELs in the packet; therefore, there may be too many or too few sign bits.
For simplicity, if there are too many sign bits, we simply discard the extra bits; if
there are too few sign bits, we deem the remaining LEVELs to be positive.

Now that we have made the necessary modifications to the UVLCs and

several images have been transformed using 8 8× DCT, zig-zag scanned and then
run-length coded, the RUNs and LEVELs are then coded using the original UVLC
and the ALT.

These coded images are subjected to a BSC with a BER of 310− . The PSNR
of the reconstructed images are then compared in Table 3-11.

Image PSNR of UVLC
coded image

(dB)

PSNR of ALT
coded image

(dB)

Lena 21.92 27.50
Cameraman 24.23 26.06

Monkey 17.81 22.38
House 27.67 30.07

Table 3-11 Comparison of PSNR

From Table 3-11 we see that the ALT coded images are always better than
the original UVLC coded ones. The PSNR increases by approximately 2 ~ 5 dB.

87

Figure 3-13 shows the comparison of the visual qualities of the images in Table 3-
11. The qualities of the ALT coded images are evidently better.

88

(a). The reconstructed Lena Using UVLC (b). The reconstructed Lena using ALT

(c). The reconstructed Cameraman using UVLC (d). The reconstructed Cameraman using ALT

(e). The reconstructed Monkey using UVLC (f). The reconstructed Monkey using ALT

89

(g). The reconstructed House using UVLC (h). The reconstructed House using ALT
Figure 3-13 Comparison of the visual quality of reconstructed images

From this application it can be seen that the ALT coding is able to increase

the error resiliency of UPC codes. However, this is for only those UPCs that are of
fixed suffix length. For UPCs with variable suffix length, improvement of error
resiliency is still possible yet not very evident, and it is done at a cost of a lowered
coding efficiency. This is because we need to make the UPC suffixes bi-
directionally decodable and that usually requires the lengthening of the suffixes.

Although for these UPCs the error resiliency is not a large advantage, we
will see in the next chapter that the decoder architecture and decoding speed could
be greatly improved by using the ALT coding method.

To demonstrate the simplification in the decoding procedure enabled by

ALT coding, we use the ALT approach to accelerate the variable length decoding
of the run length coded image data in the JPEG standard in the Nios II embedded
processor for Altera FPGA implementation, by using customized instructions [71].
We replace the VLC code table in the JPEG standard with the ALT coded data and
implement customized instructions to accelerate the decoding. The ALT coding is
again applied to the reversible EG codes UVLC and the UVLC is used to replace
the VLC in the JPEG standard. The results show that software accelerated
implementations enabled a speed-up by a factor in excess of 3.5 compared to the
standard JPEG software implementation. Table 3-12 below shows the decoding
performance for software implementations of the standard and the ALT coded
JPEG. The acceleration in decoding is very obvious.

VLC decoder Cycles/codeword Cycles/coefficient

Standard JPEG 783 56.0
ALT coded JPEG 212 15.9

Table 3-12 VLC decoding throughput

90

3.4 THE PROS AND CONS OF ALT CODING

In the chapter we have introduced the ALT coding method and its

applications. To conclude the chapter, there follows a discussion concerning the
pros and cons of the ALT coding method.

The ALT coding method is designed on the basis of the UPC codes. It takes

advantage of the simple structure of the unary prefixes of the UPC codes. By
separating the prefixes and suffixes, and assigning alternating coded all-one and
all-zero codes to the prefixes, codeword boundaries are very easily detected using
xor logics. This breaks the bottleneck in the decoding of a common VLC, and
enables parallel decoding structure to be implemented. The ALT method collects
the alternating coded prefixes in a prefix sub-sequence. This sub-sequence is held
in a very regular structure, which enables Error Speculation to be implemented for
UPCs with fixed suffix length, thus assisting in the improvement of the error
resiliency.

However, on the other hand, ALT coding performs a further separation of a

code packet. This demands the decoding to be done in the unit of packets which
requires buffering. Although this is not a problem in most cases since buffering is
always necessary, buffering in the unit of packets is still required. For each packet,
packet information about how many codewords are contained in an ALT packet is
usually required, which adds additional bit costs. Error Speculation mechanism
may help to increase the error resiliency, but on the other hand, it could also
increase the computational complexity.

In general, the ALT method’s biggest advantage is the simplification in the

decoding and decoder structures thanks to the simple structures of the unary
prefixes. In the next chapter, we will introduce the ALT decoders which are built
on the basis of the ALT coding method.

91

4 ALT DECODER

In the previous chapter, we discussed how the ALT encoding is able to
increase the error resiliency. We also mentioned that the ALT coded prefix sub-
sequence enables a simple means of detecting codeword boundaries. By extracting
code length information from the prefixes of the UPCs, the ALT coding method
helps to break the dependencies between the variable length codewords and thus
enables simplifications in the decoding procedure. We have discussed the decoding
of the ALT packet in algorithms; however, the real advantage brought by the ALT
coding is the great improvement in the hardware architecture of the UPC decoders.

In this chapter, we first introduce the ALT decoder architecture. Then the
discussion is followed by comparisons of the ALT decoders to the general VLC
decoder. The advantages and disadvantages of the ALT decoders will then be
studied.

4.1 THE VLC DECODER STRUCTURES

Since the UPCs are all variable length codes, it is natural to use a general

VLC decoder to decode a UPC code sequence. Therefore before starting to discuss
the ALT decoder structure, we must firstly look at the general VLC decoders.

In the introductory part of this thesis, we have briefly discussed the basic

VLC decoder architecture. We know that the VLC decoding requires sequential
performance and therefore it is difficult for the VLC decoder to be pipelined or
parallelized. Various decoding methods using parallel or pipelined architecture
have been developed to reduce the decoding time. One early work on the VLC
decoding was the tree-based searching algorithm of MARVLE [22], [23] which
was able to decode the input code sequence serially at a speed of one bit per cycle.
Therefore, the decoding time depended on the code length, i.e., longer codewords
required longer decoding time. Sun and Lei [24] developed a bit-parallel decoder
which could decode each code word in one clock cycle by parallel matching the
current code sequence with all possible code words in a LUT. Sun and Lei [26],
[27] then further improved the bit-parallel decoder by excluding an accumulator
from the feedback path of the bit-parallel decoder. The works in [25] analyzed the
PLA-based pipelined tree-based architecture, which combined several technologies
such as flexible operation in the decoding process and the high-level optimization
based on the Sun and Lei’s architecture. [33] proposed two methods to create
concurrency and to improve the decoder throughput:

1) The concurrent finite state machine (FSM), which extended the tree-

based searching algorithm to the FSM.
2) The bit-positioning method, which divided the code sequence into

blocks with overlapping windows.

92

The divided code sequences were decoded concurrently using Sun and Lei’s
decoder as a basic decoding unit, and the decoded data merged during the final
stage. Such division makes the parallelization possible but the computational
complexity is very high.

Figure 4-1 The PLS decoder

93

In [28], a fast VLC decoder using plane separation (PLS) was proposed. The
architecture of the PLS decoder was based on the separation of an input-plane and
an or-plane. By doing so, the decoder could perform input and decoding
concurrently. Figure 4-1 shows the block diagram of the PLS decoder.

The decoder consists of two separate planes of an input plane. Each plane

consists of a barrel shifter, a 32-bit 2:1 multiplexer, and a 32-bit output latch (BSa,
MUXa, and Di for input plane, and BSb, MUXb and Do for the or-plane). The
output data (Do) from the or-plane (BSb) is matched with all possible codewords in
the codeword table. A match symbol and the corresponding latched code length in
Dcl are obtained from the matching process. After the matching process, the input
plane rotates the data in Di at the BSa and the or-plane shifts the data in Do at BSb
both to the left direction by the amount of the latched code length. Bits shifted out
to the left side of the or-plane are lost, while those of the input plane are attached to
the least significant bits of the input plane. At the same time, the length of the
remaining data in the or-plane is calculated. If the remaining bit length is smaller
than the required code length (which is the maximum possible code length) for the
next matching, it can only be performed after updating the or-plane by loading the
next input code sequence. This can be simply performed by the bitwise or-
operations of Di and Do, as shown in Figure 4-1. If the remaining bit length is
larger than or equal to the required bit length, the next matching process can be
repeated without the or operations

By decoding the sample images in MPEG-2 video sequences, the authors

claimed that the PLS decoder reduces the required total processing time by
approximately 30% compared to those of Sun and Lei’s decoder and their
modified decoder.

