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Introduction

The topic of the present monograph is to study integrable systems from an operator theo-
retic point of view. Except for a digression on the KP equations, it is devoted to a uniform
treatment of the AKNS system. Its main intention is to show that not only the construc-
tion of explicit solution formulas, but also a great deal of the structural analysis of solution
classes can be pursued on this general level.

In the beginning soliton equations arose as distinguished nonlinear evolution equations
with striking similarities and irritating differences. A great step towards understanding the
connection between the equations was achieved in the landmark paper of M. J. Ablowitz,
D. J. Kaup, A. C. Newell and H. Segur [3]. Building on important work of V. E. Zakharov
and A. B. Shabat [101], they discovered that the most prominent integrable systems in
one space variable can be derived via reduction from a more general integro-differential
system in two unknown functions. This was a crucial progress both in the effort to unify
the inverse scattering method and to explain the different characteristic properties of the
equations. For example the Nonlinear Schrédinger equation, displaying the complex nature
of quantum mechanics, results from another type of reduction than the ‘essentially real’
sine-Gordon equation. Moreover it is remarkable that the AIKNS system is in general non-
integrable in the sense that there are solutions with instantaneous singularities, and the
inverse scattering method applies to a certain extent only formally. One needs appropriate
reductions (we call them C- and R-reduction) to arrive at soliton equations.

In the present work we will approach the AKNS system by an operator method. Our guiding
principle can be described as follows: One translates a soliton equation and a special solution
simultaneously to an operator equation and a corresponding operator-valued solution. Then
one tries to regain solutions of the original equation by the use of an appropriate functional.

original soliton equation appropriate °op emtor-valu‘ed .
translation soliton equation
solution > solution
w=u(z;a),a €C U=U(xA), A€ L(F)

L

solution formula with
operator-valued

parameter

technique of ’scalarization’
T

A

@ =71(U(2:4))

Typically, the solution we start with depends on a scalar parameter ¢ € C. The goal of



our strategy is to construct solution formulas depending on an operator-valued parameter
A € L(F), E some Banach space, which can be viewed as a blow-up of a. As indicated in
the diagram above, this can be achieved via a detour through the operator-level.

The original idea of this strategy is due to V. A. Marchenko, who pursued it in his pioneering
work [55] for differential algebras. In his applications these are always realized by operators
on Hilbert spaces. Then B. Carl had the idea to place it into the frame of Banach operator
ideals (in the sense of A. Pietsch [72]) with the intention to establish a link between soliton
theory and the geometry of Banach spaces. In a joint paper with H. Aden [8] this was done
for the Korteweg-de Vries equation, and the role of the trace as an appropriate choice for the
scalarization functional was clarified. In the sequel, the method proved to be very flexible.
As shown by Carl and the author, it works for the most prominent soliton equations, even
for discrete ones as the Toda lattice [18], [19], [88], [89], [92]. But it turned out that there
is no universal algorithm to produce the right translation to the operator level. In another
way, the efficiency of the method was confirmed by the work of Aden and H. Blohm [7],
[13], [14], who showed that all solutions covered by the inverse scattering method can be
realized in this frame. Here semigroup techniques play an important role [17].

Among the various other operator-theoretic approaches to soliton theory we can only men-
tion some which are closely related to our own work. In the work of C. Péppe [75], [76]
determinants of Fredholm integral operators are used for the construction of solutions. His
joint article [10] with W. Bauhardt was one of the starting points of our work on the AKNS
system. In [83], [84], A. Sakhnovich uses the method of operator identities to face non-
commutativity in the study of matrix differential equations. We refer also to [40], [41], [42],
[85] for various aspects of reduction. A combination of soliton theory, infinite-dimensional
analysis, and Hamiltonian techniques [34], [36] was invented by B. Fuchssteiner. It is re-
markable that A. R. Chowdhury and Fuchssteiner [35] obtain the operator version of the
KdV from a completely different point of view.

Let us now explain the main aspects of the present work.

Throughout the whole text our intention was to treat the AKNS system in a uniform way.
As a rule this means that the constructions on the operator-level are carried out for the
general AKNS system, and everything which concerns applications to soliton equations is
done for its C-reduction (and, with ameliorations, for the subordinated R-reduction). In
particular, we can cover a large part of soliton theory without ad hoc choices once the
general techniques are established.

Our operator-theoretic treatment of the AKNS system starts from ideas of Bauhardt and
Péppe. In [10] they wrote down the right operator version of the AKNS system. But for
the applications we have in mind we need a substantial generalization of their operator
solution. More precisely we construct in Theorem 1.2.1 an operator solution depending on
two parameters A € L(F), B € L(F), where E, I’ are possibly different Banach spaces, in
contrast to [10] where only the case A = B is considered. The basis of all later applications
are the determinant formulas in Theorem 2.4.4.

We focus on two major applications. The first is a detailed study of negatons (or multiple
pole solutions) for the complete G-reduced AKNS system. From the earlier literature on,
discussions of these solutions had been appearing occasionally [34], [71], [96], [98], [99],
mostly in very particular cases. But the question of a complete and rigorous asymptotic
characterization was, to the best of our knowledge, first asked by Matveev [59] in the
related context of positons (see also [79] for corresponding material on negatons). For
several individual equations, a complete answer was obtained by the author in [88], [90],
[91]. We point out that the topic is particularly attractive in the context of the AKNS
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system, because its negatons are always regular as proved in Proposition 4.3.7. In fact they
are accessible by the inverse scattering method.

The main result is formulated in Theorem 5.1.2. In the proof we will first observe that
negatons consist of groups of solitons which are weakly bounded. These groups interact in
an analogous way as the particles of N-solitons. Then we will split them up and analyse
the interior structure of each group separately.

For the R-reduction, the breather is a further distinguished solitary solution. It can also
be considered as the simplest example of so-called formations [54], [93]. In our result for
the R-reduction in Theorem 5.2.2 we also describe negatons consisting of breathers. It
is interesting that the collision of breathers affects not only the trajectories but also the
oscillations.

Our second main application is the construction of countable superpositions, a topic which
was initiated by F. Gesztesy, W. Karwowski, and Z. Zhao [39] and intensely studied, for
solitons, by Gezstesy, W. Renger and collaborators [39], [40], [81]. For related results
see also [8], [18], [88], [89]. In the present work we establish for the first time countable
superpositions of negatons.

The integral terms of the AKNS system force us to include assumptions on the width of
the superposed waves. However, for individual equations, for which the integral terms
cancel, this restriction can be completely dropped. Exemplarily we will give sharpened
results in Theorem 7.5.5 and Theorem 7.6.3 for the Nonlinear Schrédinger and the modified
Korteweg-de Vries equations. In the proof the amelioration relies on sophisticated Banach
space techniques.

As a digression to equations in two space variables, we will provide the operator-theoretic
basis for the treatment of the KP-1 and KP-II equations. The main result is the construction
of an operator-valued solution in Theorem 3.2.1. Already in [18], we obtained a solution
formula with two commuting operator parameters in joint work with B. Carl. The nov-
elty in Theorem 3.2.1 is that we allow operator-parameters operating on different spaces.
This increases the complexity of the situation enormously, and for some time we even had
doubts about the validity of the result. But then new evidence was given in discussions
with A. Sakhnovich. He had discovered a different solution of the matrix-KP with non-
commuting parameters and produced a computer-supported proof of the solution property.
Strongly encouraged by this, we finally succeeded in proving Theorem 3.2.1. Our argument
cuts down the calculations by a consequent use of recursion relations. Later on we found
an alternative, more elegant proof relying on the properties of the Miura transformation.
Finally we carry out the familiar scalarization procedure. A generalization of the process
also leads to explicit solution formulas for the matrix KP.

In the remainder we outline the organization of the text and survey its most important
results. In Chapters 1-3 we lay the operator-theoretic ground of our work and derive
explicit solution formulas for the general AKNS system and the KP equations. Chapters
4-7 are devoted to applications. Here we discuss in particular negatons and countable
superpositions. For a more details, references, and further informations we refer to the
introductions preceding the respective chapters.

Chapter 1 Here we treat the general AKNS system on the operator level. We formulate
an operator version and give in Theorem 1.2.1 a solution depending on two completely inde-
pendent operator-valued parameters. The main part of the chapter is then concerned with
the proof of the solution property. The development of the general theory is continuously
accompanied by a discussion of the prototypical equations (the Nonlinear Schrédinger, the
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sine-Gordon, and the modified Korteweg-de Vries equations).

Chapter 2 Next we explain how to extract scalar solution formulas from our operator
soliton. The basic idea is to apply a functional with convenient multiplicativity properties.
It will turn out that this can only be done for operator solutions with specified range (see
Theorem 2.2.1), and we subsequently discuss a systematic way to arrange this. Next we
use the theory of traces and determinants on Banach ideals to derive determinant formulas
which are crucial for our applications. Our main result, after a further useful amelioration,
is recorded in Theorem 2.4.4.

Chapter 3 In this excursus we turn to the KP equation. In Theorem 3.2.1 we construct
a solution of the operator-valued KP. The hard part of the proof is to treat non-commuting
parameters. Then we extend the scalarization process such that it gives access not only to
the original scalar KP, but also to the more complicated matrix KP (see Theorem 3.3.4. and
Theorem 3.4.9). Finally we give an alternative appproach via the bilinear KP and Miura
transformations. The chapter concludes with a series of examples and computer graphics,
mainly for resonance phenomena in the context of the KP-II, indicating how to exploit our
solution formula in future research.

Chapter 4 In the first part we study soliton-like solutions of the general AKNS system.
These are the solutions which reduce to N-solitons if appropriate constraints are imposed.
In Theorem 4.1.4 we obtain explicit expressions of these solutions. The second part may be
considered as a preparation for the deeper study of negatons. We arrange the needed for-
mulas, clarify the notion of negatons, and provide a motivating discussion of the particular
case of N-solitons. The most substantial results of the second part are Proposition 4.3.7,
Proposition 4.4.2, and Proposition 4.4.7, where conditions for global regularity and reality
are proved.

Chapter 5 The contents of this chapter is the complete asymptotic description of nega-
tons for the C-reduced AKNS system. This is done in Theorem 5.1.2. In Theorem 5.2.2
we provide a corresponding result for the R-reduced AKNS system. It is worth mentioning
that in the latter case we integrated also the simplest type of formation of solitons into the
analysis. Formations are solutions forming bound states in some sense and cannot be sep-
arated in asymptotic terms. Our result means that negatons can also consist of breathers,
not only of solitons. The largest part of the chapter is concerned with the geometric part
of the proof of Theorem 5.1.2. To illustrate our result we finally gather computer graphics
of negatons for the sine-Gordon and the Nonlinear Schrédinger equations.

Chapter 6 Here we supply the calculations needed to determine the phase-shifts in The-
orem 5.1.2. The argument reduces to the evaluation of very complicated determinants. The
main result in Theorem 6.1.1 is a substantial generalization of a classical identity of Cauchy.

Chapter 7 In Theorem 7.5.5 we construct countable superpositions of negatons for the
G-reduced AKNS system, and in Theorem 7.6.3 for the R-reduced AKNS system even
superpositions where beside solitons also breathers can be admitted. Because of the integral
terms appearing in the AKNS system, it seems unavoidable to assume that the appearing
waves are of controlled width. But for equations for which the integral terms cancel, we can
go further and drop this restriction (see Theorem 7.5.11 for the Nonlinear Schrédinger and
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Theorem 7.6.4 for the modified Korteweg-de Vries equations). The idea is to compensate the
non-solvability of elementary equations by a gain of summability obtained by appropriate
factorizations through intermediate spaces, in the spirit of the Grothendieck theorem.

Appendices In Appendix A we establish the (non-obvious) link to the standard way
of constructing negatons by Wronskian determinants. These formulas can be derived via
Darboux transformations [56]. Appendix B contains a concise introduction to the theory of
traces and determinants on quasi-Banach operator ideals. In Appendix C we give, for the
sake of comparison with the general case, a straightforward proof of Theorem 3.2.1 in the
particular case of commuting parameters. This result was already stated, but not proved,
in a former joint article [18] with B. Carl.
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Chapter 1

Operator-theoretic treatment of

the AKNS system

One of the main mysteries in soliton theory is whether there is a precise meaning of
integrability or, at least, whether the familiar soliton equations of mathematical physics can
be understood as members of a higher structure. Building on important work of Zhakharov
and Shabat [101], it was discovered by Ablowitz, Kaup, Newell, and Segur [3] (see also
[5]) that a good deal of the most prominent soliton equations (the Nonlinear Schrédinger
equation, the Korteweg-de Vries and modified Korteweg-de Vries equations, the sine-Gordon
and sinh-Gordon equations) can in fact be obtained as reductions of a general system of two
equations. Moreover, the structural difference between the Nonlinear Schrédinger equation
with its typical complex nature and the remaining above mentioned equations is reflected
by a different level of reduction.

The operator method used in the present work was first developed for particular equa-
tions ([8], [18], [88], [89], [92], see [19] for a comparison and further references). It turned
out that there is no canonical way to guess the appropriate operator equation, and it was
not clear why certain equations required much more complicated twists than others.

This was one of our main motivations to obtain a complete operator treatment for the
general AKNS system, which would yield the comprised individual equations via reduc-
tion. As for the operator equation we can build on previous work by Bauhardt and P&ppe
[10]. But we need several extensions: Most importantly, their operator solution is not a
generalization of the full scalar one-soliton (1.3), (1.4) with two parameters a, b but only
of the one-soliton subject to the constraint @ = b. As a consequence it seems hard (if
possible) to derive merely the full family of N-solitons, whereas our formula with the two
operator-valued parameters yield them via the most obvious choices. Furthermore the ver-
ification of the solution property in [10] is only formal to a certain extent. These gaps are
supplemented in Theorem 1.2.1 and its proof. With respect to scalarization, [10] does not
furnish handy determinant formulas, which are badly needed in our applications. This will
be the content of Chapter 2. It should be mentioned that there was a different operator
approach by Blohm [13], [14]. Based on operator algebra of Marchenko [55], he described a
computational algorithm how to construct solutions for a hierarchy closely connected with
the ZS system. But he did not consider uniform formulas for the whole system.

We proceed as follows. First we briefly discuss the AKNS system together with a number
of prototypical soliton equations, which are contained in it.

Section 1.2 contains the essence of the chapter. Here we formulate the operator-valued
AKNS system and construct in Theorem 1.2.1 a solution class depending on two indepen-
dent operator-valued parameters. This operator solution is the basis of all later applications.

The next task is to take reductions into account. On the operator level, we hit on



certain difficulties, which we will explain at the examples of the prototypical equations. It
will turn out that reductions have to be treated in connection with scalarization, which will
be the topic of Chapter 2.

1.1 The AKNS system

For the sake of motivation we will, following [3], [5], recall the basic facts on the scalar
AKNS system and its reductions. In particular we will record how to obtain the Nonlinear
Schrédinger, the modified Korteweg-de Vries, and the sine-Gordon equations as special
cases.

For given non-trivial polynomials f, ¢ € Cz] the AKNS system reads

() =100 ()

It is an integro-differential system in two unknown functions r(z,t), ¢(z,t). By T,, we
denote the (r, ¢)-dependent operator

(=)= (e ) -

v vz +2¢( 7 qudé+ [T rvde)

Interpreting ( T, )n as n-fold iteration, we obtain operators f ( T, ), g ( T, ) acting on
r r
pairs of functions and arrive at (1.1) by inserting ( ) , ( “.
—-q Gt
Often it will be more conceptual to formulate conditions in terms of the rational function

fo= f/g. Some calculations even get formally simpler for

()= tma) ()

But we will avoid this because manipulation with fy (an) leads to serious justification
problems concerning invertibility.

To settle existence in (1.1), one may restrict to functions r, ¢ which are sufficiently
smooth on an open set R, x (t1,2) and decay sufficiently rapidly for z — —oo.

In practice, this means that explicit formulas for f ( T, ), g ( T, ) can be computed,
where we are allowed to simplify expressions by (i) interchanging differentiation and inte-
gration and (ii) applying partial integration on intervals (—oo, ) with zero boundary values
in £ = —oo (see Section 1.1.1 for an example).

It is beyond the scope of these introductory remarks to give an adequate impression
of the by now classical theory of (1.1) as developed by means of the inverse scattering
method. However we mention that without further restrictions (1.1) is not an integrable
system and the inverse scattering method applies only to a certain extent. In particular
the corresponding Levitan-Gelfand-Marchenko equation need not always be solvable.

Geometrically this is reflected by the existence of solutions with instantaneous singu-
larities. As remarked in [3], V.A, one may for example look at the one-soliton, depending
on four complex parameters a, b, o, 1. Setting

Uo,t) = explaz + fola)t +¢), i, 1) = explbz — fo(=B)t + ),
the one-soliton is given by

g = (a+b)m/(1—{m), (1.3)
= (a+b) /(1 —{Im).



Now it can easily be arranged that the denominator does not vanish, say, for t = 0 and all
x € R, but that there are singularities after a finite time ¢p. Hence the AKNS system is
not specific enough to prevent solutions from exploding!

The key idea is to enforce integrability by reduction. A first reduction, which we will call
C-reduction, consists in requiring » = —¢ leading to the condition fy(z) = fo(—%) for the
rational function fo = f/g. For the one-soliton (1.3), C-reduction implies @ = b, ¢ = ¥ +ix
(see [3]), and a straightforward calculation yields

q(z,t) = —Re(a) el Im (T (z, 1)) cosh™* (Re(F(w,t)))
for I'(z,t) = ax + fola)t + ¢.

In particular, ¢ is regular everywhere, has amplitude Re(a), and moves with velocity v =

~Re(fo(a)) /Re(a).
For illustration the reader finds figures for ¢ = im and varying a below. The figures
show the modulus (thick line) and the real part (thin line) of ¢(z, 0) for the fixed time ¢ = 0.

4 4
0.2 0.2
-10 -5 5 10 -10  —=5 7 N5 — 10
0.2 0.2
0.4 0.4

In all diagrams Re(a) = %, and successively Im(a) = %, %, 2, and 5.

It is an important result that stability of one-solitons is typical. In [3] (cf. [26]) it is shown
that the inverse scattering method applies to full extent to the C-reduced AKNS system.

There is a second reduction where one assumes in addition that the functions r, ¢, and
fo are real. Then a in the one-soliton of the C-reduction is real, and ¢ = ¢¢ + itk with
wo € R, k € Z. We obtain

q(z,t) = —ae cosh™ (I'(x,1)) for I'(z,t) = az + fo(a)t + o,

where ¢ = —1 for k£ odd and ¢ = 1 for k even. Note that there is no oscillating term. We
call the second reduction the R-reduced AKNS system.



The figures below show ¢(z,0) for e = —1 and varying values of a. To plot clear figures,
here we added position shifts ¢g.

-15 -10 -5 5 10 15

Successively a =1, %, and 2.

1.1.1 Prototypical equations in the AKINS system: Nonlinear Schrodinger,
sine-Gordon, and modified Korteweg-de Vries equations

There are three prototypical equations contained in the AKNS system: The Nonlinear
Schrédinger equation (NLS), the modified Korteweg-de Vries equation (mKdV), and the
sine-Gordon equation (sG). In the sequel we explain how they can be obtained and why
they are prototypical. In the first example we will perform the ensuing calculations in
detail.

The Nonlinear Schrédinger equation

To obtain the Nonlinear Schrodinger equation, we consider fo(z) = —iz2. In other words,
we have f(z) = —iz?, g(2) = 1. Because

() - (e )
T, _ 7
qx+2q(ffoo rqgdé — [* _rq dg) qx

(L) = ()= el

—lzz + 2(]([1000 T'zq df + ffoo rqy df)
Tow — 2T ffoo (rQ)x df . ( Tor — 27‘2(] )
— ez + 2q ffoo (rq), d€ O\ — Qe+ 2¢%r )

the system (1.1) associated with this choice of fy becomes

xr

—ir 4 rem — 2r%q¢ = 0,
iqt + Qoo — 2(]27‘ =
Actually this choice is quite natural, since we aim at an equation which is first order in the
time vaiable t and second order in the space variable x. Thus it is immediately clear that

fo should be a polynomial of degree two.
In particular, after the reduction r = —g, we arrive at the NLS



If we omit all possible position shifts, the one-soliton of the NLS is

q(z,t) = —Re(a) e—i(Im(a)w + [Im(a)? = Re(a)?]1) cosh™* (Re(a) [ @ + 2Im(a)t | )
Its amplitude is determined by Re(a), whereas its velocity equals v = —2Im(a). In partic-
ular, both can be chosen independently.
The modified Korteweg-de Vries equation

For the modified Korteweg-de Vries equation, the right choice again is a polynomial. If we
take fo(z) = —2>, then (1.1) reads

Tt + Toge — 6rreq = 0,
Gt + Goww — 6(](]957‘ = 0.
In contrast to the first example, here we not only assume r = —¢ but also that ¢ is real.

Consequently r = —¢g, and we end up with the mKdV

As for the one-soliton, we get, neglecting again position shifts,

q(z,t) = —acosh™! (a[ac - a2t]),

2

where @ € R. Here the amplitude —a and the velocity v = a* are coupled.

The sine-Gordon equation

Whereas in both other examples fy was a polynomial, the sine-Gordon equation is obtained
for fo(z) = 1/z. Using the right interpretation of the system (1.1) with ¢(z) = z, f(z) =1,
we get

Tte — 27‘/ ((]T‘)t df -r = 07

— 00

qm—Qq/ (qr)¢dé —q = 0.

— 00
In particular, the same restriction as in the second example, r = —¢q, ¢ real, yields a
derivative version of the sG,
xT
Qo + 2q/ (¢%): dé = q. (1.7)
—00

Its one-soliton is
q(z,t) = —acosh™ (az + t/a)

for a € R. Again amplitude —a and velocity v = —1/a? are coupled.
The relation of (1.7) to the usual form of the sine-Gordon equation u,; = sin(u) is given
by the transformation u = =2 [* ¢ d¢ (see [3]). More precisely, if u is a solution of the

sine-Gordon equation decaying sufficiently fast for + — —oo, then we have for ¢ = —u, /2
xT 1 xT
Gtz + 2(]/ (f]2)t df — _5 (utxac + ux/ Uyt Uy df)
1 ) L 1 €
= 3 ((sm )y + ux/ sin (), df) =3 (Cos(u)ux — ux/ (cosu), df)
= gyl xgr_noo cos(u) = q.

Thus ¢ = —u, /2 solves (1.7).



Nevertheless, the sine-Gordon itself can also be treated directly by the operator-method
presented in this work. The reader may find the corresponding results (including the
rigorous asymptotic analysis of negatons) in [88], [90].

Maybe it is worth remarking that v = —2 ffoo qd¢ is just the kink or antikink solu-
tion of the sine-Gordon equation (depending on the sign of a). Transferred to laboratory
coordinates, one obtains the usual pictures.

1.2 The non-abelian AKINS system

Next we present an operator-valued version of the AKNS system. Our approach is a gen-
eralization of the work of Bauhardt and Péppe. In [10] they introduced and studied the
system (1.8), (1.9). The most important difference to our treatment is that we deduce
solution formulas with two operator parameters. This will, already in the case of solitons,
be essential to obtain complete families of solutions (see Remark 1.2.12 b)).

For given polynomials f, g € C[z], the non-abelian AKNS system reads

9 (Tra) (gi) =/ (Tre) (_]Z)) 7 (1.8)

where the unknown operator-valued functions R(z,t), Q(z,t) take values in L(F, E), L(FE, F),
respectively, and g g denotes the operator

(U) e (U> [ U= (BJTQUAVRYE+ [T (UQ+ RV)d R)
v BN Vot (Q 7L (UQ+ RV + [7(QU + VR)EQ)

9

(1.9)

for U = U(x,t) € L(F,E),V = V(a,t) € L(E,F). The operators f ( Tro ), 9 ( Tr,o )
are defined as in the preceding section. For Banach spaces E, F', we denote by L(F, F) as
usual the Banach space of bounded linear operators equipped with the standard operator
norm.

Existence of the expressions appearing in (1.8) may be ensured similarly as in the
scalar case. One requires that R, () are suffliciently smooth and behave sufficiently well
for # — —oo. More precisely the latter means for the operator-function R = R(z,t): For
some sufficiently large ng € N (depending on the degrees of f, g), one requires that the
t-dependent expressions
8/1
oz~

| B 1) llon=sup (14 [a]) | SRz, 1)

rz€R
are finite for k, A < ng. Moreover, the map ¢ — R(-,t) has to be continuous with respect to
Il - Ik, 5y A < ng. Finally, the t-derivative Ry(z,t) is required to have the same properties.

The main point is that then the integrals appearing in the definition of 7Tr g can be
evaluated as Bochner integrals. The continuity hypothesis in ¢ ensures that in (1.8) both
sides are at least continuous.

However, these aspects are somewhat peripheral to our purposes, because existence
will always be evident in our main results, and the solutions will even decay faster than
any polynomial together with their derivatives. Therefore we do not make an effort to
state optimal assumptions on smoothness and decay. Roughly speaking, almost all later
difficulties will be situated in the target spaces L(F, ), L(FE, I'), and not in spacetime.

The following theorem is our fundamental tool for the study of the AKNS system.



Theorem 1.2.1. Let E, I' be Banach spaces, A € L(F), B € L(F') 0 constant operators
such that spec(A) U spec(—DB) is contained in the domain where fy is holomorphic.
Assume that L = L(z,t) € L(F,E), M = M(z,t) € L(E,F) are operator-valued
functions which, on a strip {(z,y)|z € R,y € (t1,t2)}, are sufficiently smooth and behave
sufficiently well for © — —oo, and solve the base equations
L,= AL, L= fo(A)L,
M, = BM, M, = — fo(~B)M.
Assume furthermore that (I — LM), (I — ML) are invertible on R x (t1,12).
Then
Q = (I-ML)™BM + MA), (1.10)
R = (I-LM)™' (AL +LB). (1.11)
is a solution of (1.8) on R x (t1,t3).
Note that the expressions fo(A4), fo(—B) do not cause complications because the arguments

A, B are bounded operators and the holomorphic function calculus works in the usual way

(see [82], [97]).

Remark 1.2.2. a) In [10] several additional technical assumptions are made. But the
main difference is that [10] assumes A = B.

b) The solution (1.10), (1.11) is formally analogous to the one-soliton. Indeed, we
recover (1.3), (1.4) if we take all functions scalar-valued. In the applications we shall see
that the operator-valued parameters A, B give access to a huge variety of solutions.

c) A comparison with the inverse scattering method supports the point of view that the
underlying spectral data are encoded in the operators A, B. The fact that A, B map between
different Banach spaces reflects that, in the scalar case of the general AKNS system, the
contributions of r(x,0), q(z,0) to the spectral data are completely unrelated.

Before entering the proof, we collect some preparational material. We start with the
following easy observation.

Lemma 1.2.3. Let E, F' be Banach spaces and S € L(F,FE), T € L(F,F) arbitrary
operators such that the inverses (I —ST)™1, (I-TS)~! exist. Then the following identities
hold:

(I-TS)'T = T(I-ST)", (1.12)
SU-TS)™'1 = (I-8ST)"' -1, (1.13)

Proof To verify (1.12), we use T(I — ST) = (I — T'S)T and multiply it by (I — ST)~1
from the left and by (I — T'S)™! from the right. As a consequence,

SU-TS)™'T = ST(I-ST)™!
= (1 — (I - ST)) (I - ST)~
= ([-ST)'—1
which is (1.13). O

Next we recall the non-abelian differentiation rule for inverse operators.

Lemma 1.2.4. Let T =T(s) € L(F) be a family of operators depending on a real variable
s which is differentiable with respect to s and invertible for all s € R. Then T71(s) is
differentiable, and we have

Tl = 771,77

S

10



In the proof of Theorem 1.2.1 we will introduce certain operator-valued functions. The
subsequent lemmata contain rules for the manipulations with these functions.

Lemma 1.2.5. Let I/, I be a Banach spaces and A € L(E), B € L(F) constant operators.
Let L = L(s) € L(F,E), M = M(s) € L(E,F) be operator-valued functions which are
differentiable with respect to the real variable s and satisfy the base equations

L,=AL, M, = BM,

and assume that (I — LM), (I — ML) are always invertible.
Furthermore, let A, € L(F), B, € L(F), n € Ny, be constant operators with [A, A,] =
[B, B,] =0 for all n.

Define the following operator-valued functions

T = (I-LM)" (AL + LB), T=(I-LM)""(A+ LBM),
S=(I—ML)Y™ (BM + MA), S=(-ML)" (B+ MAL),

and, for n € N,
T, = (I - LM) Y (A,L+ LB,), T, =(I—-LM) " (A, + LB,M),
Sp=(I ML) (B,M+ MA,), Sp=(I - ML) (B, + MA,L).

Then the following derivation rules hold for all n € Ny:
T, = TT,, (1.14)
T,, = TS, (1.15)
Sn,s = §Sn7 (116)
Sps = ST,. (1.17)

Proof We start with (1.14). From Lemma 1.2.4, the base equations, and the fact that
[A, A,] = 0, we observe

Tos = —(I—LM)™Y(~LM),(I - LM)"! (AnL + LBn)
(I — LM)! (AnL ¥ LBn)S
— (- LM)™ ((AL T LB)M) (I — LM)™! (AnL T LBn)
+(I = LM)" A( AL+ LB,)
— (- LM)™ ((AL +LB)M + A(I - LM)) T,
— (- LM)! (A + LBM) T,
= 11,
Analogously we find
Tos = —(I—LM) Y (~LM),(I - LM)~! (An + LBnM)
+(1 - L)~ (A, + LBnM)S
— (- LM)! ((AL T LB)M) (I — LM)™! (An T LBnM)

+(1 = LM)~ (AL + LB) B, M)

11



_ (M(I — LM)~H (Ay + LBM) + BnM)
— T(I- ML) (M(An + LB, M) + (I - ML)BnM)

= T (- ML) (MA, + B,M)
~- TS,

where we have in addition used Lemma 1.2.3 for the fourth identity.
This is (1.15). The argument for (1.16), (1.17) is completely symmetric. O

The next lemma only concerns constant operators.

Lemma 1.2.6. Let F, I’ be a Banach spaces and L € L(F, E), M € L(E, F) be operators
such that (I—LM), (I—ML) are invertible. Furthermore, let A, A,, € L(E), B, B, € L(F),
n € Ny, satisfy (i) [A, A,] = [B,B,] = 0 Vn and (ii) Apy1 = A,A, Boy1 = —B,B ¥n.
Define
T = (I-LM)" (AL + LB), T=(I-LM)""(A+ LBM),
S=(—-ML)" (BM + MA), S=(I—-ML)" (B+ MAL),

and, for n € Ny,

T, = (I - LM) Y (A,L+ LB,), T, =(I—-LM) " (A, + LB,M),
Sp=( ML) (B,M+ MA,), w=(I—-ML)" (B, +MA,L).