The VLC decoders discussed above were mainly aimed at high throughput

and power dissipation was not a focus.
Various levels of design techniques have been employed in designing low

power VLC decoders. The most effective approach to lowering the power
consumption is by reducing the supply voltage. However, as the supply voltage is
reduced, the propagation delay of the circuit increases, limiting the amount of
voltage scaling under a particular throughput constraint. From this voltage scaling
point, the parallel method is preferred to the tree search method since the parallel
approach processes multiple bits per cycle. In other words, the parallel architecture
can be run at a slower clock frequency and lower voltage than the serial method for
a given throughput. At a higher level, the parallel VLC decoder can be
decomposed into two components: the VLC detector which involves the shifting of
data, and the LUT. The VLC detector receives the input VLC sequence and
generates an address for the LUT. To reduce additional circuit overheads, address
generation is simply an alignment of the VLC’s at a fixed position so that the LUT
uses the VLC itself as the address. The LUT receives the address from the VLC
detector and produces the corresponding output codeword and length. The length is

94

stored in an accumulator, which informs the shifter part how many bits have been
used. As we have seen in the previous VLC decoder examples, to achieve a low
power operation, both parts of VLC decoder need to be optimized.

A popular method for increasing the efficiency of the LUT is called the

“prefix-predecoding”. In cases where the number of codewords in the table is
large, codewords always exist with common prefixes in the code table. By
exploiting these common prefixes, the size of the LUT could be reduced. Several
approaches have exploited for this prefix-predecoding method to efficiently decode
the VLCs [29], [30], [31]. The basic idea of prefix predecoding is to group the
VLCs by their common prefixes. In such decoders, the LUTs are separated into
several block LUTs. The common prefixes and the short codewords are stored in
one block LUT and the grouped suffixes with common prefixes are stored in
several different block LUTs. The VLC sequence is decoded using the following
steps: Firstly, the VLC is fed to the block LUT where prefixes and short codewords
are stored. If the VLC is a short code without any prefix, then the output codeword
is produced from this LUT and the next VLC is ready to be decoded. If the input
VLC is one of the long codes with a prefix, only the prefix is decoded in this LUT.
The remainder of the VLC is decoded in one of the subsequent blocks where the
grouped suffixes are stored. With this prefix- predecoding method, the size of the
LUT is reduced because the prefixes are no longer redundant in the LUT. The
authors in [32] pointed out that, for MPEG-2 DCT AC coefficients, the majority of
VLCs can be clustered by their prefixes and a greater than 50% area reduction can
be achieved compared to a single table. In addition, such prefix-predecoding
methods could also help to reduce the power consumption by up to a factor of two
since the switched capacitance is also reduced [32]. Often, the LUTs are not only
the most power intensive blocks but also the most area occupying component
blocks of a VLC decoder. According to [32], in an MPEG-2 VLC decoder system,
approximately 80% of the area is consumed by the LUT. Therefore, reducing the
LUT size, not only helps to reduce power consumption, but also helps to make the
decoder compact in size.

95

4.2 THE GENERAL ALT DECODER STRUCTURE

The ALT decoder, designed specifically for the ALT coded UPCs, do not

follow the general concept of the VLC decoders. As has been described in the
previous chapter, the ALT coding resorts the prefixes and the suffixes of an entire
UPC packet, collects the prefixes and replaces the prefixes with alternating coded
all-one and all-zero codes. The advantage of these all-one and all-zero codes is
that the codeword boundaries are easily detected by a row of xor logics. The xor
logic can be seen as the key part of the ALT decoding. This follows directly from
the alternating coded all-one codes and all-zero codes. Figure 4-2 shows an
example of detecting prefix boundary by a row of xor operations.

Figure 4-2 Detecting prefixes by a row of xor operations

In Figure 4-2, every bit of the prefix sub-sequence is connected to a xor gate,

only when a prefix boundary occurs, will the output of the xor gate yield a “1”.
Therefore, via the row of the xor gates, we are able to detect the boundaries of the
prefixes fairly easily. When the boundaries of the prefixes are marked, we are able
to calculate the lengths of each prefix, and since the prefixes are simply some
unary codes, its length uniquely identifies each prefix. Thus the decoding of the
prefixes is complete. With the decoded prefixes, the associated suffixes, no matter
whether they are fixed length codes or variable length codes, are then able to be
decoded by some simple calculation or by searching and matching the LUTs.

For UPCs with fixed length suffixes, the suffix decoding is basically just a

suffix sub-sequence buffer plus a shifting unit used to output the decoded suffixes
according to each suffix length. For UPCs with variable suffix lengths, the suffix
decoding involves an ordinary VLC decoding procedure, which includes LUT
searching as well as the shifting mechanism.

96

After both the prefixes and the suffixes are decoded, we still need to
combine the two decoding results to decode the original symbol. For the UPCs, as
we have seen, they are usually applied to the integer sources, and therefore the
coded symbols are usually some integers. For UPCs with fixed length suffixes,
combining the prefixes and suffixes to decode the original integer could be easily
done by simple arithmetic calculations, as we have already seen in chapter two.
For UPCs with variable suffix length, it again involves LUT searching; however,
the prefixes already provide the LUT searching with a certain index and thus the
searching is more efficient. Moreover, for some UPCs, there are common LUTs
that could be used by different groups of codewords that are indexed by the
prefixes. Such common LUTs also help to reduce the size of the LUT and in turn
help to reduce the size of the decoder.

We could see here that, for UPCs with fixed length suffixes, the LUTs are

completely eliminated, which is a big boost for the performance of the decoder,
whereas the UPCs with variable suffix length are not as greatly improved. In this
chapter, emphasis will be placed on the ALT decoders designed for fixed suffix
length UPCs, namely, GR and EG codes; however a common structure for an ALT
decoder will be given.

For any ALT coded UPC packet, the ALT decoder could be separated into

two sub-decoders, corresponding to the two sub-sequences in an ALT packet.
Moreover, another Figure 4-3 shows the function diagrams of the ALT decoder.

Prefix Buffer Suffix Buffer

Boundary Detection

Prefix output and
Shifting

Decoded Prefix

Decoded prefix

Suffix matching

Suffix output and
Shifting

Combining prefix
and suffix, output
decoding result

Output

Input Input

Figure 4-3 Function diagram of an ALT decoder

97

4.2.1 The prefix sub-decoder

For all ALT decoders, the prefix sub-decoders are primarily of the same

structure. The prefix sub-decoder is the key part of the ALT decoder. It is the part
where the ALT decoder differs from traditional VLC decoders. The performance
boost of the ALT decoder comparing it to the traditional VLC decoders is mainly
due to the simplification in the decoding of the prefixes. The decoder architecture
of the prefix sub-decoder is illustrated in Figure 4-4. Here we have discarded the
peripheral structures of the decoder, such as the packet buffers. We also assume the
maximum code length of the prefix to be 16 bit. Customizing the prefix sub-
decoder with different maximum prefix lengths could be simply done by scaling
the devices.

Figure 4-4 General architecture of an ALT prefix sub-decoder

98

The prefix sub-decoder could be divided into several functional blocks as
indicated in Figure 4-4. They are: the input buffers, the Boundary Detection Logic
(BDL) which simply consists of a row of xor-gates, the Codeword Disabling Logic
(CDL) which is used to disable the decoded prefix boundaries in each clock cycle,
the prefix decoding logic, which decodes the prefix lengths representing each of
the unary prefixes. The sub-decoder is a very simple and small design; there are
neither LUTs nor shifting scheme included in the entire sub-decoder.

The function of the prefix sub-decoder is to generate the length of each

prefix and to provide it as a reference point in decoding the suffixes. Bearing in
mind that the maximum prefix length is 16 bits, to represent the lengths of the
prefixes, we need 4-bits. Therefore, the decoder consists of one 16-to-4 priority
encoder (PE0), one 4-to-16 decoder (DEC0), two 16-bit buffers (D0 and D1), one
15-bit register D2, one 4-bit register D3, one 15-bit comparator (COMP0), two 4-bit
subtractors (SUB0 and SUB1), one 1-bit 2:1 multiplexer (MUX0), and two 1-bit
registers (D4 and D5). Since each xor gate has two bits input, the 16 bit buffer thus
results in a 15 bit output after the row of xor gates, and thus there are 15-bit
registers and comparators.

Now let us look at how the sub-decoder functions. The prefix sub-sequence
of the prefix sub-decoder is put into the two buffers D0 and D1, the first two bytes
in D1 and the second two bytes in D0. The first two-bytes of the prefixes are then
fed into the xor-gates in the "Boundary Detection Logic" (BDL) where two
consecutive bits are xored with each other. As the prefixes are now denoted in
alternating all-one and all-zero codes, only at each prefix boundary will a "1" be
generated by the xor operations as indicated in Figure 4-2. Each "1" then indicates
a prefix boundary. The output after the BDL is then fed into the priority encoder
PE0 in order to generate the position of the first OIB boundary. Register D3 is
originally loaded with the number 16 (that is "0000" in a 4-bit binary code). The
length of the first prefix is then calculated by SUB0 and at the same time D3 is
updated with the position of the first prefix boundary. The 4-to-16 bit decoder
DEC0 generates the position of the first prefix boundary and disables the first "1"
of the input of the priority encoder by using the or-gates and the "Codeword
Disabling Logic" (CDL). In the next clock cycle, the second prefix boundary is
encoded by PE0. Again the second prefix boundary is placed in D3 and its position
is decoded by DEC0. The same operations are then repeated. Thus the length and
the prefixes are generated as well as the output for decoding and further reference.

Let us look at a simple example to see exactly how each functional block

works. Assume we have a prefix sub-sequence:
{00, 1111, 0, 1, 0, 111, 0, 11111, 0000, 1, 0, 1, 0, 1, 00, 1111,}

Table 4-1 illustrates how the prefix decoder decodes the prefix sub-

sequence. Suppose the prefix sub-decoder was initialized to all zeros before D1 is
loaded with data. When "load" is set to high, D1 and D0 are loaded with

99

"0011110101110111" and "1100001010100111" respectively. Then D1[0] xor
D0[15] is set to low, which indicates the last codeword in D1 continues in D0.

Table 4-1 Example of the decoding procedure of prefix sub-decoder

From the table we see that, the first seven prefixes are decoded within the

first seven clock cycles, after the seventh prefix is decoded, the first two bytes in
D1 are decoded and new data is required to be loaded from D0. The loading is done
by setting the “load” signal and those bits left in the first two bytes but not yet
decoded could be converted directly to the prefix length calculation. Thus, on
receiving the new data for the prefixes, the remainder of the last prefix in the first

100

two bytes could be added directly to the left over value and therefore will not cost
an extra clock cycle. Therefore, we could guarantee a constant decoding rate of one
prefix per clock cycle for this prefix sub-decoder.

As mentioned previously, the prefix sub-decoder takes advantage of the
alternately coded all-one and all-zero codes, thus greatly simplifying the detection
of the codeword boundaries with no table look-up necessary in the prefix sub-
decoder and thus also no sequential operations. This makes it very easy to
parallelize the decoding procedure and thus accelerate the decoding speed.
However, parallelization of the prefix sub-decoder needs to work in accordance
with the suffix sub-decoder in order to complete the decoding, so parallelization
could not be achieved for all UPCs. This is only possible for those highly
structured UPCs such as the GR codes, which have fixed suffix length independent
of the prefixes. In other UPCs, the lengths of the suffixes are variable or are
decided by the length of the prefixes, therefore the suffix sub-decoder works as a
traditional VLC decoder or works in a similar way, and parallelization is difficult.

4.2.2 The suffix sub-decoder and decoding of the entire UPC

Since the suffixes of different types of UPCs are different in nature, the

suffix sub-decoder needs to be able to accommodate these. The differences
between these suffix sub-decoders include more than the two categories of UPCs,
namely, UPCs with fixed length suffixes and UPCs with variable length suffixes,
which have been discussed until now. But in general, the suffix sub-decoders can
be divided into three categories.

1) Suffix sub-decoder for UPCs with fixed suffix lengths which are

not associated with the prefixes. For instance, the GR codes with arbitrary suffix
length where the prefix conveys no information about the suffix.

2) Suffix sub-decoders for UPCs with fixed suffix length completely
associated with the prefixes. These codes include the EG codes and all UPCs
whose suffixes have linear relationships with the prefixes.

3) Suffix sub-decoders for UPCs with variable length suffixes. These
include HG codes and UPH codes and all UPCs with variable lengths.

These suffix sub-decoders will now be discussed separately.

For the suffix sub-decoder in the first category, decoding the suffixes is very

simple because they are simply fixed-length codes and their lengths are known.
Also since the suffixes are actually independently fixed-length codes, we do not
need the prefixes to serve as references. Therefore the decoding of suffixes is
simply a fixed-length decoder. What is even simpler is that, since UPCs usually
encode integers, the decoding of suffixes is actually unnecessary, as the
requirement is to output the suffixes and use them later in the arithmetic operations

101

when the encoded integers are to be decoded. Table 4-2 gives an example of how
to generate the encoded integer using only prefix lengths and the suffix of a set of
GR codes. As shown in chapter two, when the prefix length k is given, the
encoded integer value could be calculated using 2-x. Thus we are able to recover
the encoded integer value using only simple multiplications and additions.

Suppose the length of each suffix is k-bits, all that would be in the suffix

sub-decoder would be a k-bit register. The k-bit register outputs a k-bit suffix every
clock cycle and by combining this k-bit suffix with the decoded prefix in each
clock cycle, it is possible to further decode the entire UPC.

Valu
e

 GR Unary
prefix

Prefix
Length k

Suffix Suffix
Length

Value=(k-
1)*22+Suffix

0 000 0 1 00 2 (1-1)*4+0=0
1 001 0 1 01 2 (1-1)*4+1=1
2 010 0 1 10 2 (1-1)*4+2=2
3 011 0 1 11 2 (1-1)*4+3=3
4 1000 10 2 00 2 (2-1)*4+0=4
5 1001 10 2 01 2 (2-1)*4+1=5
6 1010 10 2 10 2 (2-1)*4+2=6
7 1011 10 2 11 2 (2-1)*4+3=7
8 11000 110 3 00 2 (3-1)*4+0=8
9 11001 110 3 01 2 (3-1)*4+1=9

10 11010 110 3 10 2 (3-1)*4+2=10

11 11011 110 3 11 2 (3-1)*4+3=11
12 111000 1110 4 00 2 (4-1)*4+0=12
13 111001 1110 4 01 2 (4-1)*4+1=13
14 111010 1110 4 10 2 (4-1)*4+2=14
15 111011 1110 4 11 2 (4-1)*4+3=15
… … … … … … …

Table 4-2 GR code with suffix length 2

For the suffix sub-decoders in the second category, decoding becomes more

complex because the suffix lengths are now linearly associated with the prefixes.
The length of each suffix varies with the length of the corresponding prefix.
Therefore, although we consider such UPCs to be fixed suffix codes, in fact their

102

suffix length is variable, but in a way that is completely linked to the length of the
prefix. Thus to decode a suffix, we need the decoded prefix to act as a reference.
For these UPCs the length of each suffix could be easily be generated from the
corresponding prefix and the LUTs are not required in order to perform the
decoding. What must be added, when comparing this to the suffix sub-decoders in
the first category, is a shifting scheme to remove the suffixes already decoded. The
fixed k-bit register is no longer able to perform this task because now the suffix
lengths vary with the prefixes. Figure 4-5 shows an example of the suffix sub-
decoder for EG codes with k=0. Here we assume that the maximum suffix length is
15 bits.

Figure 4-5 Example of EG suffix sub-decoder (k=0)

The suffix sub-decoder functions as follows.
The sub-decoder in Figure 4-5 contains one 15-bit register (D7), one 4-bit

register D8, two 15-bit 2:1 multiplexers (MUX1 and MUX2), two 30-bit barrel
shifters (BS0 and BS1), two 4-bit subtractors (SUB1 and SUB2), and a 4-bit greater
than & equality comparator (COMP1).

The suffixes are first loaded in the lower half of the two barrel shifters, the
first 15 bits in BS0 and the following 15 bits in BS1. The upper half of the barrel
shifters are both loaded with 15 bit zeros. D8 is originally loaded with 15 ("1111"
in binary), which is the maximum suffix length. BS0 shifts the suffix series to its
upper half according to the first suffix length generated from the prefix sub-
decoder. The first suffix is then generated from the upper half of BS0. At the same
time, SUB2 outputs the length of the rest of the suffix sub-sequence after the first
suffix has been shifted out. This length is stored in D8, to be used for the decoding
of the next suffix. In the next clock cycle, the lower half of BS0 is loaded with the

103

shifted suffix series and the upper half is cleared into all zeros. Therefore the
decoding of the next suffix can be performed. The same operations are then
repeated. When suffix decoding is performed until the end of the first 15 bits is
reached, the length of the suffix sub-sequence left in BS0 will be equal to or smaller
than the length of the next suffix. This will make the output of COMP1 become "1".
A new 15-bit suffix sub-sequence will then be loaded to the suffix input. The
contents of BS0 and BS1 are both shifted according to the length of the next suffix.
The two separated parts of the last suffix in BS0 can be merged by the or-gates and
MUX1 so that the complete suffix can be generated. MUX2 is used to load new data
into BS0. Decoding can then be performed continuously.

Now we use an example to demonstrate how this sub-decoder works.

Suppose we have a suffix sub-sequence {10010010101110100......} to be decoded.
Table 4-3 shows the performance of the decoding in the suffix sub-decoder.

Table 4-3 Example of a suffix decoding process

In Table 4-3, X14...X0 indicates the new data arriving after the first 15 bits. In

our example, X14X13 are actually "00".

104

The suffix sub-decoder outputs the suffixes as they are, the actual integer to
be decoded still need to be handled. For the UPCs in the second category,
decoding of the integer is similar to that in the first category. No LUTs are needed
because the suffixes are completely associated with the prefixes and therefore the
decoding could also be done by manipulating the prefixes and the suffixes
arithmetically. Hence, the decoding of the integers could also be simplified and
accelerated at this level.