Then the following identities hold for all n € Ny:

o~

T,T-T.,S = T, (1.18)
TT,-TS, = Top1, (1.19)
T.T—T,5 = Tuy, (1.20)
TT, -TS, = Top, (1.21)
5,8 =8, T = =841, (1.22)
55, - ST, = —-S,41, (1.23)
5,8 =8, T = —S,41, (1.24)
58, — ST, = —Su41. (1.25)

Proof Let us start with (1.18). We calculate
(I — LM) T,S = (AnL + LBn) (I — ML)™! (MA T BM)
= A (LU= ML) M)A+ LB, ((1- ML)~ ) BM
VLB, ((1 - ML)—lM) ATt A, (L(I - ML)_l) BM.

At this point we apply Lemma 1.2.3 to the large brackets in order to change (I — M L)~!
into (I — LM)~"! wherever it appears. We get

(I — LM)T,S
- An((I LMY - I)A + LB, (I M- LM)—IL) BM

LB (M(I = M)~ ) A+ A, (1= LM)~'L) BM

_ (AAn _ LBBnM) + (An + LBnM) (I — LM)™! (A + LBM)

12



— (AnH + LBnHM) + (An + LBnM) (I — M)~ (A + LBM)
— (I—LM) ( T + ﬁj)

which proves (1.18). As for (1.19), we can use completely the same line of arguments just
exchanging the roles of A and A4,, B and B,.
As for (1.20), we calculate

(1= LM) T,7 = (A + LB,M) (1 = LM)™ (AL + LB)
~ LB, (M(I - LM)—lL)B T An((I - LM)—l)AL
LB (M(I = LMY= ) AL+ A, (T = LM)™'L) B
- LBn((I ML) - I)B T A, (1 . ML)—lM) AL
+LB, (1= ML) M) AL+ A, (LI = ML) B
- (AAnL - LBBn) T (AnL T LBn) (I — ML)~ (B T MAL)
- (AnHL T LBn+1) T (AnL T LBn) (I — ML)™! (B T MAL)
= (1= 2M)(To1 + T,8),

and again (1.21) can be verified by the same calculation, exchanging the roles of A and A4,
B and B,,.

Now we turn to (1.22). Here the argument is symmetric to the verification of (1.18),
but there is an additional sign in front of the term §n+1, which is due to the difference in
the recursion relation for B,,. We observe

(I — ML) S,T = (MAn + BnM) (I - LM)™! (AL T LB)
= Bu(M(I— M)\ L) B+ MA, (1= M) )AL
1B, (M(I - LM)_l) AL + MA, ((1 - LM)—lL)B
= Bu((1= ML) = 1) B+ MA (14 L(I = ML)™' M) AL
1B, ((1 - ML)—lM) AL + MA, (L(I - ML)_l) B
= (= BB.+ MAAL) + By + MALL) (I = ML)™ (B + MAL)
= (Buyi + MAwi L) + (Bo+ MALL) (1 = ML)~ (B + MAL)
= (1= ML)(311 4 5,5),

and (1.23) follows by exchanging A and A,,, B and B,.
Finally, we check (1.24). Here the arguments are close to the calculations for (1.20)
except for the different recursion relation.

(I — LM) 5,8 = (Bn + MAnL) (I - ML) (BM T MA)
— MA, (L(I - ML)‘lM)A + B, ((1 - ML)‘l) BM

+M A, (L(I = ML)™ ) BM + B, (1 - ML) M) A

13



- MAn((I LMY - I)A + B, (I M- LM)—IL) BM
+M A, (1= LM)™ L) BM + B, (M (I - LM) ") A
- (BBnM - MAAn) T (BnM T MAn) (I — LM)™! (A T LBM)
- - (BnHM T MAn+1) T (BnM T MAn) (I — LM)~! (A T LBM)
= (1=ML)( = Sups +5.7),

Exchanging the roles of A and A,, B and B,,, this argument also shows (1.25).
This completes the proof. O

The last preparation concerns the existence of the integrals in Theorem 1.2.1.

Lemma 1.2.7. The derivative of the operator-valued functions Q = Q(z,t), R = R(z,t)
given in Theorem 1.2.1 with respect to t is:

Qi = (=ML (= fo(=B)+ MA(A)L) Q
By = (1-LM)™'( fo(4) = Lfe(~B)M) R.

Proof The calculations are quite similar as the ones in Lemma 1.2.5. The only difference
is that here we use the base equations L; = fo(A)L, M; = — fo(—B)M. Let us start with

QO = —(I— ML)y (~ML),(I - ML)~ (BM T MA)
(I - ML) (BM T MA)t
= (1= ML) (= fo(=B)M + M fo(A)) L) (I - ML)~ (BM + MA)
(I — ML)V~ fo(~B)) (BM T MA)
= (=ML (= fo(=B)M + Mfo(A))L — fo(~B)(I - ML))Q
= (1ML (= fo(=B) + Mfo(A)L) Q,
and, analogously,
R, = —(I—LM)™ (~LM)y(I — LM)~! (AL T LB)
+(1 - M)~ (AL + LB)t
— (- LM)! ((fO(A)L - Lfo(—B))M) (I — LM)™! (AL T LB)
+(1 = LM)™ fo(A) (AL + LB)
= (1= 2M)" ((o(A)L = Lfo(=B)) M + fo(A)(I — LM)) R
= (1= LMy (folA) = Lio(=B)M) R,
which completes the proof. O

Let us recall a specific form of the fundamental theorem of calculus for operator-valued
functions depending on a real variable (see for example [24]).

14



Lemma 1.2.8. Let F, F' be Banach spaces and T = T(s) € L(E, F) a family of operators
which is continuously differentiable with respect to a real variable s and satisfies the boundary
condition T'(s) — 0 for s — —oo. Then, for all s,

T(s) = / C Ty(0)do.

— 00

Lemma 1.2.9. Let L = L(x,t), M = M (z,t) be as given in Theorem 1.2.1. Then, for all

U
P

constant operators Ae L(E), B € L(F), the operator-functions

(I - LM)™" (AL + LB),
(I - ML)""(MA+ BM),

Ly =~

decay as ¥ — —o0.

). To this end, fix ¢t and choose

Proof It suffices to show the assertion for § = §($,t
< 1. Then, by the Neumann series

x sufficiently large such that ||L(z,t)]], ||M(z,?)||
argument,

o] 0 1
= )] = 1TSS < S ML =
> 2 T TMITIET

Since § = (1- ML)_I(EM + Z\Lzl\)7 the boundary condition for 5 follows easily from

N ~ ~ M
IS < (1Al + 1Bl — 1

S 1| ——"
- L—[|M][]IL]]

as & — —oo by assumption. ]

Now we are in position to give the proof of Theorem 1.2.1.

Proof (of Theorem 1.2.1) The prove is divided into three steps. The aim of the first
and the second step is to derive an explicit expression for the n-fold iteration ( Tr,Q )n

Qt ’

R
-Q)/)’
respectively. The last step combines these expressions to derive (1.8).

Step 1: To start with, we define the following hierarchy of auxiliary operator-valued func-
tions for n € Ng:

R, = (I-LM)™ (A”L - L(—B)”),
B, = (1- LMy~ (4" = L(-B)" M),
Qn = (I-ML)™ (MA” - (—B)”M),
Qu = (I=ML)™(MA"L - (-B)").

Note Rp = 0, R1 = R, ]%0 = I, and, correspondingly, Qo = 0, Q1 = @, @0 =—-I. In

addition we define

Un = Ean, and Vn - @n@l
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Then we claim that, for n € Ng,

(Tre)" (_RQ) = (g:) : (1.26)

Proof of Step 1: By Lemma 1.2.5 (with A4, = A", B, = —(=B)"), the differentiation
rules for the operator-valued functions R,,, R,, ()., and @, are

Ru.. = RiR,, (1.27)
Ry = RiQy, (1.28)
Que = Q1Qu, (1.29)
Que = QiRn. (1.30)

Next we state rules for the evaluation of certain products of the R, En, @y, and @n,
following from Lemma 1.2.6 (with the same choices for 4,,, B, as above),

o~

BBy = RQi = Ruy, (1.31)
RuRi = R.Qi = Ruy, (1.32)
RiR, = RiQn = Ruy, (1.33)
Qu@1— QuR1 = —Quy1, (1.34)
QnQ1— QuB1 = —Quy, (1.35)
O1Qn — QiR = —Quy, (1.36)
Now, for n € Np, we in addition define the operator-valued functions
W, = R,(1, and Zy = QnlRy,
and claim that the following recursion relations hold:
“Unt1 +Unz = WpBi+ B2y, (1.37)
Vil +Vae = ZuQ1+QiWy, (1.38)
Wie = UpQi+4 RV, (1.39)
ne = QiUs+VyRy. (1.40)

Indeed (1.37)—(1.40) can be seen as follows. For (1.37), we first use the derivation rules
(1.27), (1.28), and then (1.31) to find

Une = RoBio+RooRy = (RoBi+ RiQu) Ry
= (En-l—l + (R,Q1 + R1Qn))R1
= Upp1+ (WoRi + R1Z,).
Analogously, (1.38) follows from first applying (1.29), (1.30), and then (1.34):
Vie = @n@l,x + @n,x@l = (@n@l + Q1 R,)Q1
= (—@n+1 + (Qan+Qan))Q1
= Vi +(@QiW, + Z,Q1).

To prove (1.39) we first apply the derivation rules (1.27), (1.29), and then (1.32) and (1.33).
This yields

Wie = RyQiz+ R,,Q1 = (Rn@1+§1Rn)Q1
= ((-Rupr + BaR) 4 (Rogs + i) )@

= (Ean‘l’Rl@\n)Ql
- Uan‘I'Ran
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Finally we check (1.40). Here we again need the derivation rules (1.27), (1.29), then we use
(1.35) and (1.36),

Zn,x — Qn,l’Rl + Qan,l’ — (@lQn ‘|’Qn§1)R1
= ((—Qn+1 + QiR + (Qnyr + @nQ1))R1

(Qlén +@nQ1)R1
QlUn + Van

Thus we have shown the recursion relations.
Inserting (1.39), (1.40) into the recursion relation (1.37), and using Lemma 1.2.8, we
obtain

xr

U1 = Upo— (/1’ (UnQ1+R1Vn)de1—I-R1/ (QlUn‘I'Van)dg)

— 00 — 00
xr

= Up,— (/x (UnQ—l—RVn)de—I—R/ QUi+ Vi R)E ).

— 00 — 00

where the integrals exist because W,,, Z,, decay for 2 — —oo (see Lemma 1.2.9).
Analogously, inserting (1.39), (1.40) into the recursion relation (1.38), we get

Vi = Voot (/;(QUn+VnR)d5Q+Q/;(UnQ+RVn)d5) .

U, U, . .
In summary, we have shown (V +1) = TR0 (V ) , and thus, by induction,
n+1 n

Un _ n UO _ n R
(v2) =t (i) =tma ) (o)
This completes the first step. O

Step 2: The strategy of the second step is essentially the same as in the first step. Now
we need a second hierarchy of auxiliary operator-valued functions. For n € Ny, we define:

T,o= (1—oM) 7 (A" fo(4)) L= L ((=B)"fo(=B)) ),
T, = (- 1) (A fo(4)) = L ((=B)"fo(=B) ) M),
So = (1= ML) (M (A fo(A)) = ((=B) fo(~B) ) M),
So = (1= ML)™ (M (A" fo(A)) L= ((=B)" fo(-B) ) )

In addition we define
ﬁn = fany and Vn = §nQ1

Then, for n € Ny, we claim that

(Tra )" (gi) - (%) : (1.41)

Proof of Step 2: Again the differentiation rules for the operator-valued functions 7),, fn,
Shn, and ), can be taken from Lemma 1.2.5 (here with A, = A" f4(A), B, = —(—=B)" fo(—B)).
As a result, it holds

Tn,x - ElTny (142)

o~

Tn,x - R15n7 (143)
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)
o~

The necessary rules for the evaluation of certain products of the 7, fn, S, and §n are
taken from Lemma 1.2.6 (with the same choice for A,, B, as before), yielding

~

TRy~ T,Q1 = T, (1.46)
TR~ ToQ1 = Thpa, (1.47)
ElTn - R1§n = Tht1s (1.48)
S2Q1— SRy = =S4, (1.49)
S2Q1— SRy = =S4, (1.50)
Q180 — 1T, = —Spi1. (1.51)

Next we introduce, for n € Ny, the operator-valued functions
W,=T,0;, and Z,=S,R,.

and derive the following recursion relations:

_~n-|—1 + ﬁnl’ = Wan + len, (1.52)
Vot1 + Voe = Z,Q1 4+ Q1 W, (1.53)
Woe = U.Q1+ RV, (1.54)

Zn,x = Q1(~]n + ‘7an7 (1.55)

To prove these recursion relations we proceed as follows. As for (1.52), using the derivation
rules (1.27), (1.43), and then (1.46), we see

Upe = TaRio+Tholi = (TR + RS, Ry
= (fn-l—l + (1,Q1 + Rlsn))Rl
= Uyt + (WoRL + R Z,).
Accordingly, (1.53) follows from the derivation rules (1.29), (1.45), and then the rule (1.49),
Viw = 81Que+ 8,001 = (5,01 + Q1 T,) Qs
= ( - §n-|—1 + (SR + QlTn))Q1
= _~n-|—1 + (Q1Wn + Zan)-

To see (1.54), we apply the derivation rules (1.29), (1.42), and subsequently use (1.47) and
(1.48). This yields

Wie = T,Q1:+T,.01 = (Tn@1 + §1Tn)Q1
= ((—Tn+1 + j;an) + (Tn—l—l + Rlé\n))Ql
= (Tan + R1§n)Q1
= RV, +U, Q1.

Finally, (1.55) follows from the derivation rules (1.27), (1.44), and then the rules (1.50) and
(1.51),

Zn,x - Sn,le + San,x — (len + Snél)Rl
= (=St + @iT) + (Supt +5.Q0) ) s

(Qlfn + §nQ1)R1
QlUn + Van

Thus the recursion relations are shown.
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Inserting (1.54), (1.55) into the recursion relations (1.52), (1.53), and using Lemma
1.2.8, the same argument as in the first step yields
Uir = Upp— (/ (U,Q + RV,)d< R + R/ QU+ Vi R)dg )
Vot = Voot ([ @U+TamacQ+Q [ G+ RV )
(note that Wn Zn decay for x = —oo by Lemma 1.2.9, which guarantees the existence of
the integrals).
Uﬁ+1

~ 7.
In summary, | ~ =Tro | ~ |, which by induction implies
L7n—|—1 L%

fjn . n (70 o n Rt
(m) =ra) (v) (1) ()
where we have used Uy = TORl = R, and V, = §0Q1 = Q¢ (confer Lemma 1.2.7).
This completes the second step. O

Step 3: To conclude the proof, we assume that the polynomials f, g are concretely given

N
f(z) = Z anz", g(z) = anz”.

To have the same order for both polynomials we allow leading coefficients to vanish. Then
the connection between U,, and U, is given by

N N
N b0, = (Z bnfn) R,
n=0 n=0

N
- - LM)_I(an( (A" fo(A) ) = L ((=B)"fo(~B) ) M))R1

n=0

. i n=0
= (Y k) B
D?ZO
= Y a,Uy, (1.56)
n=0
and, analogously,
N _ N
DbV =) anVi. (1.57)
n=0 n=0
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As a result,
R, < R ay s, (U,
s (5) = Suomer () 2 ()
(1.56),(1.57) al (1.26) al R
Zan( ) = Zan(TRQ)n (_ )
n=0 n=0 Q
= [ (Tre) (_];).

This completes the proof. O

Remark 1.2.10. One major difference between our treatment and [10] is that the latter
authors work directly with a meromorphic function fo = f/g. This leads to serious difficul-
ties concerning invertibility (or more general concerning the holomorphic function calculus
on non Banach spaces) for Trq. In fact, a major part of the arguments in [10] is only
formal.

That is also the reason why we restricted to polynomials f, g. The point is that we only
need iterations of Trg up to a certain finite degree. In all known applications polynomials
are sufficient.

1.2.1 Non-abelian versions of the prototypical equations

Transition from Theorem 1.2.1 to soliton equations is accomplished in two steps. First
one needs an appropriate choice of fy determining the coupled system under consideration.
Secondly, one reduces to a single equation by adding a linear relation between R and ().

Here we will perform the first step. The second step will be postponed because it
requires (at least for the G-reduction) further choices and becomes only transparent when
considered in the context of scalarization. But we will briefly discuss the difficulties which
have to be overcome (see Remarks 1.2.12, 1.2.14).

The non-abelian Nonlinear Schrodinger equation

As in the scalar case we choose fo(2) = —iz? (confer Section 1.1.1). Then
. ( R ) (B (RIZLQR-QR) de+ [ (FQ - RQ)dER) (R)
A\ + (@ (RQ - RQ) s+ [ (QR - QR dgQ) ) \On
and
() -0 (&)
v (R f_ QR +QuR) dE+ |7 (R.Q + RQ.) d€ R)
( ~Quo + (Q J7, (RQ + RQ.) d€ + ffoo (QR. +Q.F) d¢ Q)
Row— (R ["_(QR), d¢ + [ (RQ), d¢ R)
B ( Qoo+ (Q 7 (RQ). de + f_ ) d€ Q)
( Row — QRQR )
~Quo +2QRQ
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and the associated system (1.8) becomes
—iRi+ Rz —2RQR = 0, (1.58)
iQt + Qzy — 2QRQ = 0. (1.59)
By Theorem 1.2.1, we obtain an explicit solution of (1.58), (1.59) as follows.
Proposition 1.2.11. Let F be a Banach space and A, B € L(F).
Assume that L = L(z,t), M = M(z,t) € L(F) are operator-valued functions which, on

a strip R X (t1,t2), are sufficiently smooth and behave sufficiently well for x — —oo, and
solve the base equations

L,=AL, L;=—-iA%L, and M, = BM, M,=iB?*M.

Assume that (I + LM), (I + ML) are invertible on R x (t1,13).
Then R = (I+LM) Y (AL+LB), Q= —(I+ ML)""(BM + M A), solve the operator-
valued NLS system (1.58), (1.59) on R x (t1,1t2).

Proof The proofis a straightforward application of Theorem 1.2.1 with an additional sign
added to the operator-function M. O

Remark 1.2.12. a) [t is instructive to restrict Proposition 1.2.11 to the scalar setting.
Then the solution reduces to the one-soliton for b = @ (see Section 1.1.1 for the precise
formula). In contrast, the condition b = a would lead to

2
q(z,t) = —a e t cosh™ (az) with a real,

which means that one parameter of the one-soliton, namely its velocity, is lost. Thus,
already from this simple example it becomes clear that it is essential to have two operator
parameters A, B in Theorem 1.2.1, and not one as in [10].

b) The scalar NLS belongs to the C-reduced AKNS system, which means that the linear
relation r = —q is imposed. Note that there is no straightforward way to express R = —Q
on a general Banach space. We will fix this later by working on sequence spaces where
complex conjugation has a natural interpretation.

The non-abelian modified Korteweg-de Vries equation

For the modified Korteweg-de Vries equation, fo(z) = —z® (confer Section 1.1.1). With
this choice (1.8) reads

Imposing the linear relation R = —() yields the operator-valued mKdV

Qi + Quze +3 (Q*Qu + Q.Q% )= 0. (1.60)
An explicit solution of (1.60) is given by the next proposition.

Proposition 1.2.13. Let F be a Banach space and A € L(F).

Assume that L = L(xz,t) € L(F) is an operator-valued function which, on a strip
R x (t1,t2), is sufficiently smooth and behaves sufficiently well for + — —oo, and solves the
base equations

L,= AL and L, =—A%L.

Assume that (I 4+ L*) is invertible on R x (t1,13).
Then Q = —(I + L*)7Y(AL 4+ LA) solves the operator-valued mKdV equation (1.60) on
R x (th tg).
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Proof To arrange R = —( in Theorem 1.2.1, we set B = A and M = —L. Then the
assertion is an immediate consequence of Theorem 1.2.1. O

Together with the operator-valued mKdV (1.60), the operator-valued Korteweg-de Vries
equation (KdV)

has been treated already in the author’s thesis [88]. We want to mention that in this context
also the Miura transformation, linking mKdV and KdV, and their discretizations (Langmuir
and Wadati lattices together with the coninuum approximation) have been generalized to
the operator-level in [88].

Remark 1.2.14. The scalar mKdV (and also the derivative sG in the next example) belong
to the R-reduced AKNS system, where the linear relation r = —q is imposed. The condition
R = —Q generalizes naturally to the operator-level. But now the requirement that the
solution be real admits no canonical interpretation in general Banach spaces.

The non-abelian sine-Gordon equation

As in Section 1.1.1, we have fy(z) = 1/z. Here (1.8) becomes
wo— (1 [ @i+ [ wouacn)-r = o

Qtz — (Q/_Z(RQ)th/;(QR)tde) -Q = 0.

With the relation R = —), we obtain the following non-abelian version of the derivative
sine-Gordon equation

Qi + (Q/ (Q%)¢ d¢ -I-/ (Q%) d¢ Q) -Q=0. (1.61)
Again an explicit solution to (1.61) is given by Theorem 1.2.1.

Proposition 1.2.15. Let F be a Banach space and A € L(FE) invertible.

Assume that L = L(xz,t) € L(F) is an operator-valued function which, on a strip
R x (t1,t2), is sufficiently smooth and behaves sufficiently well for + — —oo, and solves the
base equations

L,= AL and L= A"'L.

Assume that (I 4+ L*) is invertible on R x (t1,13).
Then Q = —(I + L*)7Y(AL + LA) solves the operator-valued derivative sG (1.61) on
R x (th tg).

Proof To achieve R = —Q) weset B = A, M = —L in Theorem 1.2.1. The assertion then
follows by Theorem 1.2.1. O

Also the sine-Gordon equation in its usual form, u,; = sin(u), has been successfully
treated by the operator-method in [88] (see also [90]).
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Chapter 2

From the non-abelian to the scalar
AKNS system: Extracting solution
formulas

In this chapter we will go back the way from the operator solutions constructed in the
previous chapter to the scalar setting. Scalarization is easier to explain for an individ-
ual equation: Then the operator solution is a family of endomorphisms, and one can try
to descent by applying an appropriate functional 7, typically the trace. As the solution
property is to be preserved, one quickly sees that 7 has to enjoy certain multiplicativity
properties, which cannot be valid for arbitrary operators. But it can be guaranteed for
operator-functions taking values in §,, the space of one-dimensional operators with a fixed
kernel (prescribed by a functional a). In Section 2.1.2 it is explained how scalarization looks
like for an individual equation. We mention that the construction of §,-valued solutions is
closely related to the use of projectors to one-dimensional subspaces. In the Hilbert space
setting the two approaches are more or less equivalent (see Marchenko [55]). In general
Banach space projections to subspaces do not always come with nice expressions and our
dual approach seems preferable.

For the general AKNS system scalarization becomes harder because one starts from a
pair of operator solutions @ € L(E, F), R € L(F, F), mapping between different Banach
spaces F/, F. In particular we cannot simply apply traces. But we can still choose @, R
with values in spaces Sq, Sy, a € E’, b € F', and scalarize by cross evaluation (see Theorem
2.2.1). This was partly inspired by related techniques appearing in [13].

The formulas determined by cross evaluation still contain inverse operators, which are
extremely embarassing in applications. Our next step is to eliminate inverses by transition
to determinants. During the calculations one needs to apply traces also to expressions
which are no longer of finite rank. Hence we need extensions of the elementary trace on
the finite rank operators, a topic which is exhaustively treated in the theorey of traces
and determinants on quasi-Banach operator ideals (see [41], [73]). The final result, after
some additional refinements, is recorded in Theorem 2.4.4. It will be the basis of all later
applications.

But before we have to clarify how the one-dimensionality conditions can be met. Looking
at the explicit expressions of the operator solutions in Theorem 1.2.1, we see that we have to
make the elementary expression AX 4+ X B one-dimensional for given operators A € L(F),
B € L(F). Under the condition 0 ¢ spec(A) 4 spec(B), one-dimensionality can be settled
by means of the fundamental theorem of Eschmeier [28] and Dash/Schechter [22] (and a
refinement by Aden [7]).

From the viewpoint of our applications in Chapter 7, the condition 0 ¢ spec(A)+spec(B)
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appears to be relatively massive. We will see in Chapter 7 that there is a subtler way to
produce one-dimensionality by replacing the Eschmeier and Dash/Schechter theorem by
factorization techniques in the spirit of the Grothendieck theorem.

Finally we obtain an amelioration for the R-reduced AKNS system (containing in partic-
ular the modified Korteweg-de Vries and the sine-Gordon equations) where one can reduce
the size of the determinants by half. Furthermore, we provide, for the Nonlinear Schrédinger
and the modified Korteweg-de Vries equations, solution formulas without any growth con-
dition. Note that growth conditions are always necessary for the treatment of the general
AKNS system to ensure existence of the integral operator Tg qg.

2.1 Background for scalarization

We will first introduce some terminology concerning duality and one-dimensional operators
in Banach spaces. Then we recall, for the sake of motivation, known scalarization techniques
in the simplified setting I = F.

2.1.1 Algebraic terminology

For bounded linear functionals a € E’ (£’ the dual Banach space of L) we write
a(z) = (z,a), vekl.

A one-dimensional operator is an operator 1" € L(F, F') with one-dimensional range. Every
such operator can be written as @ @ y with appropriate a € E’, y € I, where the map a®y
is defined by

a®y(x) = (z,a)y.

For convenience, we note some frequently used calculation rules for one-dimensional oper-
ators. Let a € £, y € F. Then

T(a®y)S = (Sa) @ (Ty) VS € L(F, F), T € L(F, F).
In particular,
(@c@y)b@e) = (z,a)b@y

forae F',be F{,z € F,and y € F.

A finite-rank operator is an operator T € L(F, F') with finite-dimensional range. We
set rank(7") = dim(ran(7")). Thus F(F, F), the set of all finite-rank operators, is a (not
necessarily closed) subspace of L(F, F). It is easily verified that any operator of rank N
can be written as T = Zﬁvzl a; @ y; with appropriate a; € E', y; € I.

Definition 2.1.1. For a nonzero a € E’, we define the vector space
S.(E, F)= {a@y‘ye F},

and we write S,(F) instead of S,(L, E).

This means that S, (L, F') consists of all one-dimensional operators between I and F
whose behaviour is governed by the functional ¢ € FE’. Equivalently, one could define
So(E, F) as the space of all T € L(F, F) with ker(a) C ker(7). In particular we have
Suo(F) = S;(F) if and only if @ and @ are linearly dependent.
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Lemma 2.1.2. §,(F, F) is closed under multiplication from the left with operators in
L(F). In particular S,(F) is a left ideal in L(F).
Moreover, 8,(F) is a Banach algebra.

There is a canonical continuous linear functional on S,(L), the evaluation functional

evg, defined by

evy(a @ y) = (y,a). (2.1)

It is easily verified that ev, remains unchanged, if we replace a by @ with S,(F) = Sz(L).
The following lemma shows that ev, is even a continuous algebra homomorphism.

Proposition 2.1.3. On S,(F), the functional ev, is multiplicative.

Proof Let T, S € S,(F) be operators governed by the same functional ¢« € FE’| say
T=a®y,S=a®zwith y, z € E. Since T'S = (z,a)a @ y,

evy (TS) = ev, ((z,0)a®@y) = (z,a)ev,(a @ y) = (z,a)(y, a)
= evy(a®z2)evy(a®@y) = evy(9)evy(T).

2.1.2 Scalarization for endomorphisms

For the sake of motivation we explain the idea of the scalarization process in the simplified
setting of endomorphisms. As model equation we take the modified Korteweg-de Vries
equation (1.6).

Assume that @ = Q(z,t) € L(F) is an operator-solution of the non-abelian mKdV
(1.60). A natural ansatz to derive scalar solutions ¢ = 7(()) for (1.6) is to apply a continuous
linear functional 7 to the operator solution Q).

By linearity of 7,

0 = T(Qt + Quoe + 3(Q*Qu + QxQQ))
= 7(Q0) +7(Quas) + 3 (7(Q%Qw) + 7(Q2Q%) ) -
At this point we would like to continue by
7(Q0) + 7(Quae) + 67(Q)*7(Qx)
= 7(Q)t + 7(Q)zae + 67(Q)°7(Q) s

the latter by continuity of 7. Then ¢ = 7(Q)) would indeed be a solution of (1.6).

The above calculation shows that, in order to maintain the solution property under
scalarization, the nonlinearity of the mKdV enforces multiplicativity of the functional 7 in
some sense.

This requirement can be satisfied in the following way:

1. We assume that the operator solution @) belongs to S, (F) for a constant a € E’. In
other words, @) is one-dimensional with fixed kernel.

2. For scalarization, we use the functional ev, on S, (F) defined by ev,(a @ y) = (y, a).
Then multiplicativity of ev, on S,(F) is guaranteed by Proposition 2.1.3.
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Observe that ev, is the restriction of the trace, defined for endomorphisms of finite rank,
to the S,(F). Actually, earlier work of Aden, Carl, and the author (see for example [8],
[18]) focused on the particular role of the trace on quasi-Banach operator ideals. But the
treatment becomes more transparent if one uses this theory only for the later improvements
of the solution formulas.

For the AKNS system we encounter the difficulty that the operator solution in general
acts between different Banach spaces. In particular, the definition of evaluation functionals
does not even make sense in this case. In the next section we explain how to overcome this
problem.

2.2 The scalarization process for operators between different
Banach spaces

In this section we explain how to use the non-abelian AKNS system to construct solutions
of the scalar AKNS system. We start with an operator solution @ = Q(z,t) € L(F, F),
R = R(z,t) € L(F, F) where F, I are possibly different Banach spaces.

We adhere to the idea to choose the operator functions 2, R one-dimensional with fixed
kernel, say

Q:a@d($7t)65a(E7F), RZb@C(xvt)GSb(FvE)v

for fixed, constant and non-vanishing functionals ¢ € E’, b € F'. It is clear that we cannot
apply @ € E’ to the vector function d = d(x,t) € F since they do not match. In contrast,
it is a natural ansatz to try cross-evaluation,

Qo) = (d(e, ), 0), rle,t) = (e(o,1),a).
Note that r is given in terms of ¢ = ¢(xz,t), which encodes the information from R.

Theorem 2.2.1. Let E, F' be Banach spaces and QQ = Q(z,t) € L(E,F), R = R(x,t) €
L(F, E) operator-valued functions which solve the non-abelian AKNS system (1.8).

If, in addition, there exist constant functionals 0 # a € F', 0 # b € F', and vector-
functions ¢ = c(z,t) € I, d = d(z,t) € F such that

Qz,t) = a®@d(z,t), R(z,t) =b® c(z,1),
then a solution of the scalar AKNS system (1.1) is given by
q(z,t) = (d(z,t),b), r(z,t) = (c(z,t),a).

When supposing that R, () solve the AKNS system, it is understood that R, ¢ are suffi-
ciently smooth and behave sufficiently well for 2 — —oo.

Proof First we compute the effect of n-fold iteration of Tr g when evaluated on operator
functions U € Sp(F,E), V € S,(E, F). Let U =b®e, V = a®d, with vector functions
c=7¢(z,t) € E,d=d(z,t) € I'. As usual we assume U, V to be sufficiently smooth and

sufficiently well behaved for z — —o0.

Claim 1: For n € Ny, set
U\ n (U
(o) =t (1)
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a) Then U, € Sy(F, ), V, € S;(E, F) for all n € No.

In particular, there exist vector functions ¢, = ¢,(z,t) € E, d, = Jn(ac,t) € F such

that U, = b® ¢,, Vn:a®(3\n.

b) Assigning to U, V, the scalar functions u, = (¢,,a), v, = <Jn, b), the corresponding
scalar relation holds, i.e.,

(") =mar (1),

where u := (¢, a), v := <(3\7 by are the scalar functions assigned to U, V.

Proof of Claim 1: For n = 0 the assertion is trivial. Assume now the assertion for a
certain n € Ng.

Then there exist vector functions ¢, = ¢,(z,t) € I, d, = d,(z,t) € F such that
U,=b®¢, and V,, = a @ d,,. Since the functional b is constant,

QU.+ ViR = (a0 d)(b@ ) + (@@ d)(b@ ) = b& ((En, a)d+ (¢, a)d,,)

— /w (QU, + V,R)d¢ = b®/ ((En,a>d—|—<c, a>c7n)dg — b ® fo.

— 00 — 00

Therefore, we obtain

R[QUAREE = 0o0bo f)=be (),

— 00

/w QU+ ViRYEQ = (be fu)lawd)=a e ((d,B)],).

— 00

Analogously, the constancy of the functional a yields

U.Q+ RV, = (b0@)(@ed)+ (0o ) (a0 d) = a (4,2, + (d., b)e)

— / (U0 + RV, )d¢ = a®/

— 00 — 00

xr

(¢, D)+ (dn,b)e )de =2 a g,
which implies

Q[ Wa+r)E = (@odasg,) = oo ((.ad)

/_OO(UnQ+RVn)de = (a®gn)(b®c):b®(<c7a>gn)_

As a consequence,

(UnH) _ TR,Q(U”) _ (b®{ fn,x— (<fmb>0+<cva>gn)})‘

Vi, v, & [~ + (g0 @)+ (& 0) )]

Hence U, 41 =b®@Cny1 € Sp(F E), Vyp1 = a ®AJ”+1 € S.(F, F), with the vector functions
Cot1 = Cng— ( (fuy e+ (¢,a)gn ), dups = —dp ot ( (g, a)d + (d,0)f, ). Part a) of the
assertion is proved by induction.

Next observe

<fn7b> + <gn7a> =

- </x {(En,a>d—|—<c,a>3n}d§,b>—|—</

— 00 — 00

_ z/w (v a){d,B) + (e a) (@, ) )

— 00

= 2/90 (unq—l—rvn)df.

— 00

xr

[<d, bYe, + (d,, b)c] de, a>
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Inserting this identity, we find
Un4+1 = </C\n-|—17 a> = </C\n,x_ ( <fn7 b>C‘|‘ <C, a>gn )7a>

= (Cp, )y — (c,a) ( (fn,b) + <gn,a>) = Upy —2r /_ (unq—l— rvn) dg,

o~

Un41 = <dn-|—17 b> = < - C/{n,x‘l’ ( <gn7 a>d‘|‘ <d7 b>fn )7b>

= _<Jn7b>l’+ <d7 b> <<gn7a>+ <fn7b>) = —Un7$—|—2q / (unQ‘I’rvn) dg.

— 00

In other words,

(un-l-l) _ an (un) :
Un41 Un,
and part b) of the assertion follows again by induction. The proof of Claim 1 is complete.

Claim 2: Choose ¢ € F, dg € I’ such thay (cg, a) = (dp,b) = 1. Then, for all n € Ny, the
following identities hold:

wy, = (Updyg, a), v, = (Vy,c0, b).

Proof of Claim 2: Applying the operator U, = b @ ¢, € S (F, F) to the vector dy € F,
we obtain U,dy = (do, b)¢,, = ¢,,. Thus (U,dy, a) = (¢, a) = u,. Analogously,

(Vyuco, b) = ((a @ d,)co, by = ({co, a)dn, b) = (dn, b),

and Claim 2 is shown.

To conclude the proof, we assume that the polynomials f, g are concretely given by

N

N
F =Y a0 gz =Y b,

n=0

where we allow leading terms to vanish in order to have the same N for both polynomials.
Let Q@ =Q(z,t) € So(E, F), R= R(z,t) € S(F, I) be a solution of the non-abelian AKNS
system (1.8), and set

(&) =tmer (&) (&) =tmer (5)

for n € Ny. Then the non-abelian AKNS system (1.8) reads

N N R N N R
Z ap R, = Z bRy, Z anQn = Z b Q- (2'2)
n=0 n=0 n=0 n=0

By Claim 1, Ry, R, € Sp(F, E), and Q,, Qn € S.(F, F) for all n.

Moreover, by the Claims 1 and 2, the scalar functions r, = (R.do,a), 7, = <I§nd0, ay,
qn = (Qnco,b), and ¢, = (Qnco,b) assigned to these operators (where ¢q € F, dy € F are
the constant functionals from Claim 2) satisfy

()= (L) (G) =m0 (G): o
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N N N
Zanrn - Zan R d07 - < ( Z Rn ) d07 >
n=0 n=0 n:ON v
= {{ Z ) dosa)y =3 bulRudo,a) = > bafi
n=0 m=0 m=0

Similarily, we see EnN:o any = EnN:o bny-
As a consequence,

r (1) = S (4) " Lo ()

4 n=0 4 n=0 In
a n\ (2:3) a r r
_ o, () @ b (T, ) t) _ ] ( t)
S0 (5) b (ma) (1) =0 ()
This completes the proof. O

2.3 Derivation of solution formulas

In this section we carry out the scalarization process in Section 2.2 for the concrete operator-
valued solution, the operator soliton, derived in Theorem 1.2.1 and present a first solution
formula for the AKNS system. The central condition in this context is that the operator
soliton be one-dimensional. We show that there is a systematic way to fulfill this condition
using the theory of so-called elementary operators. Finally, we achieve an improvement of
the solution formula particularly adequate for applications. The main tool are determinants
on quasi-Banach operator ideals.

2.3.1 Carrying out the scalarization process for the operator soliton

Let F, I’ be Banach spaces, and let A € L(F), B € L(F) be constant operators such that
spec(A) Uspec(—B) is contained in the domain where fy is holomorphic. Then the base
equations in Theorem 1.2.1 are obviously fulfilled for

—

L(z,t) = L(z,)C,  M(x,t) = M(z,1)D,

where E(x, t) = exp (Aac + fO(A)t)7 M\(ac, t) = exp (Bac - fo(—B)t)7 and constant operators
CeL(FE),DeL(EF).

This means that the operator-valued solution in Theorem 1.2.1 reads
Q=(I-ML)"'M(BD+DA), R=(-LM)'L(AC + CB).

Thus it is clear that the operator functions @, R will only become one-dimensional (with
fixed kernels) if the expressions

BD + DA, AC + CB,
can be chosen one-dimensional.

Proposition 2.3.1. Let F, F be Banach spaces and A € L(FE), B € L(F) such that
spec(A) U spec(—B) is contained in the domain where fy is holomorphic and exp(Azx),
exp(Bz) behave sufficiently well for + — —oc.
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Assume that C' € L(F,FE), D € L(E,F) are constant operators satisfying the one-
dimensionality conditions

AC+CB=b®ec, BD+ DA=a®d, (2.4)
forO0£a€eFE, ce F,0£b€c F', and d € F. Define the operator-functions
L(z,t) = L(z,1)C, L(z,t) = exp (Az + fo(A)t),
M(x,t) = M(z,t)D, M (x,1) = exp (Bx — fo(=B)t).
Then, on every domain R X (t1,t3) on which (I—LM)~Y, (I—ML)™! are defined, a solution
of the scalar AKNS-system (1.1) is given by
¢ = w((1-Mp)" Mpea), (2.5)

ro= tr((I—LM)_lf(aQQc)). (2.6)
Recall the notation tr for the trace on the finite-rank endomorphisms (see Appendix B).

Proof According to the explanations preceding the theorem, the coupling conditions guar-
antee Q = Q(z,t) € S, (B, F), R = R(x,t) € §(F, F) for the operator solutions @, R in
Theorem 1.2.1. Namely,

Q = (I-ML)'M(a®d) = a® ((I - ML)™'Md),

R = (I-LM)'L(b@ec) = ba ((I-LM)"'Le) .
Application of Theorem 2.2.1 then shows that a solution of the scalar AKNS-system (1.1)
is given by

¢ = <(1 ~ML)'Md, b> - tr(([ ML) M(be d)),

ro= <(I —LM) 'L, a> = u((1-1M) Lo ),

the latter by definition of tr, see Appendix B.
This completes the proof. O

2.3.2 On elementary operators: How and why to solve the operator equa-

tion AX+ XB=C

In order to apply Proposition 2.3.1, we have to choose C'; D such that the one-dimensionality
conditions (2.4) are satisfied. In other words, we ask whether the expression ®4 p(X) =
AX 4+ X B can be made one-dimensional by an appropriate choice of X. Fortunately, the
theory of the map ® 4 g is fairly well understood and provides powerful results on existence
and properties of solutions.

For a detailed discussion of the operator equation AX 4+ X B = ' and its applications
we refer to the survey article of Bhatia and Rosenthal [12].

Definition 2.3.2. Let A be a p-Banach operator ideal (0 < p < 1) and A € L(E), B €
L(E). Then the operator ®4 g : A(F, F) — A(F, I) is defined by

(I)A7B(X) =AX + XB.

Note that ® 4 p is an endomorphism of A(F, F) for every p-Banach operator ideal A.
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The above defined operator is a particular case of a so-called elementary operator, i.e.,
an operator ® : A(F, F) — A(F, F) of the form

¢ =p(Rp, La) for a polynomial p,

where Rp, L4 denote the multiplication with A € £(F) from the left and B € L(F) from
the right, respectively.

In fundamental papers Dash/Schechter [22] and Eschmeier [28] proved that, provided
that A is a Banach operator ideal, spec(®) is independent of the choice of A and given by
the catching formula

spec(®) = p(spec(B),spec(A)).

Next we cite a result of Aden extending, for the operator ®4 g, this result to p-Banach
operator ideals A, 0 < p < 1.

Proposition 2.3.3. ([7], Theorem 111.2.7) Let A be a p-Banach operator ideal (0 < p < 1).
Then the spectrum of the operator ® 4 p is given by

spec(®4,8) = spec(A) + spec(B).

In particular, spec(® 4, g) does not depended on the p-Banach operator ideal A under con-
sideration.

The next proposition is an immediate consequence. It stresses that the operator equa-
tion AX + X B = C with given C' € A(F, F) can always be solved if 0 ¢ spec(A) +spec(B).
Moreover, the solution X = (I)ZIB (C) is as good as C' is, more precisely, X € A(F, F).

Proposition 2.3.4. Let A be a p-Banach operator ideal (0 < p < 1) and 0 ¢ spec(A4) +
spec(B). Then, for every operator C' € A(F, F), the equation AX + X B = C has a unique
solution X € A(F, F), namely

X = q’Z,lB (€).

Remark 2.3.5. In the above results p-Banach operator ideals could be replaced by the seem-
ingly more general but in fact equivalent quasi-Banach operator ideals (see Pietsch [72]).

To conclude the section, we state the impact of the above theory to our solution formula.

Proposition 2.3.6. Let F, F be Banach spaces and A € L(FE), B € L(F) such that
0 & spec(A) + spec(B). Then, for alla € E', c€ E, b€ F', d € F, the operators

C=0;3500), D =g, (a®d),

satisfy the one-dimensionality conditions (2.4) in Proposition 2.3.1.

2.3.3 Solution formulas in terms of determinants

The solution formulas (2.5), (2.6) in Proposition 2.3.1 have the disadvantage that one has
to compute the inverse operators (I — LM)~! (I—ML)™!. In this section we improve these
formulas in order to make them accessible for explicit calculations. This will be crucial in
the applications in Chapters 4 — 7.

Starting point is the observation that the functional ev,, considered as a map on S, (F),

coincides with the well-known trace. Thus it is tempting to use the calculus of traces
and determinants to improve the solution formula. The problem is that the intermediate
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calculations pass through traces of non-finite operators, whose existence is not obvious at
all. The adequate framework to overcome this problem is theory of traces and determinants
on quasi-Banach operator ideals ([41], [73], see also Appendix B).

The following theorem is the crucial result of this chapter.

Theorem 2.3.7. Let E, F' be Banach spaces, and let A € L(F), B € L(F) be such that
spec(A) U spec(—B) is contained in the domain where fy is holomorphic and exp(Azx),
exp(Bz) behave sufficiently well as © — —oo.

a) Assume that the one-dimensionality conditions (2.4) are satisfied with C' € A(F, E),
DeAEF), and0#a € E', 0#b € F', where A is an arbitrary quasi-Banach operator
ideal admitting a continuous determinant 6. Define

L(z,t) = E(x,t)C with E(x,t) = exp (Az + fo(A)t),
M(z,t) = M\(x,t)D with M\(ac,t) = exp (Bz — fo(—B)t).

Then, on strips R X (t1,t2) on which § ( I1-LM ) does not vanish, a solution of the scalar
AKNS-system (1.1) is given by

§(I-ML-M(@Obod))

¢ = 1" 5 (I-ML) ! 27
B §(I—LM—-L(a@ec))
ro= 1- VENAT . (2.8)

b) If 0 & spec(A) + spec(B), then a) holds with C = ®',(b®@¢), D = ®5',(a ® d),

a,b# 0, and any p-Banach operator ideal A admitting a continuous determinant §.

Proof a) We show that the solution ¢, r given by (2.5), (2.6) in Proposition 2.3.1 can
be rewritten in the form (2.7), (2.8). To this end, we first use the well-known identity
det(I +T) =14 tr(T), valid for any one-dimensional operator 7T'. This yields

¢ = w((1-ML) " Mpod)
— 1 det (1—(1—ML)—1M(b®d))
- 1—det((1—ML)—1(1—ML-M(b@d))).

Here det denotes the canonical determinant on the finite-rank operators.

Note that we cannot use the multiplicativity of the determinant det, because the oper-
ator ML is not of finite rank. Thus we switch to the determinant ¢ on the quasi-Banach
operator ideal A. By the definition of general determinants (see Appendix B), we have
d| 7 = det. Thus

¢ = 1-8((-ML(1-ML-}(b2d))

(
5(1— ML~ M(b@d))

5(1 - ML)

The reformulation of the formula for r follows analogously.
b) This is an immediate consequence of Proposition 2.3.4. U
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2.4 The solution formula revisited

For the applications in particular in context with the asymptotic behaviour of negatons (see
Chapter 5), a reformulation of the solution formula which provides an even better access
for calculations will be decisive. To this end we need some tools for the calculation with
general determinants on quasi-Banach operator ideals.

2.4.1 Key relations for general determinants

As a rule, the following identities will be elementary for finite matrices. In the general case
we have to check the arguments carefully to guarantee existence. Note also that we suppose
continuity of ¢ but not that the finite-rank operators F are || - |A||-dense in A.

Proposition 2.4.1. Let F/, F' be Banach spaces and A a quasi-Banach operator ideal ad-
mitting a continuous determinant 6. Then

a) ( 3 g ) € A(E@ F) whenever U € A(F,E), V € A(E,F).

b) If, in addition, U = U(z), V = V(x) depend smoothly on a real variable x, if ||U(z)|],
||V(2)|| = 0 for 2 = —o0, and if Iy — UV is always invertible, then

Ig U
5( Vv IF)zé(IE—UV).

Proof a) Let Pp: E® F — F, Pr: E® F — F be the canonical projections from F & F
to E, F, respectively, and Jg : F = F@® F, Jp: F — F & F the canonical embeddings of
E, I, respectively, in & F. Then a) follows immediately from the factorization

0 U
(V O)ZJEUPF—I—JFVPE

and the ideal properties of A.

b) Abbreviate W = ( 3 g

Iz 0

), I = Iggr, and set J = ( ) First we
0 —Ip

observe
S(I=W) = s(I+JWJ) = §(I+J*W) = s(I+W).
As a consequence,
(5(1+ W))2 = S(T+W)6(I-W) = 5((1+ W)(I - W)) = 5(1-W?)
- 5( IE_OUV IF—OVU) - 5( IE_OUV I(;) 5( Iéﬂ IF—OVU)
= (I -UV)s(Ip-VU) (2.9)
= (d(1m - UV))Q.

Since we deal with general determinants, the identity (2.9) requires a comment. In fact,
with the same notations as in a), (2.9) follows from

Ig+T 0
5(( E(—)I' I )) = §(I +JgTPg) = 6(Ig + PeJeT) = §(Ig+1T)

for all ' € L(F). The second identity holds by Definition B.1.8 (iii).
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To conclude the proof, consider the function

J@) = 8(1+W(@) [3(1r - U@)V (@),

which is well-defined by assumption. Obviously f is a continuous function, and we have
shown that it takes its values in {—1,1}. Thus f is constant. Finally, from U(z), V (z) — 0

for + — —oo it is clear that f(z) — 1 for # — —oco. Thus f = 1, and the proof is complete.
O

Corollary 2.4.2. Under the assumptions of Proposition 2.4.1, the following relation holds
in the perturbed case,

5(IE—a®c U

" AT)zé(@pwUV+a®@).

Jor any a = a(z) € F', c=c(z) € F.

Proof Note that ( I‘f IU ) is invertible by Proposition 2.4.1, and we check
F
Ig U\ [ (Ig-UV)™'  —(Ig-UV)"\U
vV Ir T\ -(Ip-VUO)T'V  (Ip-VU)T! '
Therefore,

()= D) D) )
Ig U Ig — (Ig—UV)l(a@c) 0
(V IF)( (Ip —VU)"'W(a®c) b?)

(‘I/E g)(ﬂrf@g)

where we have abbreviated I = Ipgp, f = (a,0), 9= (- (Ig = UV) te,(Ip — VU) 'Ve).
Next we use that the value of determinants is prescribed on one-dimensional operators. We
thus get

s(I+f@g)

1—|—<g,f>: 1—<(IE—UV)_lc,a>
= (Ip—ae (g -Uv)e)
= SIg-Up-UV) ' (a®c)).

Now multiplicativity of the determinant, the above identity, and Proposition 2.4.1 yield

Ip—a®c U _ I U
5( V’IF) = 5(v IF)5U+f®g)

= (Ig-UV) §(Ig— (Ig-UV) ' (a®0))
= (g - (UV+awcd)),

which is the assertion. O

For later use we also note a symmetry relation for the expression of our solution formulas.
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Proposition 2.4.3. Let F, F' be Banach spaces, and A a quasi-Banach operator ideal with
a continuous determinant 6. Then the following relation holds

5 Ip—a®@c U 5 Ipta®c U
|4 Ir Vv Ir

1- = -1
5 Ig U 5 Ig U
vV Ir vV Ir

orUec A(FE), Ve AE.F),anda € I, ce .
f b ) b ) )

Proof To simplify writing, set W = ( 3 g ), I =Iggr, f=(a,0), g = (¢,0). Then
SI4+W - f®g) 1
1-— =1-46(( I —
ST (T+m)+wW = fog)

= 1—5([—(I—|—W)_1(f®g)) = r((I+W)‘1(f®g))
_ _1_|_5(]_|_(]_|_W)—1(f®g)) = —1—|—5((I—|—W)‘1(1—|—W—I-f®g))

SI+W+ foyg)

= -1
TSy

where we have used the identity 6(1 +7) = 1 + 7(T") which is valid for one-dimensional
operators T € A(E). O

2.4.2 Statement of the main theorem

It remains to formulate the main theorem of the present chapter. It is an immediate
consequence of Theorem 2.3.7, Proposition 2.4.1, and Corollary 2.4.2.

Theorem 2.4.4. Let E, F' be Banach spaces, and let A € L(F), B € L(F) be such that
spec(A) U spec(—B) is contained in the domain where fy is holomorphic and exp(Azx),
exp(Bz) behave sufficiently well as © — —oo.

a) Assume that the one-dimensionality conditions (2.4) are satisfied with C' € A(F, E),
De A(E,F),0#a€ E', 0#£b¢€ F', where A is an arbitrary quasi-Banach operator ideal
admitting a continuous determinant 6. Define

L(z,t) = L(z,0)C with L(z,t) = exp (Az + fo(A)t),
M(z,t) = M\(x,t)D with M\(ac,t) = exp (Bx — fo(=B)t).

Then, on strips R x (t1,t2) on which p does not vanish, a solution of the scalar AKNS-system
(1.1) is given by

g=1-P/p, r=1-P/p, (2.10)

where
Ip L =~ Ig-Lawc) L Iy L
(M IF—M(b®d))’ (M ) 7 M Ip

b) If 0 & spec(A) + spec(B), then a) holds with C' = @Z}B(béé c), D= (I>]§71A(a @ d),

a,b# 0, and any p-Banach operator ideal A admitting a continuous determinant §.
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2.5 Improvements for the R-reduction

In this section we aim at an improvement of the solution formula in Theorem 2.3.7 for the
R-reduced AKNS system. Namely, we reduce the involved determinants to half of their
size. This is of course a considerable advantage in explicit calculations.

Referring to Section 4.2 for a systematic introduction of R-reduction, we just suppose
that fo(z) = —fo(—=2) holds at every z in the domain where f; is holomorphic. Then the
R-reduced equation is obtained by setting » = —g. In particular, it is natural to restrict to

FF=F, B=A, b=—a, d=c. (2.11)
Then we obtain a nice solution formula, which is a logarithmic derivative.

Theorem 2.5.1. Let IV be a Banach space and A € L(F) such that spec(A) is contained
in the domain where fo is holomorphic and exp(Az) behaves sufficiently well as * — —oc.

a) Assume that the one-dimensionality condition
AC+(CA=a®c (2.12)

for 0 #£a € F', ¢ € F, is satisfied with C' € A(F), where A is an arbitrary quasi-Banach
operator ideal admitting a continuous determinant §. Define

o~

L(z,t) = L(x,t)C, with L = exp ( Az + fo(A)t) .
Then, on strips R X (t1,t3) on which §(I £1iL) do not vanish, a solution of the R-reduced
AKNS-system (4.6) is given by
_ 0 L)
1= or 85I —iL)
b) If 0 & spec(A) 4 spec(A), then a) holds with C' = @Z}A(a @ c), a # 0, and any

p-Banach operator ideal A admitting a continuous determinant §.

(2.13)

Proof If we apply Proposition 2.3.1 with the particular choice (2.11), then r = —¢ follows
from M = L and the fact that we can take D = —C'. It remains to show that the formula
(2.5) for ¢ can be rewritten in the form (2.13).

To this end we denote by 7 the trace corresponding to § via to the Trace-determinant
theorem (see Proposition B.2.11). Since all traces coincide on F, the operator ideal of
finite-rank operators, we have 7|r = tr. Therefore, and by the coupling condition (2.12),

qg = —tr((I—I—Lz)_li(a@c))
_ _T((1+L2)‘1 (AL+LA)).

Next we use the linearity of the trace 7 (note that this is allowed because L € A(F)) to
observe

¢ = —r((1+22)7aL)—r((1+12)7" 1a)
_ —27((I—|—L2)_1Lx),

the latter by the property of traces (7(S7T) = 7(1'S)) and the base equation for L. Using
the identity 2(1 + L?)™' = (I +iL)~' + (I —iL)~!, we finally get
¢ = ir(([+iL)_1(iL)x) —ir(([— iL)_l(—iL)x)
.0 d(I+1iL)
= i— log ———=,
Ox 6(1 —1iL)
the latter by the differentiation rule for determinants, see Proposition B.2.12. O
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2.6 Ameliorated formulas for NLS and mKdV

Theorem 1.2.1 give at one stroke solutions for all equations of the AKNS system. Note that
the appearance of the integral term 7 g enforced strong assumptions on the behaviour for
the functions L = L(z,t), M = M(z,t) for 2 — —oo. As already seen, Tr g may cancel
during the calculations. This may allow us to generalize the resulting solution formulas by
direct verifications avoiding 7g,g. We illustrate this for the Nonlinear Schrédinger and the
modified Korteweg-de Vries equations.

For the Nonlinear Schrodinger equation, the following result holds.

Proposition 2.6.1. Let E, F be Banach spaces and A € L(FE), B € L(F).

a) Assume that the one-dimensionality conditions (2.4) are satisfied with C' € A(F, E),
De A(E,F),0#a€ E', 0#£b¢€ F', where A is an arbitrary quasi-Banach operator ideal
admitting a continuous determinant 6. Define

L(z,t) = L(z,0)C with L(z,t) = exp (Az — 14%1),

M(z,t) = M\(x,t)D with M\(ac,t) = exp (Bz +1B%t).
Then, on Q = {(x,t) | p(z,t) # 0}, a solution of the scalar NLS system
—ir 4 rem — 2r%q¢ = 0,
i+ Gor — 2¢°r = 0.
is given by
g=1-P/p, r=1-P/p,

where

I L ~ I-La®ec L I L
(M I—Mb@d)’ (M 1)’ P (M I)

b) If 0 & spec(A) + spec(B), then a) holds with C = ®',(b®@¢), D = ®5',(a ® d),

a,b# 0, and any p-Banach operator ideal A admitting a continuous determinant §.

We want to stress again that the freedom to choose the two operators A, B € L(F)
independently is essential. Otherwise even solitons could not be derived in full generality
(see Remark 1.2.12).

Proof To avoid the growth conditions in the proposition, we have to verify that the
operator-functions (), R given by (1.10), (1.11) are a solution of the non-abelian NLS
system (1.58), (1.59) without using Theorem 1.2.1. To this end, observe the rules

R, = —iRyR, R, = R\R,
Qt = iQ2Q7 Ql’ = Q1Q7

for R; = (I — LM)~Y (A7 4 (=1)i"'LBIM), Q; = (I — ML)~ (Bi 4 (=1)i"'MAJL),
j = 1,2, which follow from Lemma 1.2.7, Lemma 1.2.5.
Using Lemma 1.2.5 once more, we observe

El,x = RQ7 @1,1’ — QR
This easily yields
Ryw= RQR+ RIR, Q.. = QRQ +Q3Q.
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Moreover, by Lemma 1.2.6, we have
R =RQ+ Ry Qi =QR+ Qs

Inserting these relations, we get

—iR, + R,. —2RQR = —RyR+ (RQR+ R’R) —2RQR
— —RyR+ (R?— RQ)R = 0,
Qi+ Qe —2QRQ = -Q2Q+ (QRQ+Q1Q) — 2QRQ
~Q:Q+ (@ - QR)Q = 0.
Thus @, R solve the non-abelian NLS system (1.58), (1.59). Now the scalarization process
explained in this chapter applies and yields the assertion. O

In analogy with Section 2.5 we get a simpler solution formula for the modified Korteweg-
de Vries equation.

Proposition 2.6.2. Let £ be a Banach space and A € L(F).

a) Assume that the one-dimensionality condition (2.12) is satisfied with C' € A(FE) and
0 # a € F', where A is an arbitrary quasi-Banach operator ideal admitting a continuous
determinant 6. Define

L(z,t) :E(x,t)C, with L = exp (Az— A%t) .
Then, on Q = {(z,1t) | 5(Ij: iL(x,t)) # 0}, a solution of the mKdV (1.6) is given by

_ 0 dI+iD)
1= or s —iL)

b) If 0 & spec(A) 4 spec(A), then a) holds with C' = @Z}A(a @ c), a # 0, and any

p-Banach operator ideal A admitting a continuous determinant §.

Proof The main point is to show directly that the non-abelian mKdV (1.60) is satisfied
for Q = —(I + L*)7Y(AL + LA). To this end, we first collect the necessary manipulation
rules. Define

Qi = (W (I (WLt (-1 L),
0, = (~1)"'Uu+ L?)—I(Af n (—1)J‘LAJ'L),

for j = 1,2,3. In particular, ¢; = . Then, by Lemma 1.2.7, Lemma 1.2.5, and Lemma
1.2.6 (with B =A, M = —L), we observe

Q1= —-Q:Q1, Qjw=Q1Q;, Qi = (-1)'Q1Q;,
and

Qi - (—1VQ1Q;=-Qjp1, QiQi+ (-1Q1Q; = —Qj41.
Thus we find

Ql,xl’ = _Q:f + @\%Qh
Qraove = Q1Q1 —201Q7 — Q10107 — 2Q70Q,Q1.
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Finally, we insert the above relations to check
Q1 ure + 3(Q1.Q7 + Q1Q12) = (@:1)’ +@1Q} — Q10:1Q1 + Q%QI)QI
= (@1(@% + Q%) + Ql(Ql@l — @1@1))@1 = ( - @1@2 + Qle)Ql = @3@1
= —Quiu
which shows that @)1 = @) solves (1.60).

Here even the scalarization process in the simplified setting for endomorphisms (see
Section 2.1.2) applies, and the reformulation in terms of determinants can be copied from
the proof of Theorem 2.5.1. U

Let us summarize the advantages of Proposition 2.6.1 and Proposition 2.6.2 compared
to Theorem 2.2.1.

a) No growth condition for 2 — —oo is assumed.

b) In Theorem 2.2.1 we had to assume the solution to be regular on strips of the form
R x (t1,t2). Proposition 2.6.1 also comprises solutions with poles along real curves
{p(z,t) = 0}. From the mathematical point of view, solutions with controlled singu-
larities can be interesting (see [19], [91]).
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Chapter 3

Steps towards two-dimensional
soliton equations

In this chapter we lay the ground for an operator theoretic investigation of the KP-I and
KP-II equations. The KP equations are the most prominent soliton equations in two space
dimensions. For analytic and geometric reasons they are harder than one-dimensional
equations. Many basic questions are not completely understood and form a topic of recent
research (see [2], [6], [15] [61], [86], and references therein).

Here we can obtain the corresponding operator equation as a straightforward general-
ization of the matrix KP equation, which is itself a topic of independent interest (see [21],
[53], [86]). As for a solution corresponding to the one-soliton, there is a natural choice
(3.12). From the very beginning it is quite clear that it should contain two operator-valued
parameters A, B, corresponding to the fact that for line-solitons the velocities and the
angles with the z-axis are determined by independent sets of parameters.

In our personal work, the main difficulty was to prove the solution property without
constraints on 4, B. In a joint article with B. Carl, we obtained the result under the
additional assumption [A, B] = 0 which in particular means that A, B map between the
same space. Then the verification of the solution property is a lengthy but straightforward
calculation (confer Appendix C). Without [A, B] = 0 , the complexity explodes and seems
to prevent further understanding. Nevertheless we got convinced of the truth of the general
formula in discussions with A. Sakhnovich, who had in [86] discovered a related but different
matrix solution with non-commuting parameters and had produced a proof by computer
algebra.