Table 4-4 gives an example of how to decode the coded integer value using
arithmetic operations on the prefixes and the suffixes. The example is a set of EG
codes with k=0. As shown in this table, the decoding of the actual integer could be
performed using a set of arithmetic calculations

Value EG Unary
prefix

Prefix
Length m

Suffix Suffix
Length m-1

Value=2m-1-
1+Suffix

0 0 0 1 - 0 20-1+0=0
1 100 10 2 0 1 21-1+0=1
2 101 10 2 1 1 21-1+1=2
3 11000 110 3 00 2 22-1+0=3
4 11001 110 3 01 2 22-1+1=4
5 11010 110 3 10 2 22-1+2=5
6 11011 110 3 11 2 22-1+3=6
7 1110000 1110 4 000 3 23-1+0=7
8 1110001 1110 4 001 3 23-1+1=8
9 1110010 1110 4 010 3 23-1+2=9

10 1110011 1110 4 011 3 23-1+3=10

11 1110100 1110 4 100 3 23-1+4=11
12 1110101 1110 4 101 3 23-1+5=12
13 1110110 1110 4 110 3 23-1+6=13
14 1110111 1110 4 111 3 23-1+7=14
… … … … … … …

Table 4-4 EG code with parameter k=0

In later sections we will see applications of the ALT decoders where these
calculations are implemented using code converters.

For the suffix sub-decoders in the third category, decoding becomes even

more complex because the suffix lengths are not only variable in length, but also
have no evident association with the prefixes. This forces the decoding of the

105

suffixes to follow the manner of a VLC decoding procedure. However, this suffix
VLC decoder is still greatly reduced in size and is much more efficient in LUT
searching because part of the searching reference has already been decoded from
the prefix sub-decoder. The LUT needed in the suffix sub-decoder is greatly
reduced in size because only one prefix per prefix group needs to be stored. This
actually yields a natural prefix-predecoding of the UPC packet.

Table 4-5 gives the LUT of a set of HG codes. Table 4-6 gives the LUT in
the suffix sub-decoder in the ALT decoder.

 LUT n

Prefx Suffix

0 0 -
1 10 -
2 0
3 10
4

110

11
5 00
6 01
7 10
8 110
9

1110

111
10 11110 000
Table 4-5 LUT of HG codes

 LUT Prefix
length Suffix

 - 0 00 01 10 110 111 000
1 0
2 1
3 2 3 4
4 5 6 7 8 9
5 10

Table 4-6 Reduced LUT in the suffix sub-decoder

In the original LUT, one HG codeword matches one integer, so the table
increases with the number of codewords. In the reduced LUT, however, the shaded

106

cells represent the cells that are absolutely necessary. We see here that a group of
suffixes share one prefix and thus the prefixes do not need to be repeatedly stored.
Hence the LUTs will be greatly reduced in size. The LUTs are used to search for
the encoded integers, in the LUT in Table 4-5, the search must be accomplished by
looking through all the codewords and matching them up with the buffered code
sequence, which may lead to long delays because there is no previous knowledge
concerning the whereabouts of the codeword in the LUT . Take the HG code in
Table 4-5 and 4-6 as an example, suppose codeword 1110111 is to be decoded, in
Table 4-5, we must search 10 rows for this code and then decode it as integer 8.
However 1110110 has a prefix length of 4, and the suffix is 111, when we know
that the prefix is of 4 bits, only the fourth row of the LUT needs to be searched and
there are only 4 cells to be searched until it is possible to decode the integer 8. And
as mentioned in section 4.1, a full codeword table also makes the decoder power
intensive.

The average energy consumption per codeword in the LUT can be modeled
by the following equation:

1

n

LUT i i
i

E P E
=

= ⋅∑ (4.1)

Where LUTE represents the average energy consumption per codeword in
the LUT, n is the number of codewords in the LUT, iP is the probability of the
codeword i and iE is the energy required to decode codeword i .

In conventional approaches, the energy required to decode a VLC in a LUT
does not greatly vary over the codeword probability. (i.e., constant, iE i≈ ∀). This
is because the VLC table is implemented in a single LUT and the whole table has
to be charged and discharged every cycle. For the UPCs, however, the single LUT
method does not exploit the fact that decoding the unary prefixes requires only a
few xor operations and searching for the prefixes is unnecessary. Besides, such a
single LUT method also neglects to take into account the frequent occurrence of
short codeword. Therefore, the average energy in (4.1) is dominated by codewords
which have high probability of occurrence.

For the ALT coded packet, to analyze the energy consumption of the LUT
searching, we need to modify equation (4.1) into:

1

()
na p s

LUT i i i
i

E P E E
=

= +∑ (4.2)

where
a
LUTE stands for the energy consumed by the ALT decoder in the LUT

searching, p
iE represents the energy consumed by decoding the prefix, and s

iE
represents the energy consumed by decoding the suffix. In the ALT decoder, the
prefixes are decoded simply by a row of xor operations, and the LUT does not
require to be searched for prefixes, thus we can regard the energy consumed by
decoding the prefixes to be almost zero (i.e., 0, p

iE i≈ ∀). It is obvious that

107

a
LUT LUTE E< since part of the LUT search is almost completely eliminated by the

separation of the prefixes and suffixes.

On the other hand, the ALT decoder also provides a low power approach

that exploits the variable length codeword statistics, making the energy to decode a
codeword dependent on the codeword probability. This is achieved naturally by
also decoding the prefix and the suffix separately. Due to the nature of the high
peak, heavy tail sources that are suitable for the UPCs, the UPCs with variable
length codes, such as the HG code, UPH codes and the modified UPH codes,
shorter prefixes are usually associated with shorter suffixes and thus fewer
codewords. The HG code set in Table 4-5 is an example. Thus, by extracting the
prefixes, we make a natural partition of the original single LUT into several
variable size tables with respect to their energy consumption and frequency of
occurrence. By having such variable size tables, the energy required to decode a
codeword will vary according to the size of the partitioned table. Low power can
be achieved if the dominant term in (4.1) is made small. For the UPC case here,
shorter prefixes are associated to shorter suffixes and the numbers involved in this
case are small. Therefore for the short codewords which have higher occurrence
probabilities, the searching range is smaller, thus the dominant term in (4.1) could
be reduced. Taking into consideration that the energy consumed by searching the
prefix is almost 0, the energy consumption of an ALT decoder could then be
expressed as:

 1 (1) 2 (2) ()
1

...
na s p s p s p s

LUT i i r r
i

E P E P E P E P E
=

= ⋅ = ⋅ + ⋅ + + ⋅∑ (4.3)

Here , 1p
iP i r≤ ≤ is the occurrence probability of the prefixes, and r is the

number of different prefixes in the code set. () 1
s
iE i r≤ ≤ is the energy required to

search for a suffix in prefix i, and we know that for codewords with higher
occurrence probabilities, ()

s
iE is reduced by having a smaller search range, which

obviously assists in the reduction of power consumption.

It can be seen from the above analysis that, even though for the UPCs in the

third category, decoding in the suffix sub-decoder is more complex, we are still
able to achieve faster decoding, smaller decoder size and less power dissipation.
To decode the suffixes, as previously mentioned, involves a regular VLC decoding
procedure, but the VLC decoding is greatly reduced in scale thanks to the separated
prefixes.

As a matter of fact, any parallelization and optimization possible for a
general VLC decoder could still be applied to the suffix sub-decoder. For instance,
the rapid PLS VLC decoder mentioned in previous sections [28] could be modified
and applied to the suffix sub-decoder.

108

In general, we see that, for any type of UPC, the ALT decoding could greatly
assist in the reduction of the decoding complexity and efficiency. The resulting
ALT decoders are also smaller, faster and less power consuming.

109

4.3 APPLICATIONS OF THE ALT DECODER

In the previous section we have discussed the architecture of the ALT

decoder and have seen that by exploiting the ALT coding method, the decoder built
on this basis could be greatly simplified leading to a reduction in size, power
consumption and increase in decoding speed. In this section, we give examples of
applications of the ALT decoding in the decoding of GR codes and one type of EG
codes. A parallel decoding structure of the GR decoder is also proposed, which
enables the decoding of multi-codewords per clock cycle.

4.3.1 An ALT decoder for GR codes

GR codes are very often encountered in image/video data, thus developing a

special decoder for the GR codes will lead to improvements in the overall
performance of the image/video decoder. As described in chapter one, there are
different sets of GR codes depending on the suffix lengths. In order to examine the
improvement of the ALT decoder, three designs were made for GR codes with 0
bit suffix, 1 bit suffix and 2 bit suffix. The designs are shown in Figure 4-6. The
maximum prefix length is assumed to be 16 bit, which is sufficiently long for the
image/video codes.

110

Figure 4-6 ALT decoder for GR codes

The ALT decoder has two inputs for the separated prefix and suffix sub-

sequences. One is the prefix input and the other is the suffix input. The decoder
consists of one 16-to-4 priority encoder (PE0), one 4-to-16 decoder (DEC0), two
16-bit buffers (D0 and D1), one 15-bit register D2, one 4-bit register D3, one 15-bit
comparator (COMP0), one 4-bit subtractor (SUB0), one 1-bit 2:1 multiplexer
(MUX0), one n-bit register Ds (n is the length of the suffix) and two 1-bit registers
(D4 and D5).