Finally we succeeded in proving Theorem 3.2.1 without using computers. OQur method
to cut down the number of appearing terms dramatically consists in a systematic use of
recursive relations, very close in spirit to those used for the AKNS system. Thereafter we
follow the scalarization techniques familiar from Chapter 2 to obtain solution formulas in
determinant form.

But then we will see that also solutions to the matrix KP can be extracted from the same
operator solutions. To this end we consider solutions with values in the rank n operators
with fixed kernel (the matrix KP being viewed as a system in the n X n-matrices) and
descent via a natural multiplicative evaluation map.

Hirota’s method is one of the most important direct approaches in soliton theory. It
relies on the examination of bilinear versions of the soliton equations. In Proposition 3.5.1
we will see that the determinant appearing in our solution formula (3.33) even satisfies the
bilinear KP equation. The proof will give us the occasion to study the Miura transformation
on the operator-level. Since our argument is independent from what we have done before,
we also obtain an alternative elegant proof of Theorem 3.3.4.

We will conclude the chapter with a preliminary discussion of first examples, focusing
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on features which underline the difference to the one-dimensional case like line-solitons with
parallel wavefront or identical shape. Perhaps the most interesting examples are resonant
structures (so called Miles structures) which we obtain in a strikingly simple way. We plan
to treat this in greater detail in a forthcoming publication.

3.1 The Kadomtsev-Petviashvili equations

The Kadomtsev-Petviashvili (KP) equation is one of the few soliton equations, which de-
scribe physical phenomena in two-dimensional space. It was introduced by Kadomtsev and
Petviashvili [50] to discuss stability of one-dimensional solitons in a nonlinear media with
weak dispersion.

There are several ways to write down the KP. Following [69], we shall use the system

Uy + 6uty, + Upgy = —3042wy7 (3.1)
Uy = Wy, (3.2)

for @ € {1,i}. In the case o = i, the system (3.1), (3.2) is called KP-I, and KP-II for
« = 1. In both cases the KP describes the propagation of shallow water waves. It depends
on whether surface tension or gravitation dominates whether one arrives at KP-1 or KP-II.

This is well reflected by certain peculiar solution classes. For the KP-II there are ordi-
nary nonlinear superpositions of line-solitons (see [87], [102]), but also resonance phenomena
are possible leading to waves with a tree shaped profile, the so-called Miles structures (see
[61], [64], [70]). For the KP-I one can construct rational structures with particle charac-
ter, the so-called lumps (see [4], [54]). Generically superpositions of lumps interact without
phase-shift. But there is also weakly bound superposition, roughly comparable to negatons,
which has recently aroused a lot of scientific interest. For results and further references the
reader may consult [1], [2], [6], [36], [66], [76], [77].

For the sake of illustration, we mention the soliton solution. For both the KP-I and
KP-II equations, it formally reads
2

0
w(z,y,t) = Qng(l—l—ﬁ(aE,y,t)) (3.3)

1
with {(z,y,t) = exp ((a +b)x + —(a® = b*)y — 4(a” + b?’)t),
o

where a,b € C are complex parameters. In the case of the KP-II equation the soliton
becomes real for a,b € R, and is called line-soliton. Rewriting (3.3),

(a+0)*

u(z,y,t) = osh™? (%((a +b)a + (a* = bH)y — 4(a® + b3)t)),

one observes that the line-soliton is a bell shaped wave front of infinite length. The
parameters a,b characterize the height (a + )2/2 of the wave front and its angle ¢,
tanp = —(a — b)~! to the z-axis.

3.2 Solution of the operator-valued KP

In this section we consider the non-abelian Kadomtsev-Petviashvili equation,
Up + 3{U, U} + Uy = —30*W,, — 3a[U, W], (3.4)
U, =W, (3.5)
where the two unknown functions U = U (z, y,t), W = W (z, y, t) take values in the bounded

operators L(F) on some Banach space F. As usual {-, -} denotes the anticommutator, [-, -]
the commutator.
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Restricted to finite square matrices, the above system is known as matrix KP and is
a topic of independent research (see [21], [53], [86]). Our intention is to study (3.4), (3.5)
on the operator level both for its own sake and as a tool for the investigation of the scalar
case.

The additional term —3a[U, W] in (3.4) can be motivated as follows. From [25], [102],
we know that a Lax pair for the KP is

0 0
3
B = Q—|—48 —|—6ui—|—3ugg—304w7 (3.7)

ot 23 oz
In other words, the scalar KP is obtained as the integrability condition [L, B] = 0. If we
calculate [L, B] without the assumption that the terms u, w in (3.6), (3.7) commute, we

arrive at (3.4), (3.5). Note also that —3a[U, W] is harmless with respect to scalarization
because it is annihilated by multiplicative functionals.

The following theorem is the main result of this section. It states an explicit operator-
valued solution for the non-abelian KP (3.4), (3.5).

Theorem 3.2.1. Let FE, F be a Banach spaces, and A € L(FE), B € L(F) arbitrary
constant operators.

Assume that L = L(z,y,t) € L(F,F), M = M(z,y,t) € L(E,F) are operator-valued
functions which are C*-smooth and solve the base equations

1
L,= AL, L,=—AL, L, =—4A%L, (3.8)
(8
1
M, = BM, M, = ——B*M, M; = —4B*M. (3.9)
(8

Then, on Q = {(z,y,t) € R®| (I + LM) is invertible}, a solution of the non-abelian KP
(3.4), (3.5) is given by

U = 2V, (3.10)
W= 2V, (3.11)

where the operator-valued function V.=V (x,y,t) € L(F) is defined by
V =M+ LM) " (AL + LB). (3.12)

For the sake of comparison, we provide a direct proof of Theorem 3.2.1 for the case that
the parameter operators A and B commute in Appendix C. This gives us an opportunity to
show a result which was stated without proof in an earlier publication (Proposition 5.1 in
[18]). In the commutative case, Theorem 3.2.1 follows from a lengthy but straightforward
calculation.

In contrast a direct approach seems to be out of discussion for the non-commutative
case. The reader should compare this to [86], where a related result was proved by computer
algebra. One of our motivations was to find structural reasons behind such formulas which
seem to be hopelessly complicated at first sight.

The idea of our argument is motivated by the techniques we used in the treatment of
the AKNS system, to get hands on iterations of operators. Roughly speaking, we try to
condense the calculation by reduction to terms with accessible ‘reproduction properties’.

At first we observe that we can reduce the complexity of the proof of Theorem 3.2.1 by
transition to an integrated version of the operator KP equation (3.4), (3.5).
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Lemma 3.2.2. If the operator-function V.= V(z,y,t) € L(F) is a solution of the inte-
grated non-abelian KP,

(Vi 6(V2)? + Viww) = =302V, — 6a[V,, V], (3.13)

then U =2V, W =2V, solve (3.4), (3.5).

Proof The proof is straightforward. Namely, by definition of U, W, we get

CL) 602V, — 12a[V,, V)]

= —3a*W, — 3a[U, W],
which is (3.4). (3.5) is obvious. O
As a second preparation, we provide some tools for the manipulation with some operator-

valued functions.

Lemma 3.2.3. Let F, I’ be Banach spaces and L € L(F,F), M € L(F,F) arbitrary
operators such that the inverses (I+LM)™", (I+ML)™! exist. Then the following identities
hold:

(I+LM) 'L = LUI+ML)™ (3.14)
MI+LMY™'L = I—-(I+ML)™". (3.15)
The correponding identities with the roles of L, M exchanged hold, too.

Proof To verify (3.14), we use L(I + ML) = (I + LM)L and multiply it by (I + ML)~}
from the left and (1 + LM)~! from the right. As a consequence,

MI+LM)™'L = MLI+ML)™!
= ((r+mL)— 1)1+ ML)~
= I-(I+ML)™
which is (3.15). O
The next lemma furnishes the recursive identities which allow to cut down the proof of
Theorem 3.2.1 to a reasonable size.

Lemma 3.2.4. Let E/, I be Banach spaces and A € L(E), B € L(F) constant operators.

Let L = L(zy,22,...) € L(F,E) and M = M (z1,22,...) € L(E, F) be operator-valued
functions, depending on infinitely many real variables z;, 7 € N, which are differentiable
with respect to x; for all j and satisfy the base equations

Ly, =AL and M,, =—(-B)'M for all j € N,

and assume that (I + LM), (I + ML) are always invertible.
Define, for j € N, the following operator-valued functions

V, = (I+LM)™! (AJ'L _ L(—B)f) V= (1+LM)—1(AJ' n L(—B)J’M)

W, = (I+ML)™! ( —(—=BY'M + MAJ’) W, = (I+ML)™" ( _(-B) - MAJ’L)
Then the following derivation rules hold for all i,j € N:

Viee = ViV (3.16)

-~

Vie, = —ViW; (3.17)
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W = WZ’W]‘, (3.18)

Wie, = —WiVj. (3.19)

Moreover, the following identities hold for all i,j € N:

ViV = Vil = Vi, (3.20)
Vil Vi = Vi, (3:21)
WW; =W,V = —Wiyj, (3.22)
WW, + WV, = Wiy, (3.23)

Of course, a version in three variables would be sufficient for our applications. But the use
of infinitely many variables is notationally more convenient and shows better the recursive
structure. Note also the structural similarity of Lemma 3.2.4 to the Lemmas 1.2.5, 1.2.6.

Proof We start with (3.16). Using Lemma 1.2.4 and the base equations, we obtain
Vie, = —(I+LM)""(LM), (I+LM)" (AJ'L - L(—B)f)

(1 + LM) (AT - L(—B)J‘)m

- (I+LM)! ((AZ’L - L(—B)i)M) (I+ LM)™! (AJ'L - L(—B)J')
(I + LMY A (AL - L(-B))

— (I+LM)™ ( (AL — L(—B))M + Ai(I + LM)) v,
= (I+LM)7 AT+ L(-B)'M) V,
= ViV

and, analogously,

-~

Vie, = —(I+LM)‘l(LM)w,.(HLM)—l(AJ +L(_B)J‘M)
(1 + L)~ (44 L(—B)fM)gci

= —(I+ M) (AL = L(=B))M) (I + LM)~ (AT + L(-B)/ M)

(I + LM)™ ((AZ’L _ L(_B)Z’)(_B)J‘M)
= Vi (— M(I—l—LM)‘l(Aj +L(_B)J'M) n (_B)]M)
= Vi(l+ ML)_I(— M(Af + L(—B)JM) +(I+ ML)(—B)J'M)
= Vi(I+ ML)~ (= (MA — (-BY M)
= —ViW,

where we have used Lemma 3.2.3 for the fourth identity.
This shows (3.17). The identities (3.18), (3.19) follow by exchanging the roles of L and
M, A7 and —(—B)7.

Now we turn to (3.20). First we calculate

(1 +LM) ViV = (A + L(=B)' M) (I + LM)™" (AL - L(~B))
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_ _L(_B)Z’(M(I T LM)—IL) (—B) + Ai((l + LM)—l)AfL
—AY((14 LMY L) (=BY + L(=B) (M (I + LM) ™" ) AT L.

Next we apply Lemma 3.2.3 to the large brackets in order to change (I + LM)~! into
(I + ML)~! wherever it appears. We thus get

(I+LM) ViV,
- —L(—B)Z'(I I+ ML)_l) (—B)i + A' (I LI+ ML)—lM) AL
A (L(I T ML)‘l) (—B)! + L(~BY) ((1 T ML)—lM) AL
= (A% L—L(=B)*) = (AL - L(=B)) (1 + ML)~ ((-B) + MAL)
= (I+LM)Vig; + (I + LM)V;iV;,
which shows (3.20). Analogously, we get
(4 LM) V¥ = (A" L(=B)'M) (I + LM) ™ (A + L(-B) M )
— L(-BY (M(I T LM)—IL) (—B)I M + A’ ((1 T LM)—l)Af
LL(—B) (M(I T LM)—l)AJ' T A ((1 T LM)—IL) (—B) M
= L(=B) (I = (I+ ML) ) (=B) M + A(1 = L(I + ML)~' M) Al
LL(—B) ((1 T ML)—lM) Al 1A (L(I T ML)_l) (—B) M
= (A + L(=B)*M) = (AL = L(=B) ) (I + ML)™ (M A/ - (-B)' M)
= (I4 LM)Viy; — (I + LM)V;W;
and thus (3.21) holds.

As for (3.22), (3.23), we repeat the arguments above. Note that in this case we cannot
exchange the roles of A’ and —(—B)’ because of the signs. We observe

(I + ML) WW, = — ((—B)i + MAZ’L) (I + ML)~ (MAj - (—B)jM)
— (-BY ((1 T ML)‘l) (=B)I M — M A (L(I T ML)—lM) Al
—(=B) (1 + ML) M) AT + MAY(L(I+ ML)™) (-B) M
- (—B)Z'(I ~M(I+ LM)—IL) (=B)I M — M A (I I+ LM)—l)AJ'
—(=B) (M (I + M)~ ) AT + MAY((1 + LM)™'L) (- By M
= (=B M — Ma™) 4 (MA" = (=B)' M) (1 + LM)™' (AT + L(~BY M)
= —(I4+ MD)W + (I+ MLYWV,,
vielding (3.22), and (3.23) follows from
(1+ ML) W, = ((=B) + MA'L) (1 + ML) ((=B) + MA'L)
— (-BY ((1 T ML)_l) (—B)) + MA' (L(I T ML)—lM) AL

+(-B) ((1 T ML)—lM) AL+ MA (L(I T ML)‘l) (—B)?
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— (-BY (1 ~M(I+ LM)—IL) (—B)) + MA' (I —(I+ LM)—l)AfL
H(=B) (M1 + LM) ™ ) AT L+ MAT((I+ M) 7L ) (- B)’

_ ((—B)“’j T MA”J’L) - (MAZ’ - (—B)ZM) (I+ LM)™! (AJ'L - L(—B)f)

= —(I+ML)W;y; — I+ ML)W,V;.
This completes the proof. O

Now we are in position to give the proof of the main result of this section.

Proof (of Theorem 3.2.1) By Lemma 3.2.2 it suffices to show that
V= M(I+LM) " (AL + LB)

solves (3.13). To unify the calculations, we use the coordinate transformation

1
T =1, r9 = —y, x3 = —4t, (3.24)
«

under which the base equations (3.8), (3.9) become L,, = A'L and M,, = —(—B)'M for
i =1,2,3. Then it remains to show that V = V (21, 22, 23) solves

(Vereres +6(V2)? = 4Vw3)m = —3Vie, — 6[Viy, Vi), (3.25)

To start with the proof, we remark the connection between V and the operator-functions
used in Lemma 3.2.4. Namely, by Lemma 3.2.3,

V = MU+ LM)'(AL+ LB)
(I +ML)""M(AL + LB)
= (I+ML)"" ((MAL-B)+(I+ML)B)
= —Wl + B
Note also that V', V] do not denote the same operator-function.
First we use Lemma 3.2.4 to calculate the derivatives of V. By (3.19), we get, for
J=12,3,
Ve, = —Wi, = W,Vi. (3.26)

Using again Lemma 3.2.4, namely (3.16), (3.18), and then (3.22), we find, for all j € N and
i=1,2,3,

(ijl)l’i = Wj,l’i Vi+ ijLl’i
= (WiW; +W; Vi)V
= -Wi;Vi+ (Wz‘/}] + W]“/}Z’)Vl. (3.27)

In particular, for j = 1,2, 3,
Vi, = =W Vi + 2 W,V V4. (3.28)

Next we calculate the derivatives of the operators in (3.27). Since we do only need higher
derivatives with respect to the variable z1, we restrict to this case. Starting from (3.16),
(3.17), (3.18), we observe for 7, j € N,

(WiViVi)g, = Wio ViVi + WiV, o Vi + WiViVy o
= (WMW)VVy — WVAW, Vi 4+ Wi(ViVi)W
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= (WVi = Wip)ViVi = WiViWVi 4 WiV = VW
= (Wilips = Wi V)V + (WA (Vi) = WV, — WiV Wi ) v
= (Wil = Wi ¥ + WiV )V = (WAVIW; + WA, + WVim )V

where we have applied (3.21), (3.22) to the terms in the brackets of the second, and (3.21)
to the term in the brackets of the fourth identity. In particular,

(W1‘71V1)x1 = —W2‘71V1 + 2W1‘72V1 - 3W Vi, v,
(WiVoVi = WoWiWi),, = (WiVa+ WiV — 203 Vo Vy

+2(WoViWa Vi — Wi Vi, V).

Using (3.26), (3.28), we can rewrite those equations as

(W1‘71V1)x1 = —WoViVi + 20 VoV — 3(Viy )2, (3.29)
(WiVoVi = WoViVi)e, = —WaVi+ (WiVa + WaVi)Vi — Vi, — 2[Viy, Vi, (3.30)

Now, starting from (3.28), and then applying (3.27), (3.29), we calculate

= —(WWVi)s + 2(W1‘71V1)x1
- (W3V1 (W Vst Wzﬁl)vl) _ 2(W2X71V1 oW,V + 3(Vx1)2)

Vl’ll’ll’l

= WsVi +3(Wi Vs — W V)V — 6(Vyy)2.
Therefore, taking also (3.26) into account, we obtain
Viraier + 6(Vay)? = 4Vey = =3W3V1 + 301V, — W)V,
which finally, by (3.27) and (3.30), yields

(Vl’ll’ll’l + 6(V901)2 - 4‘/1’3) = _3(W3V1)l’1 + 3(W1‘72V1 - W2‘71V1)x1

x1
= —3( - Wy + (W1‘73 + W3‘A/1)V1)
-|-3( - WiVi + (W1‘73 + W3‘71)V1 — Vigan — 2[Vay, VxQ])
= —3Viyw, — 6[Viy, Vi)

Thus (3.25) is proved. O

3.3 Derivation of solution formulas for the scalar KP

In this section the explicit solution of the operator-valued KP is used to construct solution
formulas for the scalar KP.

3.3.1 The scalarization process

Let us briefly recall the idea for the scalarization process.

Starting from an operator-valued solution U = U(z,y,t), W = W (z,y,t) € L(F) of the
non-abelian KP equation (3.4), (3.5), application of a functional 7 yields scalar functions
w=T7(U), w=71(W). It is our purpose to obtain solutions of the scalar KP equation (3.1),
(3.2) this way. Thus 7 has to maintain the solution property. Since the KP equation is
nonlinear, 7 has to be multiplicative in a suitable sense.

47



The discussion in Chapter 2.1.2 motivates the following ansatz. Fix @ € F’ and choose
(i) U, W € S,(F), (ii) ev, as the canonical functional on &,(F). Then multiplicativity of
ev, on S, (F) is assured by Proposition 2.1.3.

Pursuing this strategy, we end up with the following result.

Theorem 3.3.1. Let I' be a Banach space and a € F' a constant functional.
If V.=V(x,y,t) € S,(F) is a family of bounded operators such that U = V,, W =V,
solve the non-abelian KP equation (3.4), (3.5), then

U = Up,

= vy,
where the function v = v(z,y,t) is defined by

v(z,y,t) =ev, (V(av7 Y, t)),
solve the scalar KP equation (3.1), (3.2).

Proof First observe that V' € S,(F) implies U, W € S,(F). Thus, the non-abelian KP
(3.4), (3.5) is an operator equation in the Banach algebra S,(#). By Proposition 2.1.3, on
this Banach algebra ev, defines a multiplicative functional.

Application of ev, to the non-abelian KP (3.4), (3.5) yields successively, by i) linearity,
ii) multiplicativity, and iii) continuity,

0 = ev, (Ut 4 3{U, Uy} + Upaw + 362W, + 3a[U, W])

) evy(Us) + 3 evy ( {U,U,} ) +evy (Uppy) + 302 ev, (W) + 3aev, ( (U, W] )
= evy(Uy) +3 { eva(U),evy(Us) } 4evy(Upss) + 30 evy (W) + 3a [ ev, (U), evy (W) |
= evo(Up) + 6 evy(U) evy (Uy) 4 evy(Upsz) + 30 evy (W)

= evo(U); +6evy(U) evy(U)y + eva(U)pas + 30 ev, (W),

= U+ 6uty + Uppr + 3042wy
with u =ev,(U) = evy (Vi) = evy(V)e = v, w = evy (W) = ev,(Vy) = ev,(V), = v,. This
shows (3.1), and (3.2) follows analogously. O

There is a slightly different way to see Theorem 3.3.1 by using duality directly. Although
it is less economic, we will discuss it because it contains a clue for the scalarization leading
to the matrix KP equation.

Since V =V (z,y,t) € S4(F), there is a vector function ¢ = ¢(z, y,t) such that V = a®@ec.
Consequently,

U=a®d, W=a® f

with d = ¢, and f = ¢,. By the calculation rules for one-dimensional operators (see Section
2.1.1) this means that the operator-valued KP equation reads

a®dt‘|’3(<d1’7a>a®d+<d7a>a®dx)+a®dxxx
= —3042a®fy —3a({f,a)a®d - (d,a)a® f),
a® fr=a®d,.
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Take ¢g € I such that (cg,a) = 1. Applying the operator equation to ¢, we get the vector
equation

dy + 3((dy, ayd + (d, a)d,) + dyry = =302 f, — 3a((f,a)d — (d,a) f),
o =dy.

Applying the functional a again, end up with the scalar equation

<dt7 a> + 6<d7 a><dl’7 a> + <dl’l’l’7 a> = _30‘2<fy7 a>7
<fl’7a> = <dy7a>'

Since the functional @ is continuous, we can interchange the order of derivation and the
application of a. Therefore, the functions u = (d, a), w = (f, a) solve the scalar KP equation
(3.1), (3.2).

To complete the argument, observe v = (d,a) = (c;,a) = (c,a)y = vy, w = (f,a) =
(cy,a) = (c,a)y = vy, with v = (¢, a).

3.3.2 Solution formulas in terms of determinants

Next we carry out the scalarization process for the concrete operator soliton derived in
Theorem 3.2.1. Moreover, we follow the line of arguments of Chapter 2 to derive compact
solution formulas in terms of determinants.

We start with the following result which we obtain by imposing appropriate conditions
such that the operator soliton in Theorem 3.2.1 becomes one-dimensional.

Proposition 3.3.2. Let F, F be Banach spaces and A € L(E), B € L(F), D € L(E,F)
arbitrary constant operators. Assume in addition that the constant operator C' € L(F, F)
satisfies the one-dimensionality condition

AC+(CB=a®c (3.31)
for0#a € F', ¢ € FE. Define the operator-functions
L(z,y,t)= E(x, y,t)C, E(w, y,t) = exp ( Az + éAzy — 4A3% ),
M(z,y,t) = M\(ac, y, t)D, M\(ac, y,t) = exp ( Bz — éBzy — 4Bt ) .

Then, on Q = {(z,y,t)| (I + LM) is invertible}, a solution of the scalar KP equation (3.1),
(3.2) is given by

U = U,
= Uy,
where
v:2tr(M(I—|—LM)_1 E(a@c)). (3.32)

Remark 3.3.3. We want to emphasize that the one-dimensionality condition does not in-
volve the operator D. Thus, the choice of D is completely free!

Proof Obviously the operator functions L = L(z,y,t) € L(F,E), M = M(x,y,t) €
L(E, F) solve the base equations in Theorem 3.3.1. Hence Theorem 3.2.1 provides us with
the solution U = V,,, W =V}, of the non-abelian KP equation (3.4), (3.5) on €2, where

Vo= 2M(I+ LM) (AL + LB).
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By (3.31),
V = 2M(I+ LM) 'L(AC + CB)
= 2M(I+ LM) 'L(a® )
= a@ (2M(I+LM) 'Le) .
Thus V(z,y,t) = a@ (¢(z,y,t) ) with the vector function ¢ = 2M (I + LM)_IE ceF. In
particular, V € S, (F).
Now we are in the position to apply Theorem 3.3.1. This shows that on € a solution of
the scalar KP equation (3.1), (3.2) is given by u = v,, w = v, with
vo= eva(a®5) = (¢,a) = tr(a@?)
= u(aw @M +LM)"Le))

= 2t(M(I+LM) ' L(a e o).

This is the desired solution formula. O

Our next aim is to improve the solution formula (3.32). Exploiting the theory of traces
and determinants on quasi-Banach ideals, we can get rid of expressions containing inverse
operators like (I + LM)~!. The main result of the section is the following.

Theorem 3.3.4. Let E, F be Banach spaces, and let A € L(E), B € L(F), D € L(E, F)
arbitrary constant operators.

a) Assume that the one-dimensionality condition (3.31) is satisfied with C' € A(F, F)
and 0 # a € F', where A is an arbitrary quasi-Banach ideal admitting a continuous deter-
minant 6. Define

o~

Lgt) = Do) Cy Ll t) = exp(An + ~A% — 44%),

— — 1
M($,y,t> = M($,y,t>D, M($,y,t> = exp(Bac - EBzy - 4B3t>‘

Then, on Q = {(z,y,t)| 5({ + LM) # 0}, a solution of the scalar KP (3.1), (3.2) is given
by

U = U,
= Uy,
where
d
v = 28_x10g 0(I+LM). (3.33)

b) If 0 & spec(A) + spec(B), then a) holds with C' = (I)Z,IB(“ @ c), a # 0, and any

p-Banach operator ideal A admitting a continuous determinant §.

Proof Recall that the solution u, w of the KP in Proposition 3.3.2 is determined by the
function v given in (3.32). We show that v can be written in the form (3.33).

To this end we denote by 7 the trace on A which corresponds to the determinant §
according to the Trace-determinant theorem (confer Proposition B.2.11). Since all traces
coincide on the ideal F of finite-rank operators, we have 7 = tr, and thus

v o= Qtr(M(I—I—LM)_IE(a@c))
M(I+ LM)~ E(a®c))

2r(M(
- 27(MI—|—LM Y(AL + LB)
= 27’(

)
M),
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the latter by the trace property. By the base equations L, = AL, M, = BM, this shows
v o= 2 T((I T LM)_l(LM)x).

Since (', and thus LM, belongs to the quasi-Banach ideal A by assumption, we can exploit
the differentiation rule for determinants on quasi-Banach ideals, see Proposition B.2.12,
which yields

v o= 2%10g5([—|—LM).

Therefore, part a) is shown. Part b) is an immediate consequence of Proposition 2.3.4. [

3.4 From the operator-valued to the matrix KP

Asg its scalar analogue, the matrix KP is a soliton equation, and one is interested in inte-
grability techniques, Lax pairs, explicit solutions and so on. For results in this direction,
we refer to [21], [53], [86].

In the present section we show that the operator-valued KP equation can be also used
to construct solutions of the matrix KP.

We proceed as follows. First we provide the necessary algebraic tools. Then we extend
the scalarization process to the matrix KP equation and carry it out for the operator soliton
derived in Theorem 3.2.1. Finally we give some ameliorations of the solution formula.

3.4.1 Algebraic tools for the scalarization process to matrix-valued
soliton equations

To start with, we introduce the vector space Sg, .. 4, (F, F) consisting of all operators with
range at most n between the Banach spaces I/ and I’ whose behaviour is governed by the
functionals aq,...,a, € E’.

Definition 3.4.1. For linearly independent aq, ... ,a, € E’', we define the vector space

Sal,...,an(EvF) = {Z%@y] Yis---5Yn € F}

i=1
and we write S, ... 4, (L) instead of Sy, .. 4, (E, E).

One could also introduce for some subspace K C F of finite codimension Sy as the space
of all T € L(E,F) with ker(T) O K. We have Sg(E,F) = S4y,. a0 (B, F) iff K =
;= ker(a;) and codim(K') = m. We prefer the less invariant notation S,,... a,, (¥, F') for
notational convenience.

Lemma 3.4.2. Any T € S, a,(E, F) has a unique representation T = 2?21 a; @ y;
with y1, ...,y € F.

Lemma 3.4.3. S,,  ..(E,F) is closed under multiplication from the left with operators
in L(F). In particular, S, ... 4, (F) is a left ideal in L(F).
Moreover, S, ... a,(E) is a Banach algebra.

Once ay,...,a, are given, there is a continuous linear map which naturally relates n-
dimensional operators on a Banach space F to nxXn-matrices with complex entries. Namely,
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we define the map 0 : S, 4, (E) = M, ,(C) by

a(zn: a; ® yj) = (U’(ai ® yj))

i=1

e

S (3.34)
7,7=1
Of course 0 = 04, ... 4,- In the sequel we do not mention the dependence on the functionals
ay,...,ay, if it is clear from the context.

Proposition 3.4.4. On S,, . 4, (F), the map o is an algebra homomorphism.

Proof It suffices to show multiplicativity. Let T', .S € S, ... 4, (&) be operators governed

by the same functionals aq, ..., a, € E’, where T' = 2?21 a;@y; and S = 2?21 a;®z; with
Yis -« s Yn, and z1, ..., 2z, € F. By the multiplication rule for one-dimensional operators,
o(l'S) = U(Zak @ Yy - Zaj ® Z]‘) = U(Za]‘ ® (Z<Zj,ak>yk))
k=1 7=1 7=1 k=1
= (tr(ai ® (Z<Zj7ak>yk))) = (< Z<ijak>ykyai>)
= ( (s i) (25, ak>) = (@m az’>) - (<Z]7 az’>). _
k=1 27]:1 7,7=1 7,7=1
= (tr(ai ® yj))m:1 (tr(ai ® zj))m:1 = U(Z a; @ yj)a(z a; @ Z]‘)
J=1 J=1
= o(T)o(S5).
]
Lemma 3.4.5. Let ay,....,a, € E' and ay,....,a, € E' be two different sets of linearly

independent functionals with S, ... o, (F) = Sz,,... a,(E). Then the corresponding maps o
and ¢ are gauge equivalent.

Two maps ¢, ¥ : V. — M, ,(C) are called gauge equivalent iff there is an invertible
A € M,,,,(C) such that ¢(v) = A7l (v)A for all v € V.

Proof Since S, 4,(E) = Ss,... a,(E), there are A\jp € C such that a; = Y77, A\jrax,
and we set A :( Ak >;k:1‘ Of course A is invertible.
Now let T € Sah..’,’an(E) = Sa,.....an (1Y) be given arbitrarily with its corresponding
representations T = 3%, a; @ y; = >, @; @ §;. Then
e e e e e
Z@@@?j:Z( Ajk“k)@@\j:zak(@(z/\jk@\j)v
=1 J=1 k=1 k=1 =1
and since the representation of 7" in S, . 4, (&) is unique, y, = 2?21 AjkY;-
Therefore,

G(A = (zn:tf(ai(@@\k)‘Akj) = (U’(az'@ (im@w))

k=1 ,7=1 k=1 7,5=1

n n

n
n

_ (U,@ ®yj))”:1 = (tr( (zn:/\ikak ) ®yj))
) k=1

n

= (z”: Aig - tr(ap @ yj)) = Ao(T)

7,75=1

which shows the assertion. O
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3.4.2 Scalarization from a different point of view

Next we use the extended scalarization process to obtain solutions of the matrix KP equa-
tion. For fixed dimension n € N, this is the system
g+ 3{u, up} + Uppr = —30%w, — 3afu, w), (3.35)
Wy = Uy, (3.36)

taking its values in M,, ,,(C), the n x n-matrices with complex entries.

In principle the scalarization process works as before. The only difference is that the
solutions to be constructed are not scalar anymore but matrix-valued. This is taken into
account if we use a map o taking its values in M,, ,,(C) instead of a functional.

Our ansatz is analogous to the one for the scalar KP. Fix ay,...,a, € F’ linearly
independent and choose (i) U, W € S,, . 4.(F), (ii) o as the map from S, ., (F) to
M, (C). Since o is an algebra homomorphism by Proposition 3.4.4, multiplicativity of o
on Sg,... an (F) is assured.

With this strategy we arrive at the following result.

Theorem 3.4.6. Let F be a Banach space and ay, ... ,a, € F' constant, linearly indepen-
dent functionals.
If V. = V(z,y,t) € Suy,... a0, (F) is a family of bounded operators such that U = V,,
W =V, solve the non-abelian KP equation (3.4), (3.5), then
U = U,
W= vy,

where the function v = v(z, yt) is defined by

v(z,y,t) = o (V(w,y,t) ),
solve the matriz KP equation (3.35), (3.36).
Proof Observe U, W € S,, ... 4, (F), because the same holds for V. Therefore we can read
the non-abelian KP (3.4), (3.5) as an operator equation in the Banach algebra S, ., (F).

Since ¢ is an algebra homomorphism by Proposition 3.4.4, the proof of Theorem 3.3.1 can
be carried over literally. O

As in Section 3.3.1 we give a slightly different proof of Theorem 3.4.6. Its argument is
quite instructive, since it in particular explains the concrete choice of the map ¢ used for
the extended scalarization process.

Since V. = V(z,y,t) € Sa,,.. an(F), there are vector-functions ¢; = ¢;(z,y,t), i =
1,...,n,such that V.=>3"" | a; @ ¢;. Hence,

U:zn:aZ@di, W:zn:cu@fn
=1

=1
where d; = ¢;,, fi = ¢;y. Using the calculation rules for one-dimensional operators, see
Section 2.1.1, the operator-valued KP equation reads

n

Z a; Dd;s+ 3 Z a; @ (Z ( (d; oy ar)dy + (d;, ag)dy o )) + Z a; @ d; poo

=1 =1 k=1 =1

= —30{2 Zai & fi,y — 30&2@{ X (Z ( <f27ak>dk - <d27ak>fk )) )
=1 =1

k=1
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n n

Z a; @ fiz= Z a; @ d;y.

There exist vectors ¢;g € I such that (c;,a;) = &;, t,7=1,...,n. If we now apply the
operator KP to ¢;0, 7 =1,...,n, we obtain the vector equations

],t +3 Z ( 742 ak dk + <d]7 ak>dk z ) ‘|’d],ammc

= —3a’f;, — 3042 ( (fi> ap)dy — <d]7ak>fk)

k=1
f]7 ]7y7

7 =1,...,n, and application of the functional a;, ¢+ = 1,...,n, to these vector equations

vields the scalar system

(dje, ai) -|-3Z ( dj ey an)(dr, a;) + <dj7ak><dk,x7ai>) H(dj ey @i)

= =30 (fjy, a;) 3042 ( (fi ar)(dy, a;) — (d;, ap){fr, a;) )7

(frzyai) = (djy, ar),

L)j=1...,n
Since the functional a; is continuous, we can interchange the order of derivation with the
application of a;. As a consequence, we have shown the following system for the functions

Uiy = <dj7ai>7 Wiy = <fj7ai>7 27] - 17 c.e N,

uzy t ‘|’32 ( uk] z Uik ‘|’uk] (uzk) ) ‘|’(u2])x1’1’ —

n

= —3a*(w;;)y, — 3 Z ( WUk — UkjWik )7

k=1
(wij)e = (Wij)y,
which is the matrix KP equation in its component form. In other words, u = (uij)?,j:p
w = (w;;);_; solve the matrix KP equation (3.35), (3.36).
Finally note that

u = (<d]‘7a2'>)7'7‘4 :(<Cj,x7ai>)7.l,

i,j=1 i,j=1
w o= (Upad), = (epa) = (<<c]7a >>;éj:1)y = v,

for

) :U(iai®ci) :U(V).

=1

v = (<%az’>)é,

2,7=1

= (U’(az’ ® c]'))?

27]:

This completes the alternative proof of Theorem 3.4.6.

3.4.3 Resulting solution formulas

In the sequel we carry out the scalarization process for the concrete operator soliton in
Theorem 3.2.1. Moreover, we derive an ameliorated solution formula which is formulated

in terms of determinants.
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As result a result of scalarization we obtain the following proposition.

Proposition 3.4.7. Let F, F' be Banach spaces and A € L(E), B € L(F), D € L(E,F)
arbitrary constant operators. Moreover, assume that the constant operator C € L(F,F)
satisfies the n-dimensionality condition

n

AC+CB=) a;®¢ (3.37)
i=1
foray,...,a, € F' linearly independent and c, ... ,c, € E. Define the operator-functions
~ ~ 1
Lz, y,t) = L(z,y,t)C, Lz, y,t) = exp ( Az + =A%y — 44°¢ ),
o
— — 1
M(z,y,t) = M(z,y,t)D, M(z,y,t) = exp ( Bx — —B?*y — 4B3t ) .
o

Then, on Q = {(z,y,t) | (I + LM) is invertible}, a solution of the matriz KP equation
(3.35), (3.36) is given by

U = U,
W= vy,
where
v=2 (tr(M (1+1M)7" La; @cj))) : (3.38)
7,75=1

Remark 3.4.8. Again we stress that the operator D can be chosen without any restriction.

Proof Obviously the operator functions L = L(z,y,t) € L(F,E), M = M(x,y,t) €
L(E, F) solve the base equations in Theorem 3.2.1. Hence Theorem 3.2.1 provides us with
the solution U = V,,, W =V}, of the non-abelian KP equation (3.4), (3.5) on €2, where

V = 2M(I+ LM) (AL + LB).
By (3.37),
V = 2M(I+ LM) 'L(AC + CB)

= QM(I—I— LM)_li(Za]‘ & C]‘)
i=1
= Y a; @ (2M(I+LM) 'Le; ) .
=1
Thus V(z,y,t) = 35—y a;® (€(x,y,t) ) with vector functions ¢; = 2M (I + LM)™L ¢; €
F. In particular, V € S, . .. (F).
Now we are in the position to apply Theorem 3.4.6. This shows that on € a solution of

the matrix KP equation (3.35), (3.36) is given by u = v,, w = v, with

v = o(Luew) = (n(wes))

i=1

n

7,75=1
n

_ (tr(m@ (QM(]JFLM)_IECj)))i =1

= 2 (tr(M(I+LM)_IE(ai ®Cj)))

1,5=1

This is the desired solution formula. O
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Again the next step is to gain a solution formula which avoids the calculation of the
inverse operator (I+ LM)~!. The resulting formulas, which are stated in the next theorem,
have a similar structure as those for the AKNS system in Theorem 2.3.7.

Theorem 3.4.9. Let E, F be Banach spaces, and let A € L(F), B € L(F), D € L(F, F)
arbitrary constant operators.

a) Assume that the n-dimensionality condition (3.37) is satisfied with C' € A(E, F) and
linearly independent ay, . .. ,a, € F', where A is an arbitrary quasi-Banach ideal admitting
a continuous determinant 6. Define

o~ o~

1
L($, yvt) = L($, yvt) Cv L($, yvt) = exp(Aac + aAzy - 4A3t>7

— —

1
M($,y,t> = M($,y,t>D, M($,y,t> = exp(Bac - EBzy - 4B3t>‘

Then, on Q = {(z,y,t)| (I + LM) is invertible}, a solution of the matriz KP (3.35), (3.36)
is given by

U = U,
W= vy,
where
§(I4+ LM — L(a; @ ¢;)M) \"
U:Q( BIChs (49 cj) )) (3.39)
§(I+LM) iiml
b) If 0 & spec(A) + spec(B), then a) holds with C' = @Z}B(Z?ﬂ a; @ ¢;), linearly
independent ay,...,a, € F', and any p-Banach operator ideal A admitting a continuous

determinant §.

Proof Recall that the solution u, w of the matrix KP in Proposition 3.4.7 are determined
in terms of the matrix-valued function v given in (3.38). We show that v can be rewritten
in the form (3.39).

To this end we denote by 7 the trace on A which corresponds to the determinant
 according to the Trace-determinant theorem (see Proposition B.2.11). Since all traces
coincide on the ideal F of finite-rank operators, we have 7 = tr and hence

v o= 2 (tr(M(I-I—LM)_li(ai@Cj)))

n

6y=1
n

— 2 (T(M(I—I—LM)_IE((M(@C]‘)) )MZI
_ (1—5(I—M(I+LM)_1/L\(a¢®Cj)) )n 7

6y=1
where the latter identity follows by the common relation 6(1 + 7)) = 1+ 7(T) for one-
dimensional operators T'. Using the refomulation

§(1 =M+ 1M) " L(a; @ ¢)) = 6(1— (I+LM) " L(ai @ ;) M)
- 5((I+LM)_1(I+LM—E(ai®cj)M))

S(I+ LM = L(a; @ ¢;)M)
§(I+LM)

part a) is shown. Part b) is an immediate consequence of Proposition 2.3.4. U

It is remarkable that for the (usual) trace of the solution of the matrix KP a comparable
smooth formula holds as for the solutions of the scalar KP.
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Proposition 3.4.10. If the requirements of Theorem 3.4.9 a) are met, then for the (usual)
trace of the solution given in (3.39), it holds

tr(v) = 2 %log(S(I—I—LM).

Proof We start from the representation of v given in (3.38),

v o= 2 (tr(M(I{—LM)_lE(ai@cj)) )n -

,]=

For the trace of the solution v of the matrix KP, calculated in its usual way, applying suc-
cessively the n-dimensionality condition (3.37), the trace property, and the base equations
L,=AL, M, = BM, we obtain

tr(v) = QZtl’( (I+LM)~ 1L(“J®CJ))

= 2t(M(I+LM)7'D i: a; @ c;)

= 2t(M(I+ LM)"'L(AC +CB))
- Qtr(M (I+LM)" (AL—|—LB))
= 2t((I+LM) (AL + LB)M)
- Qtr((I—l—LM)_ (LM)Z,).

Let us again denote by 7 the trace on A corresponding to the determinant 4. Since on the
finite-rank operators 7 coincides with tr, we have

tr(v) = 27((1+LM) " (LM).)

= 2 2logé(l—l—LZM)7

Ox
the latter following from Proposition B.2.12 (note that LM belongs to A because C' does).
This is the assertion. O

3.5 Some remarks concerning Hirota’s bilinear equation and
Miura transformations

In the present section we prove that the solution formula in Theorem 3.3.4 even provides a
solution of the bilinear KP equation. For convenience, we briefly recall Hirota’s formalism
for the KP. Then we state our result. The basic idea of the proof is to avoid a direct
operator-valued treatment of Hirota’s equation, but to reformulate it first in terms of the
Miura transformation. Then we observe that the Miura transformation translates nicely
to the operator level together with a good deal of its crucial properties. This will rather
smoothly lead to the desired result.

In soliton theory, Hirota’s bilinear method has proved to be a powerful technique for

finding explicit solutions (see the classical references [46], [47] and also [68]). Starting from
a soliton equation the main idea is, roughly speaking, to develop it into a bilinear equation,
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i.e., a differential equation in twice as many variables as before, and to look at the restriction
to the diagonal. The latter can be investigated by perturbation methods.
For the KP equation, the bilinear form was derived in [87]. It reads

(Dy = 4D} 5+ 3D3)(p-p) = 0. (3.40)

For a multiindex o = (aq,...,a4), o; € {1,2,3}, and two functions p, ¢ we define the
Hirota derivative

Do (pa) (0) = [(aa B asa) (88 ) 85) ) q@] r=¢

for @ = (21,22, 23), & = (&,&2,&3). The right side is defined on the diagonal in R2 x Rg’
which is in the obvious way parametrized by z € R2. If a = (j,...,7), we simply write D;“.

Symmetry implies many useful identities for the Hirota derivatives (see [48]). For ex-
ample one readily sees that D;? (p-p) vanishes identically if k is odd, whereas D;? (p-p)isin
general nontrivial for even k.

The dependent variable transformation v = 831 log p leads to the KP equation in a
slightly different form as the one used up to now, namely

1 3 [
Upy — Zul’ll’ll’l — 3uuy, = Z/ Uy €1 (3.41)

where appropriate boundary conditions have to be imposed for 2 — —oc.
By the coordinate transformation @ = xy, y = aaq, and t = —x3/4, rescaling v = 2u
and differentiating once, we arrive at

(vt + Vpge + 6vvx)x = —3042Uyy7

the scalar version of (3.13), which obviously provides solutions of (3.1), (3.2). In the sequel
we focus on (3.41), which is the common form with respect to the bilinear formalism.

Proposition 3.5.1. Let E, I be Banach spaces and A € L(F), B € L(F) arbitrary con-
stant operators.

If L = L(zy,29,23) € A(F,E), M = M(21,22,23) € A(E, F), for A a quasi-Banach
operator ideal admitting a continuous determinant &, are operator-valued C*-smooth func-
tions, satisfy the base equations

L., = AL, L., = A’L, Lo, = A’L,
M,, = BM, M,, = —B*M, M,, = B*M,

and the condition
(AL+ LB)P = (AL + LB) (3.42)

holds for a constant, one-dimensional projector P € L(F), then a solution of the bilinear
form (3.40) of the KP equation is given by

p=6(I+LM).

Before we give the proof, we show that the bilinear KP equation (3.40) is intimately
linked with Miura type transformations. Writing out (3.40) explicitly, we obtain becomes

(Pr121212:P — APororey Por + 302 5,) + 3(Payas P — P2,) — 4(Poreal — Py Pas) = 0,
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or, at points where p(z1, 2, 23) # 0,

(pxlaclxlxl _ 4px1x3 _|_3px2x2) _I_ 3((1)1’11’1)2 _ (&)2) _ 4(1)1’11’11’1 _ %)Zﬂ — 0
p p p p p p p p
(3.43)

Define w; = p;,;/p. There is a systematic way to express (3.43) in terms of the w;’s
and Miura-type transformations of the w;’s. Namely, if we denote by M; the Miura-type
transformation given by

then, taking logarithmic derivatives, it is easy to verify the following properties:

Prve — Mj(wy) = Mi(wy), 0,5 =1,2,3,
p

on+l

1Tp — ]\4{1(11)1)7 n € Ng.

Using these properties, (3.43) becomes

(Mf(wl) M5 (wy) + 3M2(w2)) T 3((M1(w1))2 - (w2)2) - 4(M12(w1) - w3)w1 —0.
(3.44)

We want to point out that (3.44) can also be viewed as a reformulation of (3.43) in terms
of the w;’s and their derivatives. Indeed, evaluating the Miura-type transforms in (3.44)
we end up with

W,w101 71 + 6wix1 - 4w3,x1 + 3w2,x2 =0. (3.45)

In the sequel we extend this reasoning to the operator-level. To this end, we first define
operator-valued analogues of the Miura-type transformations, discuss their properties, and
solve the operator pendant (3.46) of (3.44).

Proposition 3.5.2. Let E, F be Banach spaces, and A € L(E), B € L(F) arbitrary con-
stant operators. Assume that L = L(xy,29,23) € L(F,E), M = M(z1,22,23) € L(F, F),
are operator-valued functions satisfying the base equations

L., = AL, L., = A’L, Lo, = A’L,
M,, = BM, M,, = —B*M, M,, = B>M,

, = —

and assume that (I + LM) is always invertible.
For n € N, define the operator-valued functions

Zy=(I+ML)" (MA"L + (-B)"),

and, for j =1,2,3, the operator-valued Miura-type transform M; as the map from L(F) to
L(F) given by

M(W) =W, +ZW  for W eL(F).
Then,
Mj(Z,) = Zny;

forall y =1,2,3 and all n € N.
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Proof In the notation of Lemma 3.2.4 we have 7, = —Wn. Thus, by the definition of the
Miura-type transformation, a successive application of the lemma yields

what had to be shown. O

Corollary 3.5.3. Let the requirements of Proposition 3.5.2 be met. Then,
Zi,acj - Z],x, = [ZZ7 Z]]
Jori,7=1,2,3.
Proof By the definition of the Miura-type transformation, we have
Ziw, = Zjw, = (M(Z) = Z;Z; ) = (Mi(Z)) = Z:Z; ) = |7, Zj],
the latter by Lemma 3.5.2. U

Next we solve the operator-valued pendant of (3.44).

Proposition 3.5.4. Let the requirements of Proposition 3.5.2 be met. Then the operator-
functions Zy, Zy, Z3 solve the operator equation

(Mf(Zl) — AM(Z)) + 3M2(Z2)) + 3((1\41(21))2 - (22)2) - 4(M12(Z1) - 23) Z, = 0.
(3.46)

Proof Successive application of Lemma 3.5.2 to each of the terms in the large brackets
shows that all respective terms vanish. The assertion follows. O

Evaluating the Miura-type transformations in (3.46) yields an operator-valued pendant

of (3.45).
Lemma 3.5.5. The operator equation (3.46) in Proposition 3.5.4 is equivalent to

ZLl’ll’ll’l + 6(2171’1)2 - 42171’3 + 32271’2 = _3[217 Zl71’2]' (3'47)

In the proof of Theorem 3.2.1 we have shown that the operator function V' = —W\l + B
solves (3.25), where —W; = Z; in the notation of Lemma 3.5.5. Thus the above lemma
states that even an integrated version of (3.25) holds on the operator-level.

Proof Recall My(Zs) — (Z2)? = Zawy, Ms(Z1) — Z3Zy = Z1,4,, by the definition of the
respective Miura-type transformations. Moreover, we observe for iterated applications of
the Miura-type transformation M; to 7y,

M(Z1) = Zio + 2%,
MX(Z) = Zipw + D10y 21+ 27070 5y + 75,
MY (Z) = Zigwai 20+ Z1oger + 3171 100 + 3775 4,
V210, 27 + 22121 0, 70 + 323 D 0y + 71

By a straightforward calculation, these identities yield

ZLl’ll’ll’l + 6(2171’1)2 - 42171’3 + 32271’2 = _3[217 ZLl’ll’l + 2212171’1]'
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Next, expressing reversely derivatives by Miura-type transformations and applying Lemma
3.5.2 again, we get

Z1oyer + 221710, = MUZy) — Z1 0 20 — Z) = MP(Zy) — Mi(Z0) 74
= Zs— Zyly = My(Zy) — ZaZy = Zy 4y,

which shows the desired reformulation. O

In the next lemma we establish the link from solutions of operator equation (3.47) to
(scalar) solutions of the bilinear form (3.40).

Lemma 3.5.6. Let the assumptions of Proposition 3.5.1 be met and denote by T the trace
which corresponds to the determinant & on A. Then, for j = 1,2, 3,

8%]logpz T(Z]‘ — (—B)j).

Proof Using successively Proposition B.2.12, the base equations in Proposition 3.5.1, the
trace property, and Lemma 3.2.3, we get

) (o1 +LM)),
9r;0 T T 8(I+LM)
T+ LM)" LM)%)

=T
(I+LM)™" ((A'L - L(-B))M )

= T

(
(
- T(MI—I—LM (AL - L(-B)
(
(

= (I +ML)™'M (AL~ L(-B)
= (I + ML)~ (MA'L - (1+ML)(-B) + (- )'))
= T<Z]_(_B)]>7
which is the assertion. O

Now we are prepared for the proof of Proposition 3.5.1.

Proof (of Proposition 3.5.1) We have to show that p = §(/ + LM) is a solution of the
bilinear KP equation (3.40). To this end set

w; = 0 lo
J 8$] gp

By Lemma 3.5.6, w; = 7(W;), where W; = Z; — (—B)?. Moreover, since the trace 7 is
continuous, we have
Wiz, = T<W])xi =7(Wjw) =7(Zjw),

and corresponding identities hold for higher order derivatives of w;. Next we note that,
because

Wi=(I+ML)™'M (AL+ LB),

(3.42) guarantees Wy P = W;. Therefore 7y , P =W , P = Wi ,, = Z;1 », as well, and, as
a consequence,

T((Z12)") = 7((Z10,P)*) = 7 ((Z10,P%)?)
= 7 ( 210, P* 21, P* )= 7 ((PZ1,0,P)(PZ1 4, P) )
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= 7(PZ14P) 7(PZi 4 P)
2

= (21 P)) = (H20P) = (+(202)) .

This means that the trace 7 is multiplicative on Z; ,,. Furthermore, we obviously have
T([Z1, Z1,,)) = 0.

With these preparations, we now proceed as follows. By Lemma 3.5.5, Z; solves (3.47).
Now we apply the trace 7 and use that it is linear, continuous, and multiplicative on 7 ;,
to observe that w; satisfies (3.45).

It remains to check that the line of argument which led from (3.43) to (3.45) can be
reversed with w; = p, /p. This shows that p solves the bilinear KP equation (3.40) on
Q= {(z1,22,23)|p = 0}. Since p is real-analytic, the theorem follows O

3.6 Line-solitons and Miles structures

In this section we discuss a first application of our solution formula. Taking the operator-
valued parameters A, B simply as diagonal matrices of the same size, and D = I, we
obtain the N-line-solitons of the KP-II equation. We discuss regularity, include some special
features often neglected in the literature, and provide computer graphics for illustration.
Furthermore, we explain how Miles structures fit into the picture.

We start with the proof that, for finite-dimensional parameters A € M, ,(C) and
B € M,, ,,(C), the essential data of the generated solution is encoded in the Jordan
canonical form of A, B.

Lemma 3.6.1. Let A € M, ,(C), B € M, ,,(C), and let U, V be matrices transforming
A, B into Jordan canonical form J 4, Jg, respectively, i.e., A=U"YJ,U, B=V~1JgV.

Then the solution in Theorem 3.3.4 b) is not altered if we replace simultaneously A, B
by Ja, Jg, the matriz D by VDU, and the vectors a, ¢ by (V™)a, Ue.

Proof Recall that we are in the finite-dimensional setting (£ = C*, FF = C™). It is
sufficient to verify that the asserted replacements do not change the determinant p =
det(! + LM) in Theorem 3.3.4.

From the very definition of the exponential function, it is easy to check that, for the
functions E, M as defined in Theorem 3.3.4, it holds

~ 1
L = U_IJEU forJizexp(JAx—l—aJiy—élJit),

1
M = V_IJMV for Jo7 = exp (JB T — aJiy—élJi t).

Abbreviating C' = @Z}B(a(@c), from a@c = AC+CB = U (J4(UCV Y +(UCV 1) Jp)V

we next observe
VOV = 05t (U@ vt )= a5t (Ve e (Ue) . (3.4
As a consequence,
p = det (I+LCMD) = det (1+ (U™ J0)C(VT gV D)
= det (I +J(UCV ) Ig(vDU™))
which, by (3.48), shows the assertion. O

Next we derive the formal N-soliton solution for both the KP (i.e., both the KP-I and
KP-1I) equation.
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Proposition 3.6.2. For complex numbers p;, q;, 7 =1,..., N, satisfying p;+q; # 0 Vi, 7,
a solution of the KP equation (3.1), (3.2) on Q = {(z,y,t) | p(z,y,t) # 0} is given by

U = U,

W=y,

J
with v = 2—log p, where

oz
N n m s =) (4 — )
p($7y7t): 1+Z Z Hfi]($7y7 H - - '] (349)
o S e (pi, + qi ,)(qz] +pi,)
<J

and f;(z,y,t) = exp ((pj +qj)z+ é(p? — qu)y — 4(p? + q?)t + c,oj) with arbitrary (complex)
constants @;.

Proof Consider the diagonal matrices A, B € My n(C) given by

P 0 @ 0
A= . s B= .
0 PN 0 qN

where p;, ¢; € C with p; +¢; #0 forall 4,7 =1,...,N.
Our aim is to apply Theorem 3.3.4 b). To this end, we need the following preparations:

(i) Given a,c € CV, a solution of the coupling condition AC' +CB = a® ¢ is given by the
matrix

o= (B
Dpi + q;/ i5=1

(ii) The matrix exponential function
~ 1
L(z,y,t)=exp (Ax + —A%y — 4A3t)
o

is again a diagonal matrix with the entries {; = (;(z,y,t) = exp (pjx + ép?y — 4p§’t>
on its diagonal, and an analogous statement holds for

7 1
M($7 Y, t) = exp <B$ - —Bzy — 4B3t)
(8

The coupling condition in (i) is easily verified by
< (AC—I—BC)ej,ei > =< AC@j,@i >+ < CBej,ei >
< Cej,Alei >4 < CBej,e; > =< Cej,pie; >+ < Cqjej,e; >
= (pi—l— q]‘) < 06]‘762' > = a;¢

< (a®@c)ej, e > .
As for (ii) we observe that for any diagonal matrix 7" = diag{t; | j = 1,..., N} the n-th
power can be taken entry by entry, i.e., T" = diag{t? | j = 1,...,N}. Thus (ii) follows
directly from the definition of exponential function as a power series.

Now we are in position to apply Theorem 3.3.4 b). With D = I, we thus obtain a
solution of the KP equation (3.1), (3.2) by

U = Uy, W= vy

with v = 28ilogp7 where p = det (I—I— ECM\)
x
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Using the well known expansion rule for determinants (confer Lemma 4.1.6), we can
evaluate p explicitly. Namely, by (i), (ii), we find

p = det(5 + ¢ K'm')N
ij g i

Pi T 45

1,]=

N n
aZ/Z
= 1+ det 7jz m
I R
n=1 41 <..<in Jag'=1

n
= 1+ Z Z H a;,ci; - mz i - det ( T )
n=1 1<..<ip j=1 pl] % ! g5y'=1
n
ai.c; (pi; — i) a0, — G )
— 1_|_ _ J J
Z Z H Pi, + G, iy ng (pi, + @i, (gi; +pi,)’

n=1 1<...<ip j=1

i<g!

where the last identity goes back to a remark of Cauchy (see [20], p. 151-159, [78], VII, §1,
Nr. 3 and Lemma 6.1.2).

To complete the proof, it remains to rewrite the expressions

A / —
m; = fi. n
pitag j
For convenience we show that the solution derived in Proposition 3.6.2 coincides with the
representation of the N-solitons as given by [87]. Since there probably are some misprints
in this version, we here refer to the representation in [47]. It reads

u = 821()ng7

_ the sum runs over all g = (p1,...,un)
In= 2031 exp ZW% + Zl it AiG ) e wi € {0,1},
u= 1,7

<
M = KT+ Ay — wit + 772(0)7
(Hi — I{]‘)4 + 3042(/\2' — /\]‘)2 — (Hi - Hj)(wi - wj)
(ki + 1) 32 (N + X)) — (ki + Kj) (wi +wj)]

and the dispersion relation £} + 3a*A? — k;w; = 0 holds.

exp(A4;;) = —

To see that this equals our formula, take x; = p; + ¢; and \; = (p? — ¢?)/a. Then the
dispersion relation shows w; = 4(p? + ¢7), hence m;{; = exp(n;). After some calculations,

o (mi =R = PO = AR (pi— pi) (4 — 45)
exp(di) = (ki 4 15)2 = a?(Ni/ki = Aj/R))2 T (pi+¢5) (P + i)

Thus Proposition 3.6.2 indeed describes the N-soliton solution for the KP equation.

We now come to line-solitons which are regular, real-valued solutions of the KP-II
equation (i.e., in the case a = 1).

Proposition 3.6.3. Let p;, ¢; €R for j=1,..., N, and assume that for all v # j one of
the following conditions is satisfied:

(i) —ai < —q; < p; < pi,
(i1) —q; < p;i < —q; < pj.
Then a real-valued solution of the KP-II equation (3.1), (3.2) with o =1 is given by
U = U,

W=y,
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with v = QE log p, where

Ox
N n n
(pi; — pi, ) (4i; — @,)
p($,y,t):1—|—z Z Hfl ($797 H ] 'J (350)
n=1 1<.<tn j=1 ’ ]/= pZJ T4 /)(%J —I_pZJ')
1<y

and f;(z,y,t) = exp ((Pj + g+ (0F -y — 4l + )t + %) with ¢; € R arbitrarily.

Moreover, this solution is reqular on the whole of R3.

Proof The solution property is an immediate consequence of Proposition 3.6.2, and reality
of the solution is obvious. Thus it remains to show regularity. But since either of the
conditions (i), (i) implies that the phase-shift term

(pi —pi)lai — qj)
(pi + ¢;) (9 + pj)

is positive, we have p(z,y,t) > 1 for all (z,y,t). This shows the assertion. O

To illustrate our result, we turn to u = u(z,y,t), which are the N-line-solitons in the
closer sense. Recall that a single line-soliton corresponding to the parameters p;, ¢; is
characterized by its angle to the z-axis and its shape, which are encoded in (p; — ¢;),
(p; + q;), respectively (confer (3.3) and the subsequent discussion).

Now there are two particularly interesting cases.

Existence of line-solitons with the same angle to the z-axis Using the condition
(i) in Proposition 3.6.3 one easily arranges parameters —¢; < —¢; < p; < p; such that
Pi — ¢ = p; — ¢;. In the N-line-soliton this yields two solitons of different shape but with
the same angle to the z-axis.

=

X
R

%
%Y,
%,

KKK

& ;,",/

5K

The 2-line soliton for p; = 0.5, ¢ = —0.1, p» = 0.4, g2 = —0.2,
plotted at the time ¢ = 200.

Existence of line-solitons with identical shape In contrast, the condition (ii) in
Proposition 3.6.3 allows to construct even line-solitons with identical shape. One has only
to arrange the parameters —¢; < p; < —¢; < p; such that p; + ¢; = p; + ¢;.