The prefix input of the decoder is put into the two buffers D0 and D1, the first
two bytes in D1 and the second two bytes in D0. The first two-byte prefix series is
then fed to the xor-gates in the "Boundary Detection Logic" (BDL) where two
consecutive bits are xored with each other. As the prefixes are now denoted in
alternating all-one and all-zero codes, only at each prefix boundary will a "1" be
generated by the xor operations. Therefore, each "1" indicates a prefix boundary.
The output after the BDL is then fed into the priority encoder PE0 in order to
generate the position of the first codeword boundary. Register D3 is originally
loaded with the number 16 (that is "0000" in a 4-bit binary code). The length of the
first prefix is then calculated by SUB0 and at the same time D3 is updated with the

111

position of the first codeword boundary. The 4-to-16 bit decoder DEC0 generates
the position of the first codeword boundary and disables the first "1" of the input of
the priority encoder by using the or-gates and the "Codeword Disabling Logic"
(CDL). In the next clock cycle, the second codeword boundary is encoded into PE0.
Again the second codeword boundary is put to D3 and its position is decoded by
DEC0. The same operations are then repeated.

As discussed in chapter one, the prefix of a GR code is the unary expression
of a quotient, which can itself be easily generated by offsetting the integer which
represents the prefix length. Therefore, by offsetting the output of SUB0, the value
of the quotient can be generated. The suffix of a GR code is already a binary
expression, so the actual integer a GR code represents can be generated simply by
concatenating the suffix and the decoded prefix.

When decoding is performed until the end of D1, the output of D2 will then
be accumulated to make it the same as the output of BDL, and the output of
COMP0 is set to high. The operation D1[0] xor D0[15] is used to find out whether
the prefix in D1 still continues in D0. If the prefix continues, the "load" signal is
generated immediately and new data are loaded into the buffers. If the end of D1 is
the end of a prefix, then the load signal needs to be delayed to the next clock cycle.
A multiplexer MUX0 and a 1-bit register D4 are used to complete this.

To handle different lengths of suffixes, what requires to be changed is the
size of the register Ds, which when handling GR codes without any suffixes, is
completely eliminated.

This ALT decoder belongs to the first category discussed in the last section.
The design in Figure 4-6 is almost exactly the same as for a general prefix sub-
decoder. Neither look-up tables nor shifting scheme are necessary, and it is capable
of decoding one codeword per clock cycle.

In order to determine the performance of this decoder, its performance is

compared to the PLS decoder developed by Jae Ho Jeon et al [28]. Their decoder
is scaled for the GR codes that are studied. Figure 4-7 shows the modified PLS
decoder.

112

Figure 4-7 The PLS decoder

For a set of GR codes with maximum codeword length of 16 bits, the

decoder consists of two separate planes. Each plane consists of a barrel shifter, a
32-bit 2:1 multiplexer, and a 32-bit output register. The codeword table in this case
is loaded with a GR codeword table and so is the code length table. This decoder is
capable of decoding one codeword per clock cycle and the design makes the
coding process parallel by using an "or plane". However, feeding the codeword
length from the look-up tables back to the barrel shifters still limits the decoding
throughput. All the possible codewords, codeword lengths and decoded integers
need to be implemented in the look-up tables, and two types of barrel shifters are
included. These all limit the efficiency of the PLS decoder. According to our
synthesis results, look-up tables and barrel shifters utilize as much as a minimum of
67% of the total area of the PLS decoder.

We compare the delay, area and power consumption of the ALT decoder to

those of the PLS decoder. Both of the decoder types have been implemented in
synthesizable VHDL and their performance has been estimated according to the
synthesis results. For each type, three decoders for GR codes have been
implemented: without a suffix, with 1-bit suffix and 2-bit suffix. The maximum
prefix length is kept constant at 16 bits. The results are shown in Figure 4-8. Both

113

types of decoders are implemented in VHDL and synthesized using Design
Compiler from Synopsys. The delay has been obtained from static timing analysis
and the figures for power consumption from Synopsys' Power Compiler. A
standard cell library in a 0.5 mµ CMOS process has been used.

114

Figure 4-8 Comparison of performances of PLS and ALT decoder

115

In Figure 4-8, the numbers 1, 2 and 3 on the x-axis represent three different
sets of GR codes, 1 stands for GR codes without a suffix, 2 for GR codes with 1-bit
suffix, and 3 for GR codes with 2-bit suffix. From these graphs it is obvious that
the ALT decoder performs much better than the PLS decoder with regards to area,
power and delay. The improvements are dramatic for area and power. For GR
codes without a suffix, the ALT decoder receives only 87% of the delay, uses 51%
of the area and 28% of the power consumption compared to those of the PLS
decoder. For GR codes with 2-bit suffix, the related performances are as good as
65% of the delay, 25% of the area and 20% of the power consumption compared to
that of the PLS decoder. Moreover, the performances are constant for different sets
of GR codes, whereas the performance of the PLS decoder degrades quite rapidly
as the suffix length grows. When the maximum codeword length increases from 16
bits to more than 16 bits yet less than 32 bits, the barrel shifters in the PLS decoder
require 5 bits instead of 4 bits to count the number of bits needing to be shifted.
Therefore, when 1-bit suffix is added to the prefix that has the maximum prefix
length of 16 bits, there are abrupt increases in delay, power and area in the PLS
decoder, and this makes the ALT decoder comparatively better.

4.3.2 An ALT decoder for EG codes

For this design, we designed a decoder for the UVLC, which as mentioned in

chapter two, is a reversible version of the EG code with k=0. For the UVLC, the
prefix of the EG code becomes the Odd Indexed Bits (OIB), and the suffix of the
EG which for k=0 is one bit shorter than the prefix, becomes the Even Indexed Bits
(EIB). The design of the entire decoder is based on the architecture discussed in the
last section for the UPCs with variable lengths that are linearly related to the length
of prefix. The complete design could be described by Figure 4-9 below. In the
design, the maximum UVLC length is 31 bit.

Figure 4-9 ALT decoder for UVLC

The OIB decoder functions exactly like the example in Figure 4-4 and the

EIB decoder functions exactly like the example in Figure 4-5. The EIB output is
equivalent to the suffix output and the OIB output is equivalent to the prefix
output. The code converter applies the relationship in Table 4-4 in order to decode
the encoded integer. Table 4-7 shows the details of the truth table of the code

116

converter. The output of the code converter is added to the output of the decoded
EIB using the 16-bit adder (ADD) to generate the actual code number.

Input (4 bit) Output (16 bit) Output in
decimal

0000 0000000000000000 20
0001 0000000000000001 21
0010 0000000000000011 22
0011 0000000000000111 23
0100 0000000000001111 24
0101 0000000000011111 25
0110 0000000000111111 26
0111 0000000001111111 27
1000 0000000011111111 28
1001 0000000111111111 29
1010 0000001111111111 210

1011 0000011111111111 211

1100 0000111111111111 212

1101 0001111111111111 213

1110 0011111111111111 214

1111 0111111111111111 215

Table 4-7 Truth table of the code converter

This ALT decoder is also compared to the PLS decoder. However now it

requires reconfiguration to a UVLC whose maximum codeword length is 31 bits.
The reconfigured PLS decoder is shown in Figure 4-10.

117

Figure 4-10 The reconfigured PLS decoder

The decoder consists of two separate planes. For UVLC, each plane consists

of a 62-bit barrel shifter, a 62-bit 2:1 multiplexer, and a 62-bit output register. The
codeword table in this case is loaded with a UVLC codeword table and so is the
code length table. This decoder is capable of decoding one codeword per clock
cycle and the design makes the coding process parallel by using an "or-plane". All
the possible codewords, codeword lengths and decoded code numbers are
implemented in the look-up tables, and two types of barrel shifters. These all limit
the efficiency of the PLS decoder. According to our synthesis results, look-up
tables and barrel shifters use as much as 75% of the total area of the PLS decoder.

We compare the delay, area and power consumption of the ALT decoder to

those of the PLS decoder. Both types of decoders are implemented in VHDL and
synthesized using Design Compiler from Synopsys. The delay has been obtained
from static timing analysis and the figures for power consumption from Synopsys'
Power Compiler. A standard cell library in a 0.5 mµ CMOS process has been used.
The results are shown in Table 4-8.

118

 ALT PLS Ratio
(ALT/PLS)

Delay (ns) 8.96 12.0 75%
Area (gates) 1855 3146 59%
Power (mW) 6.74 15.0 45%

Table 4-8 Comparison of performances

It can be seen that the ALT decoder outperforms the PLS decoder for all

factors: speed, area and power. The reduction of size and power consumption of
the ALT decoder is due to the elimination of huge codeword tables and code length
tables and the reduction of the size of the shifting scheme in the conventional VLC
decoders. This is also part of the reason why the ALT decoder increases in speed.
Another factor for the speed increase of the ALT decoder is because the coding
procedure is parellelized by separating the decoding of OIBs and EIBs.