Note that solutions of this particular type cannot be achieved by condition (i), which is
the standard regularity condition in the literature (see [37], [81], [55]).
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Snapshots of the three-soliton during interaction
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Successively the solution is plotted for ¢ = —20 ,—10, 0, 10, 20, and 30.
The parameters of the three participating line-solitons are p; = 0.7, g1 = 0.6,
P2 = 0.57 42 = 0.57 P33 = 0.47 qs = 0.2.
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Resonance phenomena Finally, we will briefly discuss resonance phenomena. These
arise in the same way as the line-solitons in Proposition 3.6.3, but without the condition
that the parameters p;, ¢; are pairwise different. For example, if we set

q1 0
A =pl, B = ;
0 qN

with —gny < ... < —¢1 < p, the resulting solution is a typical Miles structure. It reads
precisely as in Proposition 3.6.3, but with

N
pla,y,t) =14 fi(a,y,1)

J=1

instead of (3.50). In particular it is real-valued and regular. By a more detailed investi-
gation it can be verified that it looks like a tree with a trunk and N branches. The trunk
corresponds to the soliton with parameters p, ¢y, the first branch to p, g1, and the other
N — 1 branches to —¢;, ¢j41 for j=1,..., N - 1.
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HH
H =)
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785
20
%&d —a0 20 0 26

Miles structure (py = p2 =ps =0, g1 =0.5, ¢z = 1, g3 = 1.5)
plotted successively at the times t = —5,0, 10

67



The plots above show such a Miles structure. Beside the usual pictures, we here found it
instructive to plot also corresponding pictures from above. Note also that we have plotted

u(z, —y,t) to make the diagrams clearer.

Some other impressing examples of what can happen in degenerated cases which can
be similarly obtained as the one above are gathered below. Among the examples where
the colliding solitons change their shape in the interaction, and a structure developping an

inner closed cell.

Example 1
150
— OO
100
0.4 -
50 HH
40 -
0.2 =
o 20 =25
o H
-80 -
o] -]
-60 2
-20 5q
-40 “2300 250 200 150 100

50

-50

nunn

~19%55 -150 -100 -50 Oo?4
6"_16
0.4 \ O
il
o o W\\\\\\\\\\\\\\\\ 3 -100
\\\"\,A‘\.\\\\\\\\\\\
20 'z‘:s:::::}::z 20
"' ~2005 50 100 150 200

The above plots show solitons which change their shape during interaction. The parameters
arep; = 0.5, 1 = 0.5, p2 = 0.5, 92 = 0, p3 = 0.4, g3 = 0. The solution is plotted successively
at the times t = =70, —20, 15 and t = —200, —100, 100, respectively for the left and right

column.
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Example 2
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Above the parameters are py = 0, g1 = 0.5, po = 0.5, ¢ = 0.5, p3 = 0.5, g3 = 1, py = 1,
g4 = 1, and the solution is plotted successively at the times t = —5,0, 10 and ¢t = —10, 0, 20,

respectively for the left and right column.
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In these final plots, an inner cell develops. The parameters are p; = 0, ¢ = 0.5, p; = 0.5,
g2 = 0.5, p3 = 0.5, g3 = 1, ps = 0, ¢4 = 1. Note that the solution u(z,—y,t) is plotted
to make the pictures clearer. The successive times are t = —8,0,6 and ¢t = —20,0, 10,
respectively for the left and right column.
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Chapter 4

Soliton-like solutions for the
AKNS system and properties
of 1ts reductions

The ultimate purpose of Chapters 4, 5, and 6 is to achieve a reasonably complete asymptotic
understanding of the solutions one can obtain by inserting finite matrices into the formulas
of Chapter 2. In the present chapter we present the necessary solution formulas and deduce
structural properties of more general character. Furthermore, we will focus on soliton-like
solutions, for which some of the results are more explicit.

The first section is concerned with the general AKNS system. Here we have indepen-
dent generating matrices A € M, ,(C), B € M, ,,(C), which may even be of different
dimension. Then we observe that our constructions behave naturally with respect to simi-
larity between matrices, which yields reduction to matrices in Jordan canonical form. This
simple fact indicates that one may hope for a relation between the dynamics of the so-
lutions and the algebraic properties of the matrices. For the generic case that A and B
are diagonalizable, we are able to evaluate the solution formula in closed form (including
explicit evaluation of all appearing determinants). To the best of our knowledge, for the
general AKNS system this is done for the first time. For the Creduced AKNS system,
corresponding formulas are given in [56], [63] in terms of Wronskian determinants, but full
evaluation of the determinants is only achieved in the R-reduced case.

We call these solutions soliton-like because of their formal analogy with solitons. As
already mentioned in [3], these solutions may present instantaneous singularities. This is
no surprise and illustrates the known fact that the unrestricted AKNS system does not
yield soliton equations in general. In the framework of [3], [5], this is reflected by the
circumstance that the inverse scattering method applies only formally. In particular, the
Gelfand-Levitan-Marchenko equation need not be solvable.

But we do obtain honest soliton equations, if we restrict to convenient reductions of
the AKNS system. Following [3], we consider successively the C-reduced and R-reduced
AKNS system. In our approach the two cases are formally independent. But it is helpful
to keep in mind that the R-reduced system becomes a further reduction of the C-reduced
one under the physically plausible assumption that its solutions be real. As a matter of
fact, the most prominent equations in the AKNS system (the Nonlinear Schrédinger, the
sine-Gordon, and the modified Korteweg-de Vries equation) are already contained in these
two reductions.

After reduction we are left with a single generating matrix in the solution formula.
This allows us to introduce negatons as the solutions corresponding to matrices where
each eigenvalue appears in exactly one Jordan block (otherwise there would be cancellation
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phenomena). Historically, negatons (and the corresponding concept of positions) were
systematically derived via Wronskian determinants by Matveev et al. ([11], [57], [58], [59],
[60], [95], see also [T1], [79], [96], [98], [99]). Our motivation to consider negatons was mainly
to prove conjectures of Matveev about the asymptotic behaviour of negatons in the general
case. This will be done in Chapters 5 and 6.

In the remainder of Chapter 4 we clarify structural questions, mainly regularity and,
for the R-reduction, also reality. To prepare the transition to a finer analysis, we study
in some detail the case of solitons. Already in this simplified setting, the explicit formulas
we obtain for the C-reduction are new. Then we explain how asymptotic analysis gives a
precise meaning to what is usually called the particle behaviour of solitons. A further point
of independent interest is that we include breathers into the description for the R-reduction.
These are the easiest case of formations of solitons (see [69]), i.e., solitons moving with equal
velocity, which cannot be separated in asymptotic terms.

Finally, we emphasize that our formulas are quite different from the expressions which
are derived by Wronskian techniques. In Appendix A we indicate how to translate formulas
from [62], [63], [96] into our formalism.

4.1 Explicit formulas for soliton-like solutions of the
AKNS system

In this section we explain what can be said for the AKNS system as a whole. We derive a
basic solution formula and establish reduction to Jordan form. Finally we give an expression
in closed form of soliton-like solutions, the class which specialises to solitons under the
reductions to be discussed later.

4.1.1 Transition to Jordan data

For convenience we briefly recall some standard terminology. Let C* be the Hilbert space of
all complex n-tuples & = (&), equipped with its usual inner product (£, 7n) = 2?21 &
for &, n € C". lts standard basis is denoted by {e;|j = 1,...,n}, where ¢; is the vector
with 1 in the j-th entry and zero elsewhere.

By the Riesz lemma, any functional f, € (C*)" can be identified with a vector a =
(a;)7—, € C* by the assignment < &, f, > = Z?Zl §ia; = (&,a) for £ = (&)1, € C". We
do not distinguish between f, and a in notation.

Consider now the one-dimensional operator a @ ¢ for a, ¢ € C*. From its definition,

(a® C)(f) =<&a>c :< ijajci )?:17
7=1

it is clear that it corresponds to the matrix ( a;c; )Z,:l.

Let us now reformulate the solution formula of Theorem 2.4.4 b) for matrices.

Theorem 4.1.1. Let A € M,,,,(C) and B € My, ,,(C) be matrices satisfying spec(A) U
spec(B) C {z € C|Re(z) > 0} and spec(A)Uspec(—B) C {z € C| fo(z) finite }. Let 0 # a,
ceC, 0#£b, de C" be arbitrary. We define the operator-functions

L(z,t) = exp (Az + fo(A)t)),  M(x,t) = exp (Bx — fo(~B)t),
and abbreviate

L=183'%0boc), M=Mog,(aed),

o~

Lo=L{a®ec), Mo=M(b®d).
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Then a solution of the AKNS system (1.1) is given by the pair
¢g=1-P/p, r=1-P/p,

where

_ 1 L oS I—-ILy L _ I L
P_det(M I—MO)’ P_det( iy I)’ p_det(M I)'

This solution is defined on any strip R x (t1,t3) on which p does not vanish.

Proof Note that spec(A) Uspec(B) C {z € C|Re(z) > 0} implies 0 ¢ spec(A) + spec(B),
and hence the existence of @Z}B, q)]g,lA' Thus the only thing that requires a little justification
is that exp(Ax), exp(Bz) behave sufficiently well for 2 — —oc.

To this end let U be a matrix transforming A into Jordan form J, say A = U~'JU,
where J = diag{.J; | j = 1,..., N} with Jordan block J; of dimensions n; corresponding to
eigenvalues ;. Then exp(Az) = U 'exp(Jo)U = U~ 'diag{exp(J;) | j = 1,...,N}U and

(0) (ny=1)

7 U
exp(J;z) = S exp(a;z),
(©0)
7
with constants 'y](“) = o fulfor 4 = 0,...,n;—1. From this it is clear the exp(Az) behaves
sufficiently well for + — —oo. It remains to apply Theorem 2.4.4 b). O

The following lemma shows that all relevant properties of the generating matrices A, B
are encoded in their Jordan canonical form.

Lemma 4.1.2. Let A € M,, ,(C), B € M,, ,,,(C) be as in Theorem 4.1.1, and let U, V' be
matrices transforming A, B into Jordan form J4, Jg, respectively, namely A = U1 J4U,
B=V-lJjgV.

Then the solution in Theorem 4.1.1 is not altered if we replace simultaneously A, B by

J4, Jp and the vectors a, b, ¢, d by (U a, (V=1)'b, Uc, Vd.

Proof Let us start with the first member ¢ = 1 — P/p of the solution in Theorem 4.1.1
and show that the asserted replacements do not change the determinants P, p.
From the very definition of the exponential function, it is easy to check

L = U_IJEU for J7 1= exp (JAx + fO(JA)t)7

M = V_IJMV for Jg; :=exp (JBOC—fO(—JB)t).

Using the abbreviation C' := (I);l,lB(b ®@c), D:= (I>]§71A(a @ d), we next observe
b@ec=AC+CB=U"" (Jo(UCV Y+ (UCV")Jg) V.

It immediately follows
vev-t = (I)jj,JB (U@ v )= (I)jj,JB ((V™H'D) e (Ue)),

and, for the same reason, VDU ™! = @j;JA (U)o (Vd) ).
Therefore,

utooo 0 Jyucv-t U o
det (”( 0 v ) ( JoVDU™Y —J=V(be dV-! ) ( 0V ))

= det (” ( JM(V%U‘I) . d%é(f%_é (Vd)) ) )

P
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which means that we can replace A, B by their Jordan forms if we use the vectors (U~!)a,
(V=1b, Uc, Vd instead of a, b, ¢, d. A similar calculation applies to p.
Finally, an analogous argument shows that P transforms properly. O

For later use, we also state the following representation of ®7's(a ® ¢).

Proposition 4.1.3. Let A € M, ,(C), B € My, ,(C) be in Jordan canonical form:
A = diag{A; |t =1,...,N}, B = diag{B; |j = 1,..., M} with Jordan blocks A;, B,
of dimensions n;, m; corresponding to eigenvalues o;, [3;, respectively. Assume o; 4 3; # 0
forallo=1,... ,N,5=1,... , M.

Then

@, '5(a@¢) =(Ti(es) Ty T (aj) )

N
M

=1,...,
=1,...,

J
with the upper left and right band matrices I'y(¢;), t=1,... , N and I'y(a;), j=1,..., M,
given by

c; c; a;mj)
Fl(Ci) - L ‘ 3 Fr’(a]) - K . 3
Cgm) 0 0 aﬁl)

(1) (n:) 4D
J

where the vectors a € C™, ¢ € C* are decomposed according to the relevant Jordan decom-
position, namely

(& — (Cl7-.-7CN) wlth CZ': (051)7”‘76577‘1'))7
a4 = (a17"'7aM) with a; = (a;1)7”‘7a;mj))7
and
-9 1 ptr—1
Ty = [ (—)++ (M—I-V ) ( )
Iu_ 1 a2+ﬁ] v= c My

1,.
n=1,... My
Proof Let us first consider the case that A, B are Jordan blocks of dimensions n, m with

eigenvalues «, (3, respectively. We claim A’ T + TB = 6%) ) 67(11)7 where eg) is the first
standard basis vector in C* and

-9 1 ptr—1
T = (typ,) v=1,..,n with tl/“ — (_1);1,{—1/ (,u +v ) ( ) ‘
n=1,...,m M_ 1 a+ﬁ
Since
' v=1 ﬁtul H= 1
AT = L ’ TB),, = 7 ,
( ) ! { at”“ - t(y_l)u7 Ve 17 ( ) 8 ﬁtuu ‘|’tu(ﬂ—1)7 B> 17

we check immediately (A'T+TB)y; =1, (A'T+TB)y, = (AT+TB),; =0 for p,v > 1.
Finally, for p,v > 1,

(AT+TB)uy = (o4 B)tun + L1y + (1)

)

= 0.

This proves the claim.
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Observe [I',(a), B] =
A(TU)TT (@) + (D(OTT(a)) B = Ty(e) (A’ T+ TB)T,(a)
= I'(c) (67(71) enl))F,,(a) = (Fr(a)’e%)) ® (Fl(c)egll)) =a®ec.

Consequently, I';(¢)TT,(a) = ®,'5(a®c). This completes the proof for single Jordan blocks
A, B of possibly different dimensions.
In the general case the assertion follows from

and AT(c) = T';(¢)A’. Thus,

4.1.2 Soliton-like solutions for the AKNS system

As already mentioned in the introduction, the unreduced AKNS system seems to be too
general to hope for a significant solution theory. Nevertheless it is remarkable that the
formula in Theorem 4.1.1 leads to an explicit description of a solution class which lifts the
N-solitons to the general level.

Theorem 4.1.4. For complex numbers a;, @ = 1,...n, and 3;, 7 = 1,...m, such that
Re(a;) > 0, Re(8;) > 0 and fo(ew), fo(B;) is finite for all i, j, a solution of the AKNS
system (1.1) is given by

m min(m—l,n) . .
—~ 11y...,10
10 5UE R0 SIRTD SID SRR { PR o S
7=1 r=1 i1tk =1 g1, 0gp1=1 VIRERE 7‘]H+1
11< <tk J1<<Jtl

n min(m,n—1) n m . .
DR SENCIEND SEND SN { St NEES
£ s

k=1 i igd1=1 g1, gk =1
i< <tp1 J1<<Us

A=

A=

min(m,n) n

where p = 1 4+ Z Z Z ﬁ(;h 7;{) and where we use the ab-
1y--+sJrR

11 b 7i,{‘=1 I ds=1
<. <t J1<...<Jk

breviation
i A K A
P = Hfz Hg]y [T (e, - e)? T] 55, -50° T T e, + 5
]17“‘ 7]A = pr=1 =1 y,: v=1
n<y n<y

with fi(z,t) = fi(o) exp (oezx—l—fo(oez) ) gi(z,t) = g exp (ﬁ]x Jo(=55)t ), and arbitrary
constants fi( , g] )¢ C\{0},i=1,...,n,j=1,...,m.
More precisely, q, r is a solutwn on all strips R X (t1,tz2) on which p does not vanish.

In particular, for n = m = 1, we recover (1.3), (1.4). Note also that the final require-
ment on the domain of the solution is essential for the general AKNS system. In fact,
instantaneous singularities may be caused by vanishing denominators.

Remark 4.1.5. To the best of the author’s knowledge this is the first time that explicit
soliton formulas for the AKNS system as a whole are deduced. For the C-reduced AKNS
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system, soliton formulas were derived by Marchenko [55], Matveev [56], Meinel, Neuge-
bauer, Steudel [63] et al.. In the mentioned articles, solutions are expressed by Wronskian
determinants. However, these are only evaluated for the R-reduced AKNS system (for ex-
ample the sine-Gordon equation, but not the Nonlinear Schrédinger equation), where the
determinants in the formulas are much simpler (compare Section 4.4).

For a detailed comparison with existing results for the C-reduced AKNS system, in
particular with respect to the representation of solitons in terms of Wronskian determinants,
we refer to Appendiz A.

Proof Choose a,c € C*, b,d € C™ all different from zero, and define the generating
matrices A € M, ,(C), B € M, ,(C) in the solution formula of Theorem 4.1.1 as

aq 0 ﬁl 0
) G
0 Qp, 0 ﬁm

Since Re(a;), Re(8;) > 0 Vi, j by assumption, we in particular have 0 ¢ spec(A) +spec(B).
Thus we are in position to apply Theorem 4.1.1. As a result, we obtain a solution ¢, r of
the AKNS system. To fix ideas, we focus on the formula for ¢ which is given by ¢ = 1—P/p,

where
0 Lo (b
p — det([—|— — ﬁlLB( @ c) )7
M(I)B,A(a®d) —M(b®d)
0 Lo (b e
p = det([—l— P apb@c) ),
Moz, (a @ d) 0

with the exponential functions E(x, t) = exp (Aac —I—fO(A)t)7 M\(ac, t) = exp (BOC - fo(—B)t)7
and the constant operators ®7'5(b @ ¢), ®3',(a @ d). In the remainder of the proof we
calculate P, p explicitly. We claim:

i) For b € C™, ¢ € C", the unique solution C' := &7, (b @ ¢) of the matrix equation
AB
AX + XB =b® cis given by

c— ( bici )
oy —I—ﬁ]‘ i=
j=

(ii) As for the exponential functions, Le M, (C), M e M (C) again are diagonal
matrices with the entries (; = {;(z,t) = exp ((a;x + fo(oy)t ) and m; = m(z,t) =
exp ( Bz — fo(—p;)t ) on the diagonals, respectively.

1,...,n
1,...,m

Both claims are almost obvious: (i) follows from b @ ¢ = (bj¢;) .
7

..y and (ii) from the

=1
=1,...
definition of the exponential function as a power series.

This provides us with the factorizations '3 (b@c) = D.CoDy, @5, (a@ d) = DyC)D,,
and b @ d = Dg(ep @ eg) Dy, where

1
00:( ' ) € M, (C), eo = (1,...,1) e C",
S

and D,, Dy, D., Dy the diagonal matrices with diagonal given by a, b, ¢, d, respectively.
We infer

0 LD.CoD
Po=det (14| < o 0 )
MDdCODa MDd(eo ® eo)Db

76



0
Co

Co
—€g ® €

D,
0

0

det Dy

)(
)

)( ))

det([—l— ( (l)) Dde )
det([—l—( —G(eo®eo)))’

with I/ = DaDCE, G = DdeZTj7 and, analogously,

0 FCy
det(H(GCé ¢ )).
To calculate P, p, we use the the expansion rule for determinants, see Lemma 4.1.6, together
with Lemma 4.1.7. This yields

S

0

G (4.3)

p

n+m n+m

(Il,...,Ik)
FC
po=1+y > det((GC’ 00> )
k=1 I1,..,Ip=1
<<,
= e
e S o) 0

11 <<t J1<.-<Uk

2] e st

In the latter expression, the notation T<J1~~ JH> indicates that we only keep the rows number

i1,...,1, and the columns number j{,...,j. in T.

We only calculate this determinant for the situation that K = n < m and (j1,...,j.) =
(1,...,n). The remaining cases can be obtained by an obvious renumbering. For notational
simplicity we can even assume m = n. Then, by Proposition 4.1.10 a),

det( G%(’) E 870) = det(F) det(G) det ( g(,) %0)
= 0 [T gt TT (6 - 800 = )/ TT (e + 57"

i<j
where fz(wv t) = (ZZ'CMZ'($7 t)v gi($7 t) = b2d2m2($, t)'
In summary, we have shown

min(m,n) . .
~f Uy
pre Y Yy ()
r=1 i1, ik=1 J1,e,iw=1 ]17 “ .. 7]/1

11< <tk J1< <Jw

To calculate P, we follow the same path. Because of the one-dimensional perturbation,
it is slightly more involved to determine the principal minors in the expansion. Here they
contribute whenever, for the dimensions & of the block in the upper left, A in the lower right
corner, it holds A = K,k 4+ 1, see Proposition 4.1.9. In the case k = 0, the corresponding
principal minor reduces to a number. In the case kK > 0, we again confine to the calculation
of the prototypical principal minor, which by Proposition 4.1.10 b) yields

det( 0 FCo ) = det(F) det(G) det( 0 Co )

GC/ —G(@o@@o) C/ —eg & €ep
- I @0 Loite.0) 1] =5 1 @i =) /HHOH@
=1 : g=1 J: 1= 1] 1
< 1<

(4.4)

form=n,n+ 1.
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As a result,

min(m—1,n)

m e m . .
~ 11y...,10
D WS S DI VI PLs g |
r=1 r=1 il,...,iﬁ;l Il Jkg1=1 ‘]17”' 7‘]H+1
1] <. <t J1 < <Jr+1
Pasting all formulas together completes the proof for ¢, and r can be treated in a similar
manner. U

To fill in the remaining gaps, we supply the tools for the calculation of determinants
which we have used the proof of Theorem 4.1.4. Although some of these techniques will be
extended in Chapter 6, we give a complete treatment for the sake of motivation. First we
recall the expansion rule for determinants.

Lemma 4.1.6. Let T € M,, ,(C) and denote by T(si%) the minor obtained from T by

keeping only the rows and columns number i1, ... ,1x. Then the following expansion of T
holds,
k=1 iy, ip=1
11 <...<1g

In particular, the summand corresponding to k = 1 is the trace of T, the summand corre-
sponding to k = n the determinant of T.

We also need the following observations concerning the evaluation of determinants with
a certain block structure.

Lemma 4.1.7. If T € M, ,(C) is a matriz with a k-dimensional block T =0 on the
diagonal and k > n — k, then det(T') = 0.

Proof This is shown by a careful expansion of the determinant. O

Lemma 4.1.8. IfS € M, ,,(C) and T € M,, ,(C), then

det(; g):{ <—1>”deté:9>det<T>, nem

Proof By Lemma 4.1.7 it remains to calculate the value of the determinant for m = n.
Since in this case

0 7

I 0

det ( R ) — det(S) det(T) det(

) = (=1)" det(S) det(T)

2

and (—1)" = (=1)", the asserted formula holds. O

Proposition 4.1.9. Let S € M,, ,,(C), T € M, ,(C) be arbitrary, and b, d € C™. Then,
form<nandn+1<m,

0 S
det(T b®d)_0'

Proof By Lemma 4.1.7 we have only to consider the case n+ 1 < m. Without loss of
generality, b, d # 0, since otherwise b @ d = 0, and again Lemma 4.1.7 can be applied.
Consequently, there are U, V € M,, ,,,(C), both invertible, such that b = Ueg) and d =
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Ve%)7 where ey is the first standard basis vector in C”. Thus b® d = (Ue%)) ® (Ve%)) =
V(e%) ® e%))U’7 and it follows

0 S _ I 0 0 St I 0
det(T b®d) = det((o v)(v—lT el g ) (0 U’))

0 SWUH! )

= det(U) det(V) det ( v-lT 6%) o 6%)

1) o (1)

Therefore we can assume b = d = eg). Note that egn ® ey, 18 an m X m-matrix with the
(1, 1)-entry being the only non-vanishing entry. Set

0 S
= T eﬁ?@e%) '

Expanding det(R) with respect to the (n + 1)-th row, we get
det(R) = det(Ry1) + Y (1) 1y, det(R,),
n=1

where R, arises from R by deleting the (n+ 1)-th row and the p-th column, and ¢;,, are the
entries in the first row of 7. Taking a closer look at the structure of the matrices R, we
find that all of them have a zero block of dimension m — 1 in the lower right corner. Since
m—1 > n, we can apply Lemma 4.1.7, which shows det(R,) =0 for 4 =1,...,n+1. This
completes the proof. O

Finally we need to evaluate some particular determinants.

Proposition 4.1.10. Let oy, i =1,...,n, and 3;, j =1,...,m, be complex numbers such

that a; + 3; # 0 for all i, j. Define

1
= o (0), =(1,...,1) e C™.
-(35) ., FMw@ w=(ec

1,...,n
1,...,m

Moreover, we define the constants

= (=07 T = 8)” T] (o = a)? / TT ] (o + ).

t,y=1 =1 ;=1

Then the following statements hold:
a) If m = n, then

0 Co ) _
det ( oo ) = Ynn-

b) If m € {n,n+ 1}, then

0 G B
det ( C(/) —eo ® €o ) = Ynm-

Proposition 4.1.10 extends a well-known remark of Cauchy (see [20], p. 151-159, [78], VII,
§1, Nr. 3, and Lemma 6.1.2). In fact, Lemma 6.1.2 yields the value of det(Cy) for m = n.
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A further generalization of Proposition 4.1.10 will be given in Theorem 6.2.1. Neverthe-
less we provide the argument because it is short and motivates the much more complicated
later extensions.

Proof a) The assertion is an immediate consequence of Lemma 4.1.8 and Lemma 6.1.2.
b) Without loss of generality the «; are pairwise different. Otherwise Cj would contain
linearly dependent rows, and the assertion would be clear. Analogously we can assume the
3; to be pairwise different.

First we treat the case m = n. Then Cj is a square matrix, and invertible by Lemma
6.1.2. Hence,

0o B I 0 e
det ( Co —eg@ e ) B det( —(e0 @ o) (Cp) ™" 1) det ( Co 0 )’

where the first determinant is obviously equal to 1. Thus a) can be applied.
It remains to consider the case m = n+ 1. Here the basic idea of the proof is to imitate
the strategy of [20]:

(i) (Manipulations with respect to the last m columns) Subtract the (n 4+ m)-th column
from the (n 4 j)-th column for j = 1,...,m — 1. Then the entries of the (n + j)-th
column, j < m, become

ﬁm_ﬁj 1

for i <n and 0 forz>n,

and extract common factors (3, — ;) in the (n + j)-th column, j =1,...,m — 1,
and 1/(a; 4 By) in the i-th row, : =1,... n.

(i) (Manipulations with respect to the last m rows) Subtract the (n+ m)-th row from the

(n + 7)-th row for ¢ = 1,...,m — 1. Then the entries of the (n 4 ¢)-th row, i < m,
become
ﬁm - ﬁz 1

forj=1<n and 0 forj>n,
O‘j"’ﬁmaj‘l'ﬁi J - J

and extract common factors (8,, — ;) in the (n 4+ ¢)-th row, ¢ = 1,...,m — 1, and
1/(ej + By) in the j-th column, j =1,... n.

As a result,

n 0 60 é\0
0 Co Byl — ﬂi] ? N
d t = R — d t !
) ( Co —eo®eo ) o [042' Fhe) G, 0 0]
1= €0 0 —1

where 6’0 is obtained from Cy by deleting the last column and €, € C* denotes the vector
with entries all equal to 1. Note also that we have used m =n + 1.

Next we add the (n+m)-th column to the i-th column for 7 = 1, ..., n, and the (n+m)-th
row to the j-th row for j = 1,...,n. This yields

0 Co @ woé Co 0 awe, C
det [ Gy’ 0 0 = det Co' 0 0 = —det( 0(7’0 00),
&' 0 -1 0 0 -1 0

the latter by expanding. Since m = n + 1, all blocks of the latter determinant are square
matrices of dimension n. Thus a similar argument as in the case m = n applies, and,
pasting together the formulas, we can conclude the proof. O
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4.2 Reductions of the AKNS system

The AKNS system (1.1) does not have good stability properties in general (see [3], p.278,
for an example of a solution with smooth initial data which becomes unbounded after a
finite time). To arrive at soliton equations, the system has to be reduced. In practice
this means that we impose a relation on the two unknown functions ¢, r, and require a
symmetry condition for fy.

The reductions we will consider already appear in [3]. In this paper, the reduction
allows to carry out the inverse scattering method completely. In our method the treatment
of the unreduced and the reduced AKNS system does not differ formally. But it should be
observed that reduction is the right way to ensure global regularity.

More precisely, we consider two types of reductions. In the first, which we call the
complex reduction of the AKNS system, or G-reduced AKNS system for short, we suppose
that, for two given polynomials f, g, the rational function fy = f/g satisfies

fo(2) = —fo(=%) for all z € C where f; is holomorphic.

Then the Greduced AKNS system reads
T r
s ()1 (")
(2ra) 0 (Lra) —q (4.5)

For the real reduction of the AKNS system, briefly R-reduced AKNS, we suppose
fo(2) = —fo(—2) for all z € C where fy is holomorphic.

Then the R-reduced AKNS reads

9(T;q) (Z) = f(Tr) (_rq) (4.6)

In this context one is mainly interested in real solutions. Then one has to assume in addition
that fy is real in the sense that fo(2) € R for all € R where fj is finite. If one assumes
reality of fu (what we will not do) one can regard R-reduction as a further specialization
of C-reduction.

In what follows we shall consider (4.5), (4.6), respectively, as an equation for the single
unknown function g¢.

We want to stress that these reductions comprise all important soliton equations of
the AKNS system. For example, the Nonlinear Schrédinger equation is contained in the
G-reduced AKNS, the sine-Gordon and modified Korteweg-de Vries equation are contained
in the R-reduced AKNS.

4.3 The C-reduced AKNS system, negatons, and their
regularity properties

This section will contain the first step torwards to the study of negatons. We start by
providing the C-reduction of the solution formula given in Theorem 4.1.1. This will lead to
appropriate conditions on the eigenvalues and thereby to the notion of negatons.
Afterwards we discuss structural properties of this solution class, mainly the regularity
question. At the end we explain how the familiar N-solitons integrate into this picture.
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4.3.1 Negatons

Starting point of this section is the solution formula in Theorem 4.1.1.

Recall that, for the C-reduced AKNS system, fo(z) = — fo(—%) holds for all z € C where
fo is finite. To realize the linear relation r = —g for the Greduced AKNS system, we use
the following simple fact:

det(1+7T) =det(1+T) for T'e M,, ,(C),
where T, which we will call the complex conjugate of 7', is the matrix with the complex
conjugate entries of 7.

Proposition 4.3.1. Assume that A € M,, ,,(C) satisfies spec(A) C {z € C|Re(z) > 0
and fo(z) is finite} and let 0 # a, ¢ € C* be arbitrary. Define the operator-functions

L(z,t) = exp (Az+ fo(A)t) @2%(6@ c),
Lo(z,t) = exp (Az+ fo(A)t) (¢ @ c).

Then a solution of the C-reduced AKNS system (4.5) is given by
g = 1— P/p, where

I L I -L
P_det(f I+fo)’ p_det(f 1)’

on every strip R X (t1,t2) on which the denominator p does not vanish.

Proof Apply Theorem 4.1.1 with (i) B = A and (ii) b = —@, d = ¢. By Lemma 7.1.6, we

have spec(—A) C {z € C| fo(z) is finite}, and —fo(—A) = fo(A). Hence (i) implies that
the operator functions M and L are complex conjugate to each other.
Set C' = @2%(6@ ¢). By definition, C' is the unique solution of the matrix equation

AX+ XA—ae. Thus, from
ACH+CA=ACH+(CA=TRc=a®F,
we infer @ilA(a we)=C. B
By (i), (ii), this yields @Z}B(béé c)=-C, (I>]§71A(a @ d) = ', and the solution formula in
Theorem 4.1.1reads ¢ =1— P/p, r =1— ]3/])7 where

I "y . I—-1 "y
P = det =__ = C s P = det 7(i® C) C s
LC T+ L@®v) LC I

I -IC
and p=det| =_ .
Lc I

It remains to show the linear relation r = —q for the C-reduced AKNS system. To this
end, we calculate

_ 0 -LC
P = det (I—|— = = _ )
LC L@®v)
0 -IC
= det | I+ ~ ~
( ( LC L{a®c) ) )
B 0 T E(a@c) ~LC 0 —7
() (P20 ) (8 0))
L -LC
= et (14 M2 )
LC 0
Analogously, p = p.
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Finally, using Proposition 2.4.3, we observe

This completes the proof. O

Lemma 4.3.2. Let A € M,, ,,(C) be as in Proposition 4.3.1 and U a matriz transforming
A into Jordan form J 4, namely A =U"1J,U.

Then the solution formula of Proposition 4.3.1 is not altered if we replace simultaneously
A by J4 and the vectors a, ¢ by (U~ 1Ya, Uec.

Proof In fact, Lemma 4.3.2 is a corollary of Lemma 4.1.2. To see this, we only have to
check that the replacements in Lemma 4.1.2 are compatible with the special choices (i), (ii)
made in the proof of Proposition 4.3.1. But by (i) it is possible to take V := U, and then
it is evident that the replacement of the vectors in Lemma 4.1.2 fits to (ii). O

By Lemma 4.3.2 any solution coming from a finite matrix can also be generated by its
Jordan form. From elementary linear algebra we recall that the Jordan form is essentially
unique. We call negaton any solution generated by a Jordan matrix A with the following

property:
The eigenvalues «; € spec(A) satisfy Re(a;) > 0 for all 1.

Our notion of negaton is very general. For example, it comprises for the sine-Gordon
equation usual solitons (kinks), breathers, as well as groups of solitons drifting apart with
logarithmic velocity. The latter type may be called negatons in the closer sense (compare
[58], [79]). Sometimes we will use the term negaton also in the more specific sense.

4.3.2 Regularity conditions

Next we prove that the solutions of the C-reduced AKNS system in Proposition 4.3.1 are
globally regular. The main ingredient is Proposition 4.3.6. As a first step we prove the
following factorization result.

Proposition 4.3.3. Let A, B € M,, ,(C) be in Jordan form: A = diag{A;|j=1,... N},
B =diag{B;|j=1,...,N}, with Jordan blocks A;, B; of dimension n; corresponding to
the eigenvalues o, [3;, respectively. Assume Re(ca;), Re(3;) > 0 Vj.

Let a, ¢ € C* (when decomposed according to the Jordan form, i.e., a = (aj)ﬁyzl with

a; = (al")1L,) satisfy ol el™ £ 0 5.
Then the following factorization holds:

@ 'p(a@e) = ST,
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where

N N
T:@C" — Ly(—0,0,  S:Ly(—o00,0] — P C™,

=1 =1
are defined by
1
(Tesir) (o) = (l — ) aﬁl ( ﬁzg"‘lb(ﬁz))
1 an,‘—i' ' '

and @, ¥ are functions of one complex variable z which fulfill the set of conditions

1
(' - 1)1321'—16@( )

forj=1,...,N, 7' =1,...,n;.

_ (ny='+1) 1 8j/_1_6¢(2)
z=ay J ’ (j/— 1)!8Zj/_1

Moreover, TS is the Fredholm integral operator Ry, € L ( Ly (—00,0] ) defined by

0
(Rnf)(s / flo
al g 9\
with kernel h(s, o) Z (8 T 33 ) s + Bio + X(Omﬁi)7
(8% 7

=1
where \(1, 22) = lz1) + 1(22).

According to the decomposition C* = EB]AV:l C*r, e, € C denotes the vector which is
the #’-th standard basis vector on the component C* and the zero-vector on all other
components C™* | X #£ 1.

Proof First note that (4.7) is always solvable, since we have assumed agl)c;nj) # 0. Next,
calculating the entries of ST € M,, ,(C), we observe

0

o 1 Bis+ o)L 0" st play)
(STejjr, einr) = / G =1 8ﬂ]/_1 ! ' (ni—i’)!aa?"_ile &
J'=1n;—4 1 n;—1' —v
- >3 ARG 1) I S A G
> e T
0
L o" g1 0" 4
/ﬁweﬁ] ;@6 ds
'—1 n;—1i’ v
- LR Ao () ()
pu=0 v=0 H a2+ﬁ]

For the last identity we used, beside the defining relations (4.7) for the functions ¢, 1, the
elementary fact that

© 00 (at By [°
o O0F Do

5 —|—ﬁ o 5 1 wtrv+1
SM-I- 6(04 )Sds_( 1)u+ (H‘|‘V)! (a+ﬂ) .

— 00
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Comparison with Proposition 4.1.3, where @'z (a @ ¢) = (Cij)?;:1 was determined explic-
itly, shows that (STe;;:, e;;) coincides with the ¢’j'-th entry of C;;. Thus (I)ZlB((Z@C) = ST,
and we have obtained a factorization through the Hilbert space Ly(—00,0]. Vice versa,

('S f) (o) =

N 0 L
_ L 0" s+ (o) gg. 1 Pio +¥(8)
- ;: / N gar STV ﬁ" i
9 ' N g 1
Cfmg— 1\ o
- /f(g) Z — 'Z(” )We%wr@(%) 55 ﬂ20+¢(ﬂ2)]
— oo Li=1
F [ 0 0N asa | |
= /f(s) Z (804 —I—@ﬂ') 60425‘|‘ﬂ20'+§0(042)—|—¢(ﬂ2)] ds
e 221 K3 K3
= (Tnf)(o).
This completes the proof. O

Remark 4.3.4. Note that Proposition 4.3.3 and its proof also yields the following two
statements:

a) If a; = pB; for all j, then the kernel of the Fredholm integral operator R), is even
given by

871]—1

h(s,o) = Z P exp (oej(s +o)+ X(oaj))
i=1 ¢4

with \(2) = ¢(2) + ¥(2).

b) Let us assume that @, ¢ are already constructed as in Proposition 4.53.3. If we start
anew from the complex conjugate data, namely the eigenvalues @j, B;, j = 1,. 7N, and
the vectors @, ¢, then (4.7) shows that we can choose the corresponding functwns o, 1& such
that 2(z) = ¢(z), Qb(E) = (z) for all z. In particular, we have h = h for the respective
integral kernels.

Remark 4.3.5. As a byproduct, Proposition 4.3.3 establishes a nice relation to the methods
of Poppe [10], [15], who used Fredholm integral operators for the construction of solutions
to soliton equations. For the sine-Gordon equation, [75] constructed multiple pole solutions.
Our result shows in particular how these fit in the general concept of negatons (see [88]).

Proposition 4.3.6. Let the requirements of Proposition 4.3.1 be met with A € M,, ,,(C)
in Jordan form: A = diag{A;|j =1,..., N} with Jordan blocks A; of dimension n; corre-
sponding to the eigenvalue o;. Then LL is related to the integral operator R on Ly(—o0, 0]
given by

0 0
= / flo)K(s,o)do  with kernel K(s,0) = / k(s+ p) k(o + p)dp,

o0

where

n]—l

N
1 871]—1
Z n]—l exp (Oéj,O—I—X(Og)%
]

=1
and x = x(o; z,t) is an appropriate C*°-function whose derivatives with respect to o at «o;
satisfy the property W) (a;) = x () (@;) forp=0,...,n; — 1.

In particular, R is self-adjoint and positive.
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Proof Set E(x,t) = exp (Az + fo(A)t) and C = (I>_ ( @ c). Thus L = LC. Since L

commutes with A,
AL+ LA=L(AC+CA)=L(@w c¢) =a® (Le),

which means that L = (I> L (a ) (Lc)). Now we are in position to apply Proposition 4.3.3,

which yields the factorlzatlon
= (ST)(ST),
where T, T : @i\;l Ch — La(—00,0] are given by

T@j]‘/ = f](] )7 Tejj’ = f](] )7

1 o' -1

with £ (s) = et (ajs + v(ey)),

and S, S : Ly(—00,0] — @ﬁ;l Cr# are given by

0 ) B o
(Sf ejjr) = /_ f(S)g](] )(s)als7 (Sfe;n) = /_ f(s)g(J) $)ds
. -t 1 8nﬂ ]
with gj(‘f )(S) = =) " —7 exp (04]8 + ¢(04]))

J

The functions ¢ = ¥(o;z,t), ¢ = ¢(o;x,t) were appropriately constructed. They can
be chosen such that its derivatives with respect to a at «; up to order n; — 1 satisfy

o) (o) = o (@), W) () = ) (@;) (for details see Proposition 4.3.3).
Here ¢;; € C* = @ﬁ;l C™ is the vector which is the j’-th standard basis vector 67(1]]/)

on the component C% and zero else.
As a consequence, L1 is related to the operator R on Ly(—o0, 0] given by

R = (TS)(TS),

where by Proposition 4.3.3 (see also Remark 4.3.4) shows that T'S and T'S are integral
operators with kernels that are complex conjugated, namely

(TSf)( /f k(s+o)do,  (TSf)( /f k(s + o)do
N

where k(p Z 1_ 0 87:__11 exp (04]',0 + X(Oéj))v

and y = ¥+ qﬁ In partlcular the derivatives of x with respect to o at a; up to order n; —1

again satisfy y((a;) = xW(@;).
The composition of those two integral operators can be easily calculated to be again an
integral operator, namely

_ /_: F(0)K (s, 0)do

0
with kernel K(s,0) = / k(s+ p)k(c+ p)dp.
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Observe K (s,o) = K(o,s). Therefore, the usual argument ( Ry, f ):( g, Rf ) for all
f, g € La(—00,0], together with the fact that R is a bounded operator, implies that R is
self-adjoint.

It remains to prove that R is positive. To this end, we calculate

(Rf,S) :/ / (o) K (s, 0)do

- L[ o
[ e

for all f € Ly(—00,0]. This completes the proof. O

( k(o +p)f(o )da)dp
Z

As an immediate consequence, we state that negatons are globally regular.

Proposition 4.3.7. The solutions given in Proposition 4.53.1 are defined and regular on

all of R%.

Proof Without loss of generality A is in Jordan canonical form (see Lemma 4.3.2). To
prove regularity of the solutions in Proposition 4.3.1 it is sufficient, thanks to Lemma 4.3.8,
to show det (I + Lf) > 0. Actually, we will even show

det (I+ LL) > 1. (4.8)

This is done exploiting the fact that LL is related to the integral operator R on Ly(—o0, 0]
in Proposition 4.3.6. Since R is positive, its eigenvalues are non-negative. By the princi-
ple of related operators, see Proposition B.2.3, also LL has only non-negative eigenvalues.
Hence det(I + LL) > 1. O

We supply the relation for determinants used in the preceding proof.

Lemma 4.3.8. Forall S, T € M, ,(C), the following relation holds

I -5
det(T 7 ):det(I—I—ST).

In comparison to the analogous statement on the operator-level in Proposition 2.4.1, no
assumption on .S, T is needed here.

Proof In the finite-dimensional situation, this proof simply relies on the following elemen-
tary manipulations of the determinant on the left-hand side: Multiply the blocks in the
second row by S and add them to the blocks in the first row. The result is

I -Sy I+S5T 0
det(T I)_det( T I)’

and the assertion follows. O

4.3.3 Solitons and their characteristic properties

In this section, we construct N-solitons for the C-reduced AKNS system and report on
their characteristic property: They collide elastically without change of velocity and shape,
the only effect is the so-called phase-shift. In mathematical language this behaviour can be
understood in terms of their asymptotic behaviour.
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Explicit formula for N-solitons

In the sequel we show that generating matrices A in diagonal form in Proposition 4.3.1 lead
to superpositions of solitons.

Assume A = diag{e; |1 = 1,..., N} such that we have Re(a;) > 0 and fo(«;) is finite
Vi. Then the operators L, Lo in Proposition 4.3.1 read

Lia,t) = ( Gici_ E»(x,t))N_ 7

i + @ ij=1

Lo(z,t) = (ajCiZi(fvt))].V, 1

7,7=1

where E(x, t) = exp (o + fo(ey)t) (confer the arguments in the proof of Theorem 4.1.4).
The explicit formula for the resulting N-solitons is the following.

Proposition 4.3.9. For complex numbers o, j =1,..., N, which are pairwise different,
satisfy Re(a;) > 0 V5, and are contained in the set where fy is holomorphic, a solution of
the C-reduced AKNS system (4.5) is given by

17 = i i
_ - Tyooo
AP LED VD S SR (Ui | BT
p 7=1 K=1 11, iw=1 J1, Jr41=1 Jiy .- 7‘]H+1
11< <tk g1 <o <Jg4gi

N N N . .
where p= 1 + Z Z Z fﬁ(l.lv J.m) and we have abbreviated
k=1

r=1 z‘ 3 :1 Il d

. . A A A A kA
~f U1y g — _ _
P ( . . ) =116 110 IT (e — i) H @, - %)2/ IT I (e +a5)"
ERRRRRA n=1 v=1 =1 w=1 pn=1v=1
with (;(z,t) = K;O) exp ( aja+fo(a;)t ), and arbitrary constantsﬁ e C\{0},j=1,...,N.
Moreover, then solution q is reqular on all of R?.

We assumed the a; to be pairwise different in order to avoid cancellation phenomena.
In fact it can be shown that, if an eigenvalue appears with higher multiplicity, there is
nevertheless only one soliton with corresponding velocity.

Proof Proposition 4.3.9 follows from Proposition 4.3.1 in completely the same way as
Theorem 4.1.4 from Theorem 4.1.1. Since this amounts to setting (i) B = A and (ii)
b= —a, d = ¢ in the proof of Theorem 4.1.4 (compare the proof of Proposition 4.3.1), the
resulting formulas simply can be carried over by replacing

a) m, n by N, b) f;, g; by —KJ,K , and c) g by —q.

The reason for ¢) is the following: The sign in (ii) implies that there is no sign in front of
the lower right block in (4.3). As a consequence there is an additional sign in the evaluation
of the corresponding principal minor (4.4) if m = n + 1.

Regularity follows from Proposition 4.3.7. U

In particular, for NV = 1 we recover the one-soliton
-1
gz, t) = (1—|—£($ 1)z, t)/(a+a)2) (1) (4.10)
= —Re(a) el Im(I(z, 1)) cosh™ (Re(F(x,t))),

where I'(z,t) = az + fo(a)t + ¢ and exp(p) = (0 /(a +@).
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Asymptotic behaviour

First of all we have to define when two functions coincide asymptotically.

Definition 4.3.10. Two functions v = u(x,t), v = v(z,t) are of the same asymptotic
behaviour for t — oo (t — —o0), if for every € > 0 there is a t. such that fort >t. (t <t.)
we have |u(z,t) — v(z,t)] < € uniformly in x.

In this case, we write u(z,t) ~ v(x,t) fort oo (t s —o0).

The following result describes the characteristic behaviour of N-solitons. It is well-known
for particular equations of the C-reduced AKNS system (see for example [69] for the sine-
Gordon and the Nonlinear Schrodinger equation). We will not give a proof here because
the result is a special case of Theorem 5.1.2.

Theorem 4.3.11. Let a; € C, j = 1,...,N, are as assumed in Proposition 4.3.9, and
choose K;O) € C\{0}, j=1,..., N, arbitrarily. Moreover, assume that the v; defined by

vj = —Re(fo(e;))/Re(a;) (4.11)

are pairwise different.
To these data we associate the single solitons

e Im(F]i(xJ)) cosh™ (Re(F;—L(w,t))) (4.12)

with TF (2, 1) = aja + fola;)t + o5 + 7,

¢ (z,t) = —Re(a;)

where the quantities ¢; are given by exp(p;) = K;O)/(oej—l—@j) and c,o;—L by the explicit formula
(modulo 27iZ)

exp (¢F) = ] [ur (4.13)

o + o
keA¥ I

with the index sets A;t ={k=1,...,N| ijvk}.
Then the asymptotic behaviour of the solution in Proposition 4.3.9 is described by

N
q(z,t) ~ Zq}i(x,t) for t &~ £oo. (4.14)
7=1

The v; are the velocities of the solitons q;—L. Observe that the assumption that the v; are

pairwise different implies the same for the a;. The quantities c,o]i, which indicate a position
shift in the asymptotic forms, are called phase-shifts.

Geometrically, the above result can be visualized as follows:

For large negative times, all solitons are well separated, each travelling with
constant velocity. As time goes by, faster solitons will overtake slower ones.
The resulting collisions do not change shape and velocity of the solitons, the
only eflect being a phase-shift. For large positive times the picture is the same
as in the beginning except for the fact that the solitons travel in reversed order.

Note that the assumption Re(a;) > 0 assures regularity of the solitons. The assumption
that the v; are pairwise different means that the solitons move with different velocities.
Groups of solitons moving with identical velocity exist and are called formations of solitons
in [69]. It is tempting to exclude them in general asymptotic results because formations
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cannot be separated in asymptotic terms. But they can be treated as a whole, giving rise
to more and more complicated ’atomic’ building blocks. We will not formalize this, but we
emphasize that formations, at least in examples of lower complexity, can be understood in
asymptotic terms by our methods. As an example we give in Theorem 5.2.2 a complete
result, including breathers, for the R-reduced AKNS system.

An immediate consequence is the following conservation law.

N
Corollary 4.3.12. The sum of all phase-shifts vanishes, > (c,o;" - c,o]_) =0 (mod 27i).
7=1

4.4 The R-reduced AKNS system and reality questions

For the R-reduced AKNS system we get more accessible solution formulas, where the struc-
ture of the determinant, always the main difficulty in applications, becomes considerably
simpler. Then we discuss reality conditions.

Regarding the R-reduced AKNS as a further reduction of the C-reduced AKNS system
is just an alternative approach to our topic, which enables us to carry over certain structural
properties proved in the previous section.

The R-reduced case presents a distinguished kind of formations of solitons, the so-called
breathers. In preparation of the full negaton case we will focus on a solution class which
combines solitons and breathers.

4.4.1 The improved solution formula and reality conditions

For the R-reduced AKNS system we obtained in Theorem 2.5.1 a solution formula which
looks more tractible than the form for the C-reduced AKNS system. In the sequel we will
look for appropriate conditions sufficient for the reality of the solutions. In the applications,
this will amount to choosing the eigenvalues of the generating matrix A as a symmetric set
with respect to the real axis.

The following proposition is a reformulation of Theorem 2.5.1 b) for matrices.
Proposition 4.4.1. Let A € M, ,(C) satisfy spec(A) C {z € C|Re(z) > 0 and fo(z)
is finite}, and let a, ¢ € C* be non-zero. Define the operator-function

L(z,t) =exp ( Az + fo(A)t) @Z}A(a ® ).
Then a solution of the R-reduced AKNS system (4.6) is given by

0 det (I +iL)

=1i— log ———F—, 4.15

7 10 Bdet (1-1L) (4.15)
on strips R x (t1,t2) where both determinants do not vanish.

For the R-reduced AKNS system we are mainly interested in real-valued solutions. This
can be achieved by imposing a certain relation between the data A, a, ¢ and their complex
conjugates. Recall that a rational function fj is called real if fo(2) € R for all z € R where
fo is finite.

Proposition 4.4.2. Let the requirement of Proposition 4.4.1 be met and fy be real. As-
sume, in addition, that there is an invertible matriz 11 € M,, ,,(C) such that

A=1A1" N'a = a, I-'e=c. (4.16)
Then the solution q in Proposition 4.4.1 is real-valued on the strips R X (t1,t2) where it is
defined.
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Proof By Lemma 4.4.4, reality of fy shows that fo = f/g for two relatively prime poly-
nomials f, § with real coefficients. Since spec(4) N{z € C|j(z) = 0} = 0, the holomorphic
function calculus vields (f/§)(A) = (Q(A))_lf(A) (see [82]). For the polynomial ¢ (and
also for f) we have §(A) = §(A), and therefore fo(A) = fo(A).

As a consequence, fo(A) = I1fo(A)II7L and the definition of the exponential function
E(x, t) = exp (Ax + fO(A)t) as a power series yields

E(x,t) = exp (Az + fo(A)t) = exp (Az + fo(A)1)
= Hexp ( Az + fo(A)t ) I7! = Hi(w,t)l_[_l.

Secondly, from the unique solvability of the equation AX + XA = a ® ¢ with solution
C = @Z}A(a @ ¢) and (4.16) we infer from

A = ac=AC+CA=1 ( A(ITIC) + (H‘TH)A) n-!
that II71CTL = &3, (II"Y(@@o)ll) = @ZIA((H’E) ® (H_IE)) =&, (a®c). In other words,
C = HCT ™. This yields the following identity
det (1—iL) = det (I —iLC) = det (I+iLC) = det (I +iI(ZC)1IY)
= det (I +iLC) = det (I +iL).

To conclude,

o Pdet(1-iL) "

__ .9 det (1 +iL) .9 det(I—iL) 9 det(I+iL)
g=—-1i—log| —F——= log ———= =
Oz det (I — 1L) Oz det (I + 1L)

and ¢ is real. O

Remark 4.4.3. The above proof shows also that, under the assumption of Proposition
4.4.2, the solution q in Proposition 4.J.1 can be rewritten as

L0 play) , _ -
q(z,t) = —i5s log ) with p(z,t) = det (I +iL(x,1)).

Lemma 4.4.4. Let f be a rational function with f(z) € R for all x € R where f is finite.
Then f is the ratio of two relatively prime polynomials with real coefficients.

Proof Consider the unique reduced factorization
" (z—a;
f(Z) _ C]i[?]l_l( ])‘
Hk:l (Z - bk)
Then, for all x € R where f is finite,

= - T (@ —ay) [Ty | — bl
e e - [T - Be) = o =1 T )@Hf b,J) Ler (4.18)
7=1 k=1 =1

The polynomial g(z) = ¢ H}n:l (z—a;) HZZI(Z—Ek) coincides with (4.18) for = € R. Expand
g|r in its Taylor series,

(4.17)

n+m

g(z) = Z c;ad, c; € R.

i=0

This implies ¢(z) = Z?ién ;7 and thus g € R[z]. As a consequence, the zeros of g are
either real or come in complex conjugated pairs. Since (4.17) is reduced, no by can be
conjugated to some a;. Therefore, [['_, (2 — a;), [[j=; (+ — bx) € R[z] and ¢ € R. O
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4.4.2 An alternative deduction of solutions from the C-reduced AKNS
by symmetry constraints

Subsequently we derive the solution formula for the R-reduced AKNS system in the fol-
lowing manner: We start from the solution formula for the C-reduced AKNS system in
Proposition 4.3.1 and impose the condition (4.16) on the involved data. The main ad-
vantage of this link between R-reduction and C-reduction of the AKNS system is that it
becomes possible to derive some properties of the R-reduction, for example regularity, as
immediate corollaries.
Proposition 4.4.5. Let A € M, ,(C) satisfy spec(A) C {z € C|Re(z) > 0 and fo(z)
is finite}, and let a, ¢ € C*\{0}. Assume that fo is real, and that there is an invertible
matriz I1 € M, ,,(C) such that (4.16) holds.

Then any solution in Proposition 4.4.2 belongs to the solutions constructed in Proposi-
tion 4.5.1.

Proof First observe that, for fy real, the conditions fo(2) = — fo(=%) and fo(z) = — fo(—=2)
for the C-reduced and the R-reduced AKNS systems, respectively, are equivalent.

Consequently, E(x, t) = Hi(x, H=t for E(x, t) = exp (Ax + fO(A)t)7 because
E(x,t) = exp (Az + fo(A)t) = exp (Az — fo(—A)t)
= Hexp ( Az — fo(-A)t ) 17! = HE(QE HI-t.

Next, set C' = & A(a@c) and observe the identities &7 (a@c) cn-t, @i}A(aQQE) = 11C,
which follow from

aQc = (( Nla)@e=(a@ )17 = (AC + CAN™! = A(CT™Y) + (CTTTTYA,
a®e = a®(lle)=M(a®c)=TAC + CA) = A(IIC) + (IIC) A,
andﬁ@f:ﬂ(a@ o)t
Thus we get

Lojh@oe) = (TN, Lo7! (e =N(IC), L@ =10(Lao)n.

As a consequence, the solution ¢ in Proposition 4.3.1 reads

g = 1— P/p, where

B 0 —(LCHymt
P = det (I—I— ( H(EC) H(E(a@c))ﬂ_l ))7

p = det (I—I— ( H(%C) —(ECO)H—l ))

The following manipulation shows that the matrix Il cancels in the above expressions,

pe (e (50 (8 ) ()

— det 1+ ( o E(—QL&) )).

Hence the coincidence of the solution formula for ¢ in Proposition 4.3.1 with (4.15) can be
verified by the subsequent arguments.

det (I—I— ( EOC E(_QLQQCC) ) )
ae (14 ( o oie ))
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= 1—det(1—|—(1‘|‘(ioc _gc))_l(g E(CLO@C)))
= _tr((l—l_(ioC _ﬁc)) (8 E(a()@c)))v

because det(I +b®@d) =14 (d,b) = 1 4+ tr(b® d) for one-dimensional matrices b @ d. Now

we invert explicitly

(I+ 0 —LC )—1_ (I+ (L))~ 0 I LC
LC o B 0 (I+(EZc)y)™ ~LC I

and multiply the appearing matrices with each other. For the trace, this yields
¢ = —u((1+(@0)) Lo o)
= —u((1+(E0)) T LAC + )

— 2 tr(([—l— (EC)Q)_IA(EC)) (4.19)

—u([( 40+ (-0 L)

- itr(([—l— iL)‘l(iL)x) - itr(([ - iL)‘l(—iL)x)
.0 det(I 4iL)
= i—log ———=,
dz 7 det(! —iL)
where we used the trace property in (4.19), L = EC, and the derivation rule for determi-
nants (see Proposition B.2.12) for the last equality. O

Exploiting the link between C and R-reduction in Proposition 4.4.5, the following
statements are immediate corollaries of Lemma 4.3.2, Poposition 4.3.7.

Lemma 4.4.6. Let A € M,, ,,(C) be as in Proposition 4.4.1 and U a matriz transforming
A into Jordan form J 4, namely A = U~ J,U. Suppose that the assumptions of Proposition
4.4.2 are mel.

Then the solution is not altered upon replacing simultaneously A by J4 and the vectors

a, ¢ by (U™ YYa, Ue.
Proposition 4.4.7. The solutions in Proposition 4.4.2 are reqular on all of R

Remark 4.4.8. By Lemma 4.4.6, we can always assume that A is in Jordan form. For a
Jordan block A; and a vector v € C*, we call the entries of v appearing in the same lines
as A; the part of v corresponding to A;. There is a natural choice to fulfill ({.16).

1. For the real eigenvalues the parts of a, ¢ corresponding to the associated Jordan blocks
have real entries.

2. Nonreal eigenvalues always appear in complex conjugate pairs «;, o5 = ;. There
are unique associated Jordan blocks A;, A; of equal size, and the entries of a, c
corresponing to A;, As are complex conjugate, respectively.

4.4.3 Solitons, bound states of solitons, and their particle behaviour

Remarkably simpler soliton formulas can be obtained for the R-reduced AKNS system. For
the sine-Gordon equation, a comparable result was already obtained in [90].
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Proposition 4.4.9. For pairwise different complex numbers aj, 7 = 1,...N, stisfying
Re(ej) > 0 and contained in the domain where fy is holomorphic, a solution of the R-
reduced AKNS system (4.6) is given by

81 D
= —1—log-
q 8$ gp7
N N K K O — s 2
h =1 i L e 4.20
where p=1+3 Y [T, [T |2 (120
r=1 Il ir=1 u=1 wor=1 T Jv
I1<--<Ux p<y

with (;(z,t) = K;O) exp (ajz+ fo(a;)t ) and arbitrary constants K;O) e C\{0},j=1,...,N.
(0)

Assume that for each j, a; and {7 are either real or there is a unique index J with

(0) _ 70
J

o7 =a; and 3 . Then q is real-valued and regular on all of R?.

Proof Let us define the generating matrix A € My n(C) in the solution formula of
Proposition 4.4.1 as A = diag { «a; ‘] =1,...,N }. Since Re(a;) > 0 Vj by assumption,
we in particular we have 0 ¢ spec(A) + spec(A).

Thus we are in position to apply Proposition 4.4.1 and Remark 4.4.3 and obtain a
solution ¢ of the C-reduced AKNS system by

g =—i g log B, where py = det (I + iE(PZlA(a ® c))7
x p ?

where E(x, t) = exp (Az + fo(A)t).

One directly verifies
(i) L = diag { ZJ |j=1,...,N } with Zj(w,t) = (ajz + foloy)t),
ac; \V
i) @4 (a®c) = (171) :
4,4 Oé]‘ —|— Oéj/ =1

Inserting this data into the solution formula, and using the expansion rule for determinants
(confer Lemma 4.1.6), we derive

a]‘/C]' o~

———;
Oé]‘ —|— Oé]‘/

N N A
— 1YY det | e
o+ oy, a =1

J1sdk=1

11<..<Jr

r=1
N N I 1 I
JE— R . . . S—
= 1+ E 1 g amcmﬁjM det (044 iy )
k=1 J1- 0 dk=1 n=1 Ju v/ =1
711<.-.<Js
N N I o I ] 92
= 1 T iﬁ a]uc]u Z H Oé]u - a]u
- § : § : 200: i a4 )
k=1 J1-98=1  p=1 I =1 Ju Jv
n<..<gk n<y

where the last equality relies on Lemma 6.1.2. Reality of the solutions follows from Propo-
sition 4.4.2, regularity from Proposition 4.4.7. U
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(0)

In particular, for N = 1 and a = ay, ((9) = {77 real, we get

p(z,t)
pla,t)’
= —ae cosh™ (['(z,t))

q(z,t) = —i ailog where p(z,t) = 1 +1l(x,t),
x

with the real-valued function T'(z,t) = az + fo(a)t + ¢ and () = eexp(y) with ¢ € R,
¢ = £1. This solution is called soliton for sgn(we) < 0 and antisoliton for sgn(ae) > 0.

The next interesting special case is N = 2, and o = oy = @, (0) = K(lo) = Z(QO). In this
case we obtain the so-called breather, or pulsating soliton,

oot = =i 5 log 520,
where
pla,t) = 1%@@,@%@,@)-(212) O, )T, 1)

= 1+4+iy7t (exp (T(z,t)) +exp (m)) + exp (F(w,t) + F(x,t))

for I'(z,t) = az + fo(a)t + ¢ + logy with v = |Im(a)/Re(a)|, and exp(p) = (),
Then

Loifet) ey
1—|—1f($,t) - 2<1+f( 7t)) 8$f( 7t)7

where f(z,t) ="' cos (Im(F(w,t))) cosh™* (Re(F(x,t))).
This solution represents a bound state of two solitons, see [69].