4.3.3 Parallel ALT decoder for GR codes

We have seen from the previous sections that for the GR codes, the LUTs

and the shifting scheme could be completely eliminated. The GR decoder involves
simply a prefix sub-decoder and a buffer. This structure could easily be expanded
to a high-level of parallelization by decoding. If we treat the ALT GR decoder as a
one functional unit, many of these units may result in an extension of the decoder
structure that can help to parallelize the decoding. In this parallel ALT decoder,
the design enables multi-codewords per clock cycle decoding.

Here we target a decoder architecture with constant input rate and variable
output rate. It decodes all codewords in an arbitrarily large input buffer in parallel.
The output of the symbols is delivered serially at a variable rate and can be fed to
an external FIFO buffer. The overall architecture is shown in Figure 4-11.

Figure 4-11 Overall decoder architecture

119

Even though it can decode an arbitrarily large input buffer with constant
delay, the throughput has an upper limit which is defined by the maximum speed
that the output buffer can deliver a serial sequence of symbols. The decoder is
implemented in RT-level VHDL code and from the synthesis results, the maximum
throughputs are more than 300M Symbols/s and 800M Symbols/s for FPGA and
ASIC implementations respectively.

For ALT-coded GR-codes the decoding is reduced to length extraction of the

prefixes. For each clock cycle of clkf the decoder takes in a new set of codewords
of N bits to the Prefix Buffer. The lengths of the prefixes are extracted in parallel
by the Parallel Codeword Length Extractor. At most, when all the codewords are of
a minimum length of one bit, N codewords are decoded. The output buffer is
therefore designed to receive N codeword lengths (1Nl − to 0l). For normal image
data the codeword lengths are distributed within the range of one to a maximum
prefix codeword length of M. This means that normally, not all positions in the
output buffer will be occupied. An empty-indicator, called ie , is generated and
shows whether a buffer position is empty or occupied. The decoded codeword
lengths are serially placed in the outputs of the Output Buffer which is a Parallel-
Input Serial Output (PISO) register. The maximum output rate is when the prefix
codeword lengths are all of one bit which makes it necessary to clock the Output
Buffer at clkN f� . The empty-indicator from the Output Buffer is used to indicate
the existence of data taken out from the Output Buffer. The Suffix Buffer is a PISO
where the shifting of k steps takes place when ie is true.

Figure 4-12 Detailed decoder architecture

120

Under the condition that the codeword length extraction can be parallelized,
the critical timing path in this architecture is in the Output
Buffer: critical mux DFFt t t= + , where muxt is the delay in a 2-1 multiplexer and DFFt is
the delay in a D-flip/flop.

Before detailing how the proposed Parallel Codeword Length Extractor
(PCLE) is designed, an example is presented showing the working principle in
Table 4-9. The input buffer contains the alt-coded prefixes, of maximum length
four bits (4M =), in the vector C. The rightmost bit in the buffer is considered to
be the first bit. From C the boundary vector B is computed where a ‘1’ indicates the
position of the last bit in a prefix code. The length extraction is segmented to
windows of M bits. Based on the first four bits (0i =) in the B vector, the first
occurrence of a boundary, i.e. a ‘1’ at position 0 gives us the length 0 0l = . It is
guaranteed that the shortest prefix, which is one bit long, is extracted from this
window. The next window can therefore be positioned one bit to the left of the
previous window. In general, there will be N M-bit windows for a prefix buffer of
N bits. In the next window (1i =) a boundary is found at position 3 (1 3l =). This
boundary is also found in the windows 2, 3,i = and 4. These types of boundaries
must be disabled by providing an offset for the above decoder architecture, the key
part of which is the “Parallel Codeword Length Extractor” (PCLE) which is used to
extract the GR prefixes in a parallel manner.

Table 4-9 Example of parallel length extraction

In order to achieve parallel length extraction, each window has a Length

Extraction (LE) unit. It contains three functions:
1) A length extraction function providing the prefix length (il);
2) Computation of the disable mask (id) that is fed to the following

LE-units;
3) Computation of the empty-indicator ie .

The offset is computed exclusively on the basis on B. The length is based on

B and the offsets from the M-1 previous LE-units. The block diagram of the PLCE

121

is shown in Figure 4-13. The delay in a parallel architecture cannot be dependent
on the size of the prefix input buffer (N). For the proposed architecture the delay is
dependent on the maximum codeword length (M) and not on N which allows
unlimited parallelization.

In the LE-unit the offset iD , based on the disable masks from the M-1
previous LE-units, is computed as:

1

1
()

i

i j jl M
D shr d

−

− +
= ∧ (4.4)

where the functions ()j jshr d shifts jd positions to the right with ‘1’ shifted
in from the left. When implemented, this is done by wiring. The prefix codeword
length is computed as: () ()i i i il length D C length D= ∧ − .

In this case iC is the prefix code for the i-th window and the length function
is returning the position of the first occurrence of a ‘1’ from the right in the vector.

Figure 4-13 Parallel codeword length extraction

The empty-indicator is computed as: ()i i ie D C= ¬ ∧
The Critical timing path comes from computing the length il and is

implemented as shown in Figure 4-14.

122

Figure 4-14 Codeword length detection unit
It is possible that only the first part of the last prefix code resides in the

Prefix Buffer with the rest being loaded during the next clock cycle. The function
Remaining Length Detector (RLD), shown in Figure 4-11, decodes the length of
the partial code from the M-1 empty-indicators and it is stored in the Length Buffer
(LB) to be used for the next set of data loaded in the Prefix Buffer.

The alternating coding enables simple logic for length extraction. This is
important, even though the architecture can be parallelized without any limitations;
it will affect the required clock frequency of the output buffer and the area-cost for
the ASIC or FPGA implementation.

The computational logic for the PLCE and the RLD are implemented in the

RT-level VHDL. Logic synthesis using Synopsys’ Design Compiler for the ASIC
implementation in a 0.5 µm CMOS technology and WebPack for the FPGA
implementation in Xilinx’s Spartan IIe device. The delays have been obtained from
pre-layout timing analysis with wire-load models from the silicon vendors.

When designing a decoder with maximum throughput, the minimum size of
the Prefix Buffer is determined by the maximum clock frequency of the Output
Buffer. This will determine the number of LE-units that is equal to the number of
bits in the Prefix Buffer. The number of LE-units required for maximum decoding
throughput is:

1
LE RLD

LE
outbuff

t tN N
f

⎡ ⎤+
= =⎢ ⎥

⎢ ⎥⎢ ⎥

where LEt is the delay of one LE-unit and RLDt is the delay of the RLD. The
delays LEt and RLDt are dependent on the maximum prefix codeword length M.
Decoders for maximum codeword lengths of 4, 8, 12, 16, 24 and 32 have been
designed and evaluated. The suffix length (k) does not affect the computational
logic and different values of k are therefore not investigated. In Figure 4-15 the
number of parallel LE-units required for maximum throughput is shown.
Maximum throughput for the ASIC and FPGA implementations are 810
MSymbols/s and 340 MSymbols/s respectively. For large values of M, the FPGA
requires more LE-units compared to the ASIC implementation to reach a maximum
throughput. The main reason for this is the larger increase in wire delays for the
FPGA.

123

Figure 4-15 Number of parallel LEs for maximum throughput

The areas required for both ASIC and FPGA implementations of the

decoder, for different values of M, are shown in Figure 4-16. The area grows
linearly for the ASIC implementation. However, for the FPGA implementation the
area increases rapidly for 32M = because the delay of the LE-unit is large and
must be compensated for by increasing the parallelism that requires more LE-units.

124

Figure 4-16 Area for computational logic

125

4.4 THE PROS AND CONS OF THE ALT DECODER

The ALT decoders are built on the basis of the ALT coding method and as

shown in the previous sections, the ALT coding is able to extract the structured
pattern in the UPC codes and thus leave greater freedom to simplify the decoder
architecture to boost its performance. However, these improvements are offset by a
cost of loss of generality and flexibility. It has both advantages and drawbacks.

The advantages of the ALT decoders have been discussed throughout this

chapter and are now summarized. By separating the decoder into two sub-decoders
– the prefix sub-decoder and the suffix sub-decoder, it is possible to eliminate both
the LUTs and the shifting scheme (usually barrel shifters) in the prefix sub-
decoders; the LUTs in the suffix sub-decoder are also able to be eliminated or
reduced. The LUTs and the shifting unit are actually the parts causing the greatest
limitations on the performance. For the highly structured UPCs where the suffixes
are of fixed lengths and are independent of the prefixes, immediate multi-codeword
decoding could be a possibility because of the ALT coded prefixes.

The ALT decoders are designed for the ALT coded UPC codes. All the

performance improvements in the ALT decoder are essentially the result of the
separation of the unary prefix from the suffixes. However, from chapters two and
three, it has been shown that not all VLCs are able to be efficiently converted to
UPCs. Thus the ALT decoder is not necessarily a good choice for those VLCs.
Moreover, although the advantages of the ALT decoder have been discussed
throughout this chapter, the ALT coding does require the encoding to be done in a
particular way, so the performance improvement of the decoder has a premise that
the UPCs are coded by the ALT coding method and sent to the decoder as the ALT
packet. This actually requires a more complex encoder because, in the ALT,
decoding requires a separation of prefix and suffix sub-sequences. This means
extra buffering and shifting. However, on the other hand, encoding does not curtail
the process because we always have a priori knowledge of the codes and the
codeword packet whilst encoding them.

In general, it is possible to conclude that for the image/video data which is

able to be efficiently encoded by UPCs and ALT coding method, the ALT decoder
serves as high-efficiency tool to perform the decoding of the ALT packet.

126

5 THESIS SUMMARY

In this thesis, the efficient entropy coding of some high-peaked, heavy-tailed
source distributions which are often used in the modeling of image and video
signals have been studied and a different coding method, the ALT coding, has
been proposed, and a different decoder architecture which can be built on the basis
of ALT. In this chapter, we briefly summarize the main contribution of the thesis
work.

5.1 UPCS

Image video data are often modeled using high-peaked, heavy-tailed
probability distributions such as Laplacian, Cauchy and the GG family. Sources
with such distributions have an infinite alphabet and therefore the well-known
optimal coding algorithm Huffman coding algorithm cannot be applied. These
infinite sources all have exponential “decay” rates. Such a property makes the
UPCs suitable for use in coding these sources. It has been proved in this thesis
that, from all the different UPCs, the UPH codes are able to provide the highest
coding efficiency. The coding efficiency of UPH is lower bounded by entropy + 2.
In applications, the UPH codes could actually provide coding efficiency much
higher than entropy + 2. However, the construction of UPH codes involves serious
computation and therefore the UPH codes are not as convenient in applications as
the other highly structured UPCs such as the GR, EG, HG codes.

5.2 ALT CODING

The ALT coding method is designed on the basis of the concept of the UPC.
The UPCs are all in the form of unary prefixes concatenated with some sort of
suffixes which could easily be resorted into a unary prefix sub-sequence and a
suffix sub-sequence. The code length information conveyed by the unary prefixes
could then be utilized in the decoding of the UPCs and thanks to the simple
structure of the unary codes, error resiliency could be improved by two-way
decoding and the ES mechanism.

Simulations testing the effect of the ALT decoding as well as practical
applications of the ALT coding using UPCs both show that it is possible to
significantly improve the error resiliency.

5.3 ALT DECODERS

One of the appealing advantages of the ALT coding is that the unary sub-
sequence in the ALT packet could be easily decoded and as this contains the code
length information it could greatly reduce the complexity of the entire decoding
procedure. Such an advantage is especially beneficial when it comes to the
hardware decoder architectures. The unary prefixes partially breaks the sequential

127

dependencies of the variable length UPCs and therefore greatly simplifies the
decoding of the entire ALT coded UPC packet. For different types of UPCs,
different ALT decoder architectures have been proposed. By comparing these
ALT decoders to the general VLC decoders, we have shown that the ALT decoders
are fast, small and energy saving. This is especially true for the highly structured
UPCs such as the GR and EG codes. These codes are very widely used in practice,
and are not merely restricted in the image and video coding system.

5.4 FUTURE WORK

The lower bound of the coding efficiency of the UPH codes has been found
to be entropy + 2 in this thesis. We have discussed in the thesis that this lower
bound is comparatively weak, especially in the coding of the high-peaked, heavy-
tailed probability distributions. Stronger bound should be able to be found by
further careful study of the coding procedures.

The ALT coding method has proved itself able to provide better error

resiliency, particularly for the highly structured UPCs with fixed length suffixes
such as the GR and EG. This is because these codes, with fixed length suffixes, are
easily able to be converted into two-decodable codes and bi-directional decoding
could be applied with ease. For those UPCs with variable length suffixes, the two-
way decoding is difficult because to make them decodable from both directions it
is necessary to convert the suffixes into reversible codes, which may result in a
lower coding efficiency. By further extending these UPCs into reversible codes
and studying the error resiliency obtained by making them two-way decodable
should also prove to be interesting and useful.

Much work has been done in this thesis in designing and comparing different

ALT decoders with a general VLC decoder. These decoders have been isolated
from the peripheries of the entire coding system in order to study their
performances clearly and fairly. However, putting them back in to the big coding
system and studying its compactness as well as compatibility on a grander scale is
also a possible extension of the work in the thesis.

128

6 REFERENCES

[1] D. Huffman, “A method for the construction of minimum redundancy
codes,” Proc. Inst. Radio Eng., September, 1952, vol. 40, pp. 1098-1101.

[2] S.W. Golomb, “Run-length encodings,” IEEE Transactions on Information
Theory, vol. 12, pp. 399-401, July 1966

[3] Raymond W. Yeung, A First Course in Information Theory, Kluwer
Academic/Plenum Publishers, 2002

[4] R. G. Gallager and D.C. Van Voorhis, “Optimal source codes for
geometrically distributed integer alphabets,” IEEE Trans Inform. Theory,
vol. 21, pp. 228-230, March 1975

[5] R. F. Rice, “Some practical universal noiseless coding techniques,” Tech.
Rep. JPL-79-22, Jet Propulsion Laboratory, Pasadena, CA, March 1979

[6] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCL-I: A low complexity,
context-based lossless image compression algorithm,” Proc. Of the 1996
IEEE Data Compression Conference, Snowbird, UT, pp. 140-149, April,
1996.

[7] J. Teuhola, “A Compression Method for Clustered Bit-Vectors,” Information
Processing Letters, vol. 7, pp. 308-311, October 1978

[8] P. Elias, “Universal codeword sets and representations of the integers,” IEEE
Trans. On Info. Theory, vol. 21, pp. 194-203, March 1975

[9] S. Xue and B. Oelmann, “Hybrid Golomb codes for a group of quantized
GG sources,” IEE Proc.-Vis. Image Signal Process, vol. 150, pp. 256-260,
August, 2003

[10] R. Laroia and N. Farvardin, “A structured fixed-rate vector quantizer derived
from length scalar quantizer – Part I: Memoryless sources,” IEEE Trans. On
Information Theory, vol. 39, pp. 851-867, May, 1993

[11] G. Calvagno, C. Ghirardi, G. A. Mian, and R. Rinaldo, “Modeling of
subband image data for buffer contral,” IEEE Trans. Circuits and Systems
for Video Technology, vol. 7, pp. 402-408, April, 1997

[12] J. Wen and J. D. Villasenor, “Structured prefix codes for quantized low-
shape-parameter generalized guassian sources,” IEEE Trans. on Information
Theory, vol. 45, pp. 1307-1314, May, 1999

[13] Scott M. LoPresto, Kannan. Ramchandran, and Michael. T. Orchard, “Image
Coding Based on Mixture Modeling of Wavelet Coefficients and a Fast
Estimation-Quantization Framework,” 1977 IEEE Data Compression
Conference, Snowbird, UT, pp. 221-230, March 1997

[14] K. A. Birney and T. R. Fischer, “On the modeling of DCT and subband
image data for compression,” IEEE Trans. Image Processing, vol. 4, pp.
186-193, Feb, 1995

129

[15] A. Kiely and M. Klimesh, “Generalized golomb codes and adaptive coding
of wavelet-transformed image subbands,” IPN PR 42-154, pp. 1-14, August
15, 2003

[16] Y. Takishima, M. Wada, H. Murakami, “Reversible Variable Length
Codes,” IEEE Trans. Comm., vol. 43, No.2/3/4, pp. 158-162, 1995

[17] ISO/IEC JTC1/SC29/WG11 N1383, “Description of Error Resilient Core
Experiments,” Nov. 1996

[18] J. Wen and J. D. Villasenor, “A Class of Reversible Variable Length Codes
for Robust Image and Video Coding,” Proc. Int. Conf. Image Processing,
vol. 2, pp. 65-68, Oct. 1997

[19] M. Rahman and S. Misbahuddin, “Effects of a binary symmetric channel on
the synchronization recovery of variable length code,” Computer J., vol. 32,
pp. 246-251, 1989

[20] Y. Itoh, “Bi-directional motion vector coding using universal VLC,” Signal
Processing: Image Communication, vol. 14, pp. 541-557, May 1999

[21] Y. Itoh, Ngai-Man Cheung, “Universal variable length code for DCT
coding,” International Conference on Image Processing, vol. 1, pp. 940-943,
2000

[22] A. Mukherjee, N. Ranganathan, and M. Bassiouni, “Efficient VLSI design
for data transformation of tree-based codes,” IEEE Trans. Circuits Syst., vol.
38, pp. 306–314, Mar. 1991

[23] A. Mukherjee, N. Ranganathan, J. W. Flieder, and T. Acharya, “MARVLE:
A VLSI chip for data compression using tree-based codes,” IEEE Trans.
VLSI Syst., vol. 1, pp. 203–214, June 1993

[24] S. M. Lei and M. T. Sun, “An entropy coding system for digital HDTV
applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 2, pp. 147–
154, Mar. 1991

[25] S. F. Chang and D. G. Messerschmitt, “Designing high-throughput VLC
decoder Part I—Concurrent VLSI architecture,” IEEE Trans. Circuits Syst.
Video Technol., vol. 2, pp. 187–196, June 1992

[26] P. Pirsch, VLSI Implementations for Image Communication. Amsterdam,
The Netherlands: Elsevier, pp. 345–364, 1993

[27] M. T. Sun and S. M. Lei, “A high-speed entropy decoder for HDTV,” Proc.
IEEE 1992 Custom Integrated Circuits Conf., pp. 26.3.1–26.3.4, 1992

[28] Jae Ho Jeon et al, ”A fast variable-length decoder using plane separation,”
IEEE. Trans. Circuits Syst. Video Technol., vol. 10, pp. 806-812, Aug. 2000.

[29] S. B. Choi and M. H. Lee, “High speed pattern matching for a fast Huffman
decoder,” IEEE Trans. Consumer Electron., vol. 41, pp. 97–103, Feb. 1995

[30] S. F. Chang and D. G. Messerschmitt, “Designing high-throughput VLC
decoder Part I—Concurrent VLSI architectures,” IEEE Trans. Circuits Syst.
Video Technol., vol. 2, pp. 187–196, June 1992

[31] R. Hashemian, “Design and hardware construction of a high speed and
memory efficient Huffman decoding,” IEEE Int. Conf. Consumer Electron.,
pp. 74–75, 1994

130

[32] S. H. Cho, T. Xanthopoulos and A. P. Chandrakasan, “A Low Power
Variable Length Decoder for MPEG-2 Based on Nonuniform Fine-Grain
Table Partitioning,” IEEE Trans. VLSI Systems, vol. 7, no. 2, pp. 249-257,
June 1999

[33] H. D. Lin and D. G. Messerschmitt, “Designing high-throughput VLC
decoder Part II—Parallel decoding methods,” IEEE Trans. Circuits Syst.
Video Technol., vol. 2, pp. 197–206, June 1992

[34] W. K. Pratt, Digital Image Processing, New York: Wiley-Interscience, chap.
10, 1978

[35] A. N. Netravali and J. O. Limb, “Picture coding: A review,” Proc. IEEE,
vol. 68, pp. 7-12, Mar 1960

[36] R. C. Reininger and J. D. Gibson, “Distributions of the twodimensional DCT
coefficients for images,” IEEE Trans. on Commun., vol. COM-31, pp 835-
839, June 1983.

[37] S. R. Smooth and R. A. Lowe, “Study of DCT coefficients distributions,”
Proc. SPIE, pp. 403-311, Jan. 1996.

[38] E. Y. Lam and J. W. Goodman, “A mathematical analysis of the DCT
coefficient distributions for images,” IEEE Trans. on Image Proc., vol. 9,
no. 10, pp. 1661-1666, Oct. 2000,

[39] T. Eude, R. Grisel, H. Cherifi, and R. Debrie, “On the distribution of the
DCT coefficients,” Proc. IEEE Int. Conf. Acoustics, Speech, Signal
Processing, vol. 5, pp. 365-368, Apr. 1994

[40] Y. Altunbasak and N. Kamaci, “An analysis of the DCT coefficient
distribution with the H.264 video coder,” IEEE Int. Conf. on Acoustics
Speech and Signal Processing, Montreal, Canada, May 2004

[41] S. F. Chang and D. G. Messerschmitt, “Designing a high-throughput VLC
decoder. I. Concurrent VLSI architectures,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 2, Issue 2, pp. 187-196, June 1992

[42] H. D. Lin and D. G. Messerschmitt, “Designing a high-throughput VLC
decoder. II. Parallel decoding methods,” IEEE Trans on Circuits and
Systems for Video Technology, vol. 2, Issue 2, pp. 197-206, June 1992

[43] Iain E. G. Richardson, Video Codec Design – Developing Image and video
Compression Systems, John Wiley & Sons Ltd., 2002

[44] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced Video Coding, 2003
[45] T. Wiegand, G. Sullivan, G.Bjontegaard and A. Luthra, “Overview of the

H.264/AVC Video Coding Standard,” IEEE Trans. on Circuits and Systems
for Video Tech., vol. 13, Issue 7, pp. 560-576, July 2003

[46] D. Marpe, G. Blattermann and T. Wiegand, Adaptive codes fro H.26L, ITU-
T SG16/6 document VCEG-L13, Eibsee, Germany, Janurary 2001

[47] H. Schwarz, D. Marpe and T. Wiegand, CABAC and slices, JVT document
JVT-D020, Klagenfurt, Austria, July 2002

[48] D. Marpe, H. Schwarz and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Trans. On Circuits and Systems for Video Tech., vol. 13, Issue 7, pp. 620-
636, July 2003

131

[49] Iain E. G. Richardson, H.264 and MPEG-4 Video Compression – Video
Coding for Next-generation Multimedia, John Wiley & Sons Ltd., 2003

[50] G. Bjontegaard and K. Lillevold, Context-adaptive VLC coding of
coefficients, JVT document JVT-C028, Fairfax, May 2002

[51] S. R. Smoot and L. A. Rowe, “Study of DCT coefficient distributions,” SPIE
Symposium on Electronic Imaging, vol. 2657, San Jose, USA, January 1996

[52] A. N. Netravali and B. G. Haskell, Digital Pictures: Representation and
Compression. Applications of Communications Theory (Series Editor R. W.
Lucky), Plenum Press, NY, NY, 1988

[53] R. C. Reininger and J. D. Gibson, “Distrubutions of the two-dimensional
DCT coefficients for images,” IEEE Transactions on Communications,
vol.31, Issue 6, pp.835-839, June 1983

[54] T. Chiang and Y. Q. Zhang, “A New Rate Control Scheme Using Quadratic
Distortion Mode,” IEEE Trans. CSVT, vol.7, February 1997

[55] N. Jayant and P. Noll, “Digital coding of Waveforms,” Englewood Cliffs,
NJ: Prentice Hall, 1984

[56] Q. Wang, Z. Xiong, F. Wu and S. Li, “Optimal Rate Allocation for
Progressive Fine Granularity Scalable Video Coding,” IEEE Signal
Processing Letter, vol. 9, February 2002

[57] M. Dai, D. Loguinov, and H. Radha, “Statistical Analysis and Distortion
Modeling of MPEG-4 FGS,” IEEE International Conference on Image
Processing (ICIP), September 2003

[58] “Video Codec Selection for Wireless Multimedia Terminals”, Hntro
Products, [online]. Available: http://www.hantro.com/pdf/codec.pdf

[59] M. Takahashi et al., “A 60 mW MPEG4 video codec using clustered voltage
scaling with variable supply-voltage scheme,” IEEE Journal of Solid-State
Circuits, vol. 33, No.11, November, 1998

[60] T. Nishikawa et al., “A 60 MHz 240 mW MPEG-4 video-phone LSI with 16
Mb embedded DRAM,” IEEE Journal of Solid-State Circuits, vol. 35,
No.11, November, 2000

[61] T. Hashimoto et al., “A 90 mW MPEG4 video codec LSI with the capability
for core profile,” in Digest of Technical Papers of IEEE International Solid-
State Circuits Conference, 2001

[62] M. Ohashi et al., “A 27 MHz 11.1 mW MPEG-4 video decoder LSI for
mobile application,” IEEE Journal of Solid-State Circuits, vol. 37, No.11,
November, 2002

[63] M. Nakayama et al., “An MPEG-4 video LSI with an error-resilient codec
core based on a fast motion estimation algorithm,” in Digest of Technical
Papers of IEEE International Solid-State Circuits Conference, 2002

[64] H. Arakida et al., “A 160mW, 80nA standby, MPEG-4 audiovisual LSI with
16mb embedded DRAM and a 5GOPS adaptive post filter,” in Digest of
Technical Papers of IEEE International Solid-State Circuits Conference,
2003

132

[65] H. J. Stolberg et al., “An SoC with Two Multimedia DSPs and a RISC Core
for Video Compression and Surveillance,” in Digest of Technical Papers of
IEEE International Solid-State Circuits Conference, 2004

[66] P. C. Tseng and L.G. Chen, “Hardware Architecture Design for Visual
Processing: Present and Future,” IEEE AP-ASIC2004, pp. 6-9, August, 2004

[67] “Choosing a Platform Architecture for Cost Effective MPEG-2 Video
Playback”, Platform Architecture Labs/Platform Technical Marketing
Desktop Products Group, Intel Corporation, April, 1996

[68] S. Sriram and Ching-Yu Hung, “MPEG-2 Video Decoding on the
TMS320C6X DSP Architecture”, DSPS R&D Center, Texas Instruments,
Inc.

[69] P. Pirsch and H. J. Stolberg, “VLSI architectures for multimedia”, 1998
ICECS, vol. 1, pp.3-10, September, 1998

[70] B. Furht, “Processor Architectures for Multimedia: A Survey (Invited
paper)”, Multimedia Modeling Conf., pp. 89-109, November, 1997

[71] P. Mårtensson, J. Persson, Shang Xue, and Bengt Oelmann, “Efficient
Decoding of Variable Length Encoded Image Data on the Nios II Soft-Core
Processor”, In the proceedings of the International Workshop on Applied
Reconfigurable Computing, Algarve, Portugal, February 2005