The solutions in Proposition 4.4.9 allow a similar asymptotic analysis as those in Propo-
sition 4.3.9. Qualitatively the result is the following;:

Any solution given in Proposition 4.4.9 asymptotically (for t large in modulus)
behaves as a sum of n; solitons and ny breathers, where ny = |{j|Im(a;) = 0},

ny = {7 [ Im(e;) > 0}].

The interesting point is that breathers, which should be viewed as formations of two solitons
moving with identical speeds, can be treated as atomic building blocks. We will not give
the precise formulas here. They can be extracted from Theorem 5.2.2 upon setting n; = 1.
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Chapter 5

Asymptotic analysis of negatons

Negatons are solutions where solitons and antisolitons appear in weakly bounded states. In
terms of the inverse scattering method these correspond to multiple poles of the reflection
coefficient. In the literature these solutions (often called multiple pole solutions) were
discovered in the eighties and discussed in several papers (9], [34], [49], [71], [75], [96], [98],
[99]). The interest in a complete asymptotic description was aroused by Matveev ([58], [59],
see also [60] and references therein), who treated the related class of positons to a certain
extent and formulated expectations for the general case. In this spirit particular cases of
negatons were examined in [79]. In [88], [90], [91], the author gave a complete and rigorous
description of the negatons of the Korteweg-de Vries equation, the sine-Gordon equation,
and the Toda lattice, the sine-Gordon equation being particularly interesting because its
negatons are smooth.

In the present chapter we give a reasonable complete analysis of the negatons of the
G-reduced AKNS system. In our formalism, negatons are obtained by inserting admissible
square matrices into the soution formulas of Proposition 4.3.1. The essence of the main
result in Theorem 5.1.2 is that for an admissible matrix the dynamical properties of the
ensuing solution can be read off from the Jordan normal form. To every Jordan block there
corresponds a single negaton, which is a group of weakly bound solitons, their number
equals the size of the block. Negatons are weakly localized meaning that they shrink and
extend, but with sublinear velocity. The striking feature is now that negatons as a whole
interact with a phase-shift, in the same way as solitons. In particular we obtain Theorem
4.3.11 if all blocks are of size 1 x 1.

It is also possible to analyse the interior structure of a single negaton. Its member
solitons travel on logarithmic trajectories in spacetime organized around a geometric center
moving itself with constant velocity. There are internal collisions which do not effect the
path of the geometric center. Moreover internal and external collisions are coherent in so far
as the collision of two negatons can also be understood as the sum of all pairwise collisions
of respective member solitons. We stress that an isolated member soliton (if the block is
larger than 1 X 1) cannot be traced back to a solution of the equation (like the members of
an N-soliton).

The preceding qualitative description can be rigourosly reformulated in terms of asymp-
totic analysis. Actually the proof follows roughly the order of our explanations. Whereas we
show asymptotic coincidence only for very negative/positive times, the computer graphics
in Section 5.3 actually show that the convergence is very fast.

As expected the asymptotics of negatons simplifies in the R-reduced case. This allows
us to go one step further and include also negatons of breathers. Breathers are the most
important example of so-called formations, i.e., groups of solitons moving with identical
speed. The purpose of Section 5.2 is to show that, at least in cases of reasonable complexity,
formations are accessible by our methods.
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It is illustrative to explain the difference of our results to the work of Schuur [93]. He
considered those solutions of the reduced AKNS systems which can be obtained from rapidly
decreasing potentials by the inverse scattering method, and shows that, asymptotically, only
the contribution corresponding to the discrete part of the spectrum survives. Note that,
for the reduced AKNS systems, negatons belong to this reflectionless part. But he does not
determine the asymptotics of solutions with discrete spectrum.

5.1 Negatons of the C-reduction

5.1.1 Statement of the main result

In Section 4.3.1 we have introduced the notion of negatons. For the C-reduced AKNS-
system, an N-negaton is a solution as given in Proposition 4.3.1 with the generating matrix
A chosen according to the following assumption.

Assumption 5.1.1. Let A € M,, ,(C) be given in Jordan form with N Jordan blocks A;
of dimension n; and with eigenvalues o, i.e.,

Al 0 - 0 a; 1 0
0 Ay -+ 0 .o

A= 70 N L A= S| eMan (0.
0 0 - Ax 0 ;

Assume spec(A) C{z € C|Re(z) > 0 and fo(z) finite}.

It is useful to adapt our notation to the given Jordan structure of A. For a vector
v € C”, its decompositions according to the Jordan structure of A reads

v = (vj)é\f:l with v; = (UJ(M))ZJZI e CY,

and, analogously, for a matrix 7' € M,, ,,(C), we write

T = (TZ']‘)N with Tij = (t(»lw))

15=1 ¥

ni € My, 1, (C).

1,..
1,... Mg

n
Now we are in position to state the main result of this chapter.

Theorem 5.1.2. Let Assumption 5.1.1 be fulfilled. Assume that a, ¢ € C* (when decom-
posed according to the Jordan form of A) satisfy agl)c;nj) #0 forj=1,...,N. Define

vj = —Re (fo(a;) ) /Re(ay). (5.1)

Assume, in addition,
(i) v; are pairwise different,
(i) v+ fola;) #0 V],
To these data we associate for j'=0,...,n; — 1, the single solitons

FEet) = (—17 Re(ay)e 5] g (Re(I%,(z.1))) (5.2)

with T, (2, 1) = ajz + fola)t F J'loglt] + ¢+ @5 + 97,
where we have set J' = —(n; — 1) + 25"

Modulo 27miZ, the quantities p; are determined by exp(p;) = agl)cgnj)/(oej +a;)" and
Lp;—L, c,ojij, by the explicit formulas

eplet) = ]I [w] (53)

o + ay,
rea® -
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"
+ _ J —J!
o (£95) = Gl (5.4)
with the index sets A;t ={k| vksvj}, and dj = (o + @) (v; + fi(a;)).
Then the asymptotic behaviour of the solution in Proposition 4.3.1 is described by

N n;—1

q(z,t) ~ Z Z q;;,(x,t) for t ~ +oo (5.5)

=1 j'=0

Hence, the solitons q;;, (or more precisely their maxima) travel asymptotically along the
logarithmic curves

{(z,0) eR? ‘ Re(I'%,(z,6) =0}
= {(x,t) e R? ‘ Re(a;) [ac - vjt] FJ' log|t| + Re ( ©w; + cp;—L + cp],ij, ): 0},
and the term
Im ( F;tj,(x,t) ) = Im ( a;x+ folo)t+¢; + c,ojc + c,ojcj, )

encodes the oscillation of the soliton. In particular, v; is the velocity of q;;, up to a

logarithmic error, and ¢;, the initial phase, determines the position of q;;, at a prescribed
time. It should be stressed that ; is a parameter of the solution, but not a shift.

Furthermore, the quantities c,o]i, c,ojij, indicate position shifts in the asymptotic form.
The former are due to external collisions of negatons with different velocities. Note that
the index sets A;" (resp. A7) stand for those negatons which move slower (respectively
faster) than the j-th negaton. The latter come from internal collisions between the solitons
belonging to the same negaton.

Both, c,o;—L and c,o;tj,, are called (external and internal, resp.) phase-shifts.

Qualitatively, our main result can be visualized as follows:

Interpretation a) First consider a single eigenvalue o of multiplicity n. Then the solution
is a wave packet consisting of n solitons. We call such a solution a (single) negaton of order
n. The main observation is that the geometric center of the wave packet propagates with
constant velocity v = —Re(fo())/Re(a), but its members drift away from each other at
most logarithmically.

Hence, for large negative times we can imagine each soliton to be located on one side
of the center, approaching the center logarithmically. At some moment it changes sides,
and for large positive times it is located on the other side of the center, moving away from
the center again logarithmically. Hence the solitons appear in reversed order for £oo. Fi-
nally we stress that the path of the geometric center is not affected by the internal collisions.

b) In the general case of N eigenvalues o, ..., an of algebraic multiplicities ny, ... ,ny,
the solution is a superposition of N wave packets as in a). Their behaviour under collision
is a natural generalization of what is known for N-solitons. In particular, every wave packet
as a whole suffers a phase-shift.

Note that not only the curves on which the solitons move but also their oscillations
experience phase-shifts. However, the logarithmic deviation only has an effect on the path
of the solitons.

Now we can justify the assumptions. First note that Assumption 5.1.1 guarantees regularity
of the N-negaton as shown in Section 4.3.2. Assumption (i) means that the N single
negatons all move with different velocities and thus can be distinguished by the asymptotic
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analysis (confer Section 4.3.3). in particular, it also shows that the a; are pairwise different,
which avoid cancellation phenomena. Finally, (ii) is supposed to avoid degenerations.

The following conservation law for the total complex phase-shifts holds modulo 27iZ.
Of course there is no amibiguity for its real part responsible for translation in space.

Corollary 5.1.3. The sum of all phase-shifts vanishes:

N n;—1

>0, ( [eF + b ] =[] + 5] ): 0 (mod 27i).

=1 j'=0

At first glance the assumption on the vectors a, ¢ (namely agl)c;nj) # 0 Vj) looks
artificial. However, the following lemma shows that it can indeed be supposed without
loosing anything.

Lemma 5.1.4. Let Assumption 5.1.1 be met for A € M,, ,(C), and choose a, ¢ € C* with
a®c#0. If cggnk) = 0, then the solution given in Proposition 4.3.1 is not altered if we

replace simultaneously A by g, and a, ¢ by a, ¢, where

(i) A is the matriz obtained from A by reducing the block Ap in dimension by one, i.e.,
by omitting its last row and column,

(n) (k)

(ii) @, ¢ are the vectors obtained from a, c by deleting the entries a ™', ¢,

(1) _ (1) (1)

The case a; * = 0 is analogous. Then we have to delete the entries a7, ¢; .

Proof By Proposition 4.3.1, the solution ¢ is given by ¢ = 1 — P/p with

P:det([—l—(% _ff)) p:det([—l—(% _OL)), (5.6)

where L = E@;}Z@@ ), Lo = E(a ® ¢), and L= E(x,t) = exp (Az + fo(A)t). From the

fact that L commutes with A, we deduce

L:@;}Z(EQQ d), Lo=a®d, ford:d(x,t):i(x,t)c.

Obviously, L = diag{i”j =1,...,N} with Ej(w, t) = exp (Ajz+ fo(A;)t). Thus d = (d;);,
where d;(z,t) = Ej(w, t)c;. Since Cink) = 0 and Ly is an upper triangular matrix, d;ﬂnk) = 0.
Moreover,

Ekck = ( E;{c}, 0 )/, where Ek(x,t) = exp (gkx + fo(gk)t),

and Zk the Jordanblock with respect to the eigenvalue ay but of dimension nj; — 1.
The very definition of one-dimensional matrices implies that ¢ ® d = (aj ® di)7.2 has

7,7=1
a zero-row, namely the ny-th row of all blocks a; @ dy, j = 1,...,N. Moreover, th]e same
holds true for @2%(6@ d), @ilA(aQQE) by Proposition 4.1.3. Therefore the assertion follows
from expanding the determinants in (5.6). O

5.1.2 Proof of Theorem 5.1.2

The proof is divided into two parts. The first step contains some necessary technical
reductions and the second step is devoted to the asymptotic analysis. It will rely on the
evaluation of complicated determinants which is postponed to Chapter 6.
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Part 1. Technical reductions

First we reduce the 2n a priori independent parameters a;j/) and cgj/), it =1,..

j:l,...,N(nzzyzlnj),byhalf.

-5 1y,

Proposition 5.1.5. The formula of the solution given in Proposition /.5.1 can be refor-
mulated as follows: q(z,t) =1— P(a,t)/p(x,t) with

e = (i (4 5)(2 7))

M 0 0 -T
where

(i) T = (T4);._, with

B v4+u—1
e e (T ()
v—1 ;i + @; S

v=1
n=1,... Ny

P(z,1)

(ii) f € C* denotes the vector f = (67(111)7 . 767(1113) consisting of the first standard basis
vectors 67(11]) eC% forj=1,...,N, and
(iti) M = diag{ M; | j =1,...,N} with

(1) (my)

m; oy
M; = .- € My, 0, (0), (5.7)
m;nj) 0
the entries given by
W _ M 10
my = m(z,t) = Z b (o 1)!Wexp (a4 fola;)t) (5.8)
r=1 J
ny—(u—1)
with constants b;“) = Z a;H)c;“_HH) foru=1,...,n;.
r=1

Proof By Proposition 4.3.1 the solution ¢ is given by ¢ = 1 — P/p with

oo (2 7)) e (1))

where L = E@;%(E@ ¢), Lo=L(a®¢),and L = L(z,t) = exp (Az + fo(A)t). Our aim is
to show that théy can be rewritten as stated in the assertion. We focus on P, which is the
more involved case. The arguments for p are similar but easier.

Observe L = diag{fj lj=1,... ,N}, where Ej = Ej(w,t) = exp (ij + fo(Aj)t). Set
(i(z,t) = exp (o;z + fo(a;)t). For the Jordan block Aj, it is straightforward to calculate

K(l) K(”])
~ J . J . (n) 1 or—1
r J
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Next, by Proposition 4.1.3,

-1 (= _ = —1 - T o
@AZ(Q @ec)=1.1T, and q)ZA(a ®@e) =1.1T,

(Note T" # T!) for I'. = diag{T'(¢;) |j = 1,...,N} and I’y = diag{T'.(a;) | j = 1,..., N}
with the diagonal consisting of upper left and upper right band matrices
(1) (n5) (1) (n5)

€ Y “; @;
[i(c;) = .' and  I')(a;) = - :
c;nj) 0 0 a(l)

which are defined in terms of the constant vectors ¢; = (c;“))nj a; = (a;“))zjzl € Cv.
Moreover, we check @@ ¢ =T.(f @ f)T,.
Therefore,

L 0 0 11T,
r= det(”(o f)(m/ra Tc(f®f)fa))
LT, 0 0 —-T r, 0
:det(l—l—( 0 ffc)(T/ f@f)(o Fa))

r,LT, 0 0 T
( ( 0 TL,LT, ) fef )

Obviously, M = I',LT'; again is a diagonal matrix with the blocks M; = Fr(aj)EjFZ(Cj),
j=1,..., N, on the diagonal. As for those blocks, we use the fact that upper right band
matrices commute to see

M; =Ty (a;)LTi(c;) = LTy (a))Ti(c))).

It is straightforward to verify

(1) (nj)
[ (aj)i(ej) = Tu(by) = o :
and then it follows easily that M; is of the form (5.7) with entries given by (5.8). O

Part 2. Asymptotic estimates

Again we proceed in two steps. In the first step we show, that the N-negaton asymptotically
is a superposition of N single negatons. Then, in the second step, we investigate how a
single negaton behaves.

We only consider ¢ — —o0, since the case t — 400 is completely symmetric.

In particular we can always assume t < 0.

Step 1. To distinguish the single negatons, we associate the velocity vj, given by (5.1) to
the jo-th negaton (i.e., the negaton corresponding to the Jordan block A;,).

Then the index set A7 = {j|v; > vj, } corresponds to the negatons which move faster
and will hence overtake the jp-th negaton, A;; = {Jj|v; < v, } to the slower negatons, which
will be overtaken by the jo-th negaton.
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N ,
Proposition 5.1.6.  q¢(z,t) ~ Y ¢U0)(x,t) for t & —oc,
Jo=1
where ¢°) =1 — Plo) /plio) with

) 1Go) M (o) 0 0 (o)
P = det (( o 100 ) + ( 0 M(jo) (T(]o))’ f(]o) @f(]o) ))

. 1Go) M (o) 0 0 _ o)
p(] ) = det (( 0 ](]0) ) + ( 0 M(Jb) ( (T(]o))’ 0 ))’

and the entries are defined by

7 [ . / = 1
TW) = (T3 )m‘eAJ_O U{jo}’ fle) =( 67(”) >j€AJ_()U{jO}7

ST NI : o) = e I =0
Jlio) — dlag{fj )je Ajo U {]0}} with the blocks ]], o) _ { 0],0 e A]w

‘ . 0) | - - a— . : ‘ M., j = jo,
MU = dlag{M](]O) |je A, U {jo}} with the blocks M](JO) = { Inj°7 j c [‘]C_
0 0

Note that all the matrices appearing in the above formula belong to M, (i) o) (C) for
nlio) = 2jens vt} i
For the proof we need the following elementary perturbation lemma. If S is a matrix,

we denote by |S| the maximum of the moduli of its entries.

Lemma 5.1.7. Let 6, &g > 0 and to < 0. Furthermore, let S(t), So(t) € My, m(C)
be defined for t < to and satisfy |So(t)| < exp(—dot), |S(t) — So(t)] < exp(dt). Then
there is a constant v > 0, only depending on m, such that |det (S(t)) — det (Sg(t))| <
v exp ((5 -m 50)t) Jor allt < tg.

Proof Set S = 5 — So. With S5y = (5072']) S = (sij):,nj:l, the very definition of the

7,7=1"
determinant yields

det(S) = det (§+ So) = Z sgn(mw H N+ S0,7())s
m€Perm(m) j=1
where Perm(m) is the set of all permutations of {1, ..., m}. Multiplying out, and collecting

all terms belonging only to Sy, we get

det(S) — det(So) = Z oo lsen®) [[5ni I s0dr0)

m€Perm(m) u=11%1 <...<iy =1 JE{ir e ip}

=

(5.10)

By assumption,

‘H SRISEN |

i1 sin

< exp ((1d = (m — p)do)t)

< exp ((5 —m 50)t),

the latter because t < 0. Inserting this into (5.10), we see that for v = v(m) = (27 — 1)m!
we have

| det(S) — det(So)] < vexp ((6 — m &o)t).

for all t < tg. O
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Proof (of Proposition 5.1.6) Fix jp.

Let & € Tjo (1) = ((vjo +8jo)t, (v — 0o )1). -

This interval has the center v; ¢, and its

diameter grows linearly with ¢t. Further- T, (t

more, C;y = ;<o Zj, (t) is a cone with ver- Cio

tex in the origin. x = vt "
We choose §;, < minjzj, |v; —vj,| in order

not to cross the path of another negaton.

We subdivide our task in three steps:

Step a: First we show that, in the asymptotic sense, the only contribution to the N-
negaton ¢ in Cj, is due to the jo-th negaton glio),

Step b: Next we show that outside C;, the jo-th negaton ¢l0) asymptotically vanishes.

Setp c: Finally we show that the N-negaton ¢ vanishes asymptotically outside U?Of:l Cj,-

In fact, any other cone with parallel edges could be used likewise (modulo obvious modifi-
cations in the estimates). The reason is that the width of 7, (¢) grows linearly in ¢ whereas
that of the negaton grows only logarithmically. Hence Z; (¢) will contain an arbitrarily
large portion of the negaton, if ¢ is large enough.

Note that Z;, (¢) is a proper interval since we have assumed ¢ < 0.

Step a: Let us start with some elementary considerations, where we aim at estimates for
the entries of M; which hold uniformly for « € Z; (¢).

For j ¢ A;';, Yioi = (vj, — vj) — &, is positive by the choice of J;,, and we have
x — vt < 5t for all @ € Z; (). Recall that, by assumption, Re(a;) > 0 Vj. Thus, from
(5.7), (5.8), we immediately get:

Fy, >0, 8, <0 | M| <exp(v,t) Vi<t ze€l(t).

An analogous estimate can be derived for 1\4]4_1 if j € A, . To this end note that 1\4]4_1 is of
the same structure as derived for M; in (5.7), (5.8), of course with different constants, but
the exponential function in (5.8) just has to be replaced by its inverse.

In summary, we get
|Mj| < exp(7jot)7 if j € AT

s’ (5.11)

A, 0, t; 0: _ e 79
7]0 > y Y0 < { |M] 1| < eXp(’YjOt)7 lf] c A]‘07

forall t <t;, and = € Z;,(t).

This motivates to replace P, p by determinants ]37 p with the property that all parameter-
dependent entries, except of the one corresponding to the jp-th negaton, are of the form
(5.11) and thus decrease exponentially. This is done as follows:

= D 0 ~ D 0
P_det( 0 E)P and p_det( 0 E)p, (5.12)
where D is a matrix eliminating the exploding blocks of M:

MY, jeA;

Jo’

D:diag{DjIj:L---7N}WithDy‘:{ L, jeAtu{jo}
njs 70 .
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As a consequence,

Injv jE A]‘_Ov

DM = diag{Dij |j=1,..., N} with D;M; = { M, je At U Lo}
77 Jo )

The above manipulation of P, p does not alter the solution, since g =1— P/p=1— ]3/]?

Let us now focus on P. The arguments for p are completely the same. By the product
rule for determinants,

- D 0 DM 0 0 -T

P= det((o E)+( 0 W)(T’ f®f))
B dt( D _DMT )_dt(D -5 )
- Y\ DM1T D+DM(fo ) “\S D+R

with

Sij _ { Tij7 iGAZ‘Eﬂ §ij { T]im Z:GAzl‘_E)v .
MTi;, 1€ Al U{jo}, M;T! i€ AT U{jo},

J

o (f]®f2)7 ’LEA407
and By = {Mi(fj@@fi)v i€ AT U o).

Next we will interpret Pasa perturbation of a determinant Plo) of a matrix whose rows
are {-independent except the two rows corresponding to the index jp. To carry out this
argument, we define

~ Do) —§ o)
(7o) — e
Pre7 = det ( Slo)  plio) 1 R(io) )

with the blocks

Ti:y 1 €A T, i€ AT,

(fo) g “ ato) _ ) 5 i

SZ] = M]OT]O]7 Z - ]0_;_ SZ] — ]\4]01—7]]07 ’L = ‘]O_lz

0, 1€A, 0, i€AT,
(o) _ (f]®fz)7 ZGA]‘_Ov
and Rijo = M]O(f]®fjo)7 t = jo,
0, 1€ AT

Jo?

07 ] GA]07

(7o) = diag{ D) | j = ith DY) —
and DV = diag{D;" [j =1,..., N} with D; L. je A;'; U Lol

By Lemma 5.1.7, we obtain

sup | P(x,t) — ﬁ(jo)(x,t)‘ <exp (J,t) forallt <t
z€Tj, (1)

Jo»

where 5, = v, — 2nd;, /Re(a;,). Note that possibly v;, has to be reduced in size to include
the constants from the blocks T}, ;, T, (Vj) in the estimates. Choosing §;, small enough,
we can achieve 7;, > 0.

Let us take a closer look at the determinant PU°) defined above. For i € A;; all entries

in the i-th row of S§(io), S(0) vanish and the only non-vanishing entry in the i-th row of
both D) and Do) —I—R(]O) is I, in the i-th column. Therefore, straightforward expansion
of the determinant PU°) shows that Plo) actually coincides with the determinant P(0)
defined in the assertion.
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Therefore,

sup ﬁ(x,t) — P(jo)(x,t)‘ — 0 ast— —oo
€Ly, (1)

and, by the same arguments, also SUPLeT, (1) ‘]/)\($7 t) — p(jo)(ac, t)‘ converges to zero.

Consider now ¢ = 1 — P/p=1— ﬁ/ﬁ Since ¢ is a regular solution by assumption,
p(x,t) # 0 for all , t. The above convergence implies that also p(jo)(ac, t) # 0 for all z, t.
Thus we can transfer the convergence from ]3, P toq.

In summary, we have shown that ¢ asymptotically behaves like ¢(%) = 1 — P(jo)/p(jo)
on Cj, as t tends to —oco. More precisely, we have 1¢; ¢~ 1¢; ¢\) for t ~ —co, where Ley,
is the characteristic function of C;,. Step a is complete.

Step b: Next we discuss the behaviour of the jo-th negaton ¢\ outside of Z;,(t). We
distinguish two cases:

(i) Let @ € Z; (1) = (— oo, (vj, + 8j,)t |. Here the entries of M](Ojo) decay exponentially.
Similar arguments as before show

sup ‘P(jo)(ac,t) - C" — 0, sup ‘p(jo)(x,t) - c‘ — 0, ast— —o0,

xEIJ_O () xEIJ_O ()

where

C:det( (TO_), f__g;_f_ ) c:det( (TO_), _g_ )

with T~ :( T;; )meAJ_O and f~ :( 1 )JGAJ_O' Moreover, by Lemma 5.1.8, the values

¢, C' of the two determinants coincide, and are nonzero by Theorem 6.1.1.

(ii) Let z € I]‘g (t) =[ (vj, — 8;,)t,00). In this case the entries M](Ojo) of the determinants

Plo) plio) explode. Thus we again replace Plo) plio) by determinants ]3(]40)7 plio)
with

_ (M(jo))—lj(]o) 0 0 _ 7o)
= det ( ( 0 (M(jo))—lj(]o) T (T(]o))’ f(]o) ® f(jo) )’

where
(MU 100) = diag { (M)~ 1) | j € A5, U Lo} }

J

:{ M];17 j:j07
07 jGA]‘_Ov

and p\%) is modified analogously.
Then

sup ﬁ(jo)(x,t) - — 0, sup ﬁ(jo)(ac,t) — ¢
z€T] (1) w€Tf (1)

— 0, asil{— —oo,
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where

~ _7(do)
C:det( 0 r ),

(T(]o))’ flio) @ flio)
Again C= ¢ # 0 by Lemma 5.1.8 and Theorem 6.1.1.

Consequently, ¢U0) asymptotically vanishes on R2\Cj, as ¢ tends to —oo. More precisely,
(1-— 1c]0)q(70) ~ 0 for t &~ —oo. Step b is complete.
Step c: It remains to show that ¢ asymptotically vanishes outside nglcjo as t — —oo.
This is done in the remainder of the proof with analogous arguments as before.

If necessary, we shrink &;, once more such that &;, < §minjz; |v, — v;| for all jo.
Consider v;, < v;, such that no other v; lies between them, and let

S Ij17j2 (t) = [(Ujl - 5j1)t7 (U]é + 5j2)t] .

Those are just the intervals covering the gaps between the two neighbouring strips Z;, (),
Z;,(t). They are proper because d;,, §;, are chosen small enough.
Now it is straightforward to check a similar estimate as before, namely

| M| < exp(vj,4,t), if j €At

727

Jvi ., >0t <0 { - if 5 -
Vit e o |M < exp(vj,,t), ifjeA;,

forall t <t;, and @ € Z;, ;,(¢). Note that A7 = {j|v; > v;, }, AZ) ={j|v;, > v;} cover all
possible indices j.
Following the same line of reasoning as before, we next

(i) replace P, p by ]3, P in the same way as in (5.12) with the only difference that we use
here the index sets A} instead of A} and AZ) instead of A;'; U {jo},

(i) apply Lemma 5.1.7, and expand the resulting determinant.

As a result,

ﬁ(x,t)—é" — 0, sup ﬁ(x,t)—?‘ — 0, ast— —o0,
€Ly, js (1)

sup ‘
w€T5) j, (1)

where

6 = det 9 A_TA s /C\: det 9 _T s
T feo T 0

C=c¢+0.
We still have to consider (i) @ € Zmin(t) = ( — 00, (Vjn + )t | for vj . = min;(v;),

and (il) ¢ € Zmax(t) =] (Vj0r — 8jmar ), 00) for v, = max;(v;). In the case (ii), all M
decay exponentially. Thus

max)

P(x,t)—l‘ — 0, ;up(t) ‘p(x,t)—l‘ — 0, ast— —oo,
r€Lmax

sup ‘
€T max (t)

and we are done.
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In the case (i), all M; explode. Here we replace P, p by ﬁ,f)with

~ M1 =T N M~ -T
P = det — 1 , p=det — .
T M +fof T M

Then

0 =T 0 =T
C_det(T, ®f)7 c_det(T, 0 )
and, by Lemma 5.1.8, Theorem 6.1.1, we are done again.
Thus ¢ asymptotically vanishes on R?\ UY

Jo=1
(1 — Z?g:l 1c]0)q ~ 0 for t & —oo. Step c is complete.

C;, as t tends to —oo. More precisely,

In summary, Proposition 5.1.6 is proved. U

Finally we supply the simple fact on determinants used throughout the proof.

Lemma 5.1.8. Let U, V, W € M,, ,,(C) be arbitrary square matrices. Then the following
identity holds,

det( 3 _Vlli ) = det(U) det(V)

Proof The assertion follows easily by the subsequent calculation

w2 ) - a0 (L)
= det(U) det(V)) det((; _vé)

= (=1)"det(U) det(V) det( ;vl ? )

= det(U) det(V),

where for the third identity we have used the obvious permutation argument with respect
to the columns. O

Step 2. Asa preparation for the inner analysis of the jo-th negaton, we first give the basic
estimates. To this end we study what happens if we deviate from its path logarithmically,
that is « — vt ~ log |t].

Proposition 5.1.9. On the curve (v,(t),t), where v,(t) = vj,t + (plog|t])/Re(aj,) for
p € R, the determinants PUo), plio) behave according to
50

P (30(0),1) = G(Zcﬁﬁ Fﬁ<t>ﬁ<t>|t|mt2<%—ﬁ>ﬂ) 11 o2l
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and

o

PO (y,(0,t) = C (Z% F(t) (2 1] 120 =% 4
#=0
O K T (A |+](26+D)p 12(nj,—k)k+(nj, —2k—1) 1Og|t|
3 (1) Copn) ) Fga (1) [t 2410 20—k (g 1+o(=25)]
#=0
2
with C' = (det <Tij)ijeAJ_0) ,
Cﬁ/\ _ |: 1 :|2/1/\ H |:Oé] _ aj0:|2/1nj |:a] _ ajo :| 2An; |
Qjo + Wj —n et ag, a;j + @j,
JGAJO
Hﬁ;l k! n Njo —K . "
and Fﬁ(t) = m b;OJO)C]‘OJO exp <1Tjo (VP(t)vt) ) ’

where Cjo = Vj, + f(/J(O‘jo) and Tjo (xvt) = Im ( % + fO(O‘jo)t )

The parameter p controls the distance from the geometric center. Note that it enters in the
asymptotic via the powers of |t| and the term T, (v,(¢), ).

The main part of the proof is to expand the determinants P{0), pl) We proceed in
a similar manner as for solitons where the well-known expansion rule for determinants was
used (see Lemma 4.1.6). Here we use a form of this rule which is particularly adapted to
our problem. We need some more notation.

Consider the matrix

U v
=(w z)

where each of the blocks U, V, W, Z itself has a block structure which is given by

with  Uy; =( U™

U:<Ui') ij

<7y

.. — . 1,..
ZJGAJOU{]O} 1,...,77,]

n
and for V, W, Z analogously.

For index tuples J = (oy,...,04), K = (71,...,7\) with oz, € {1,...,n;} for
1<k <k, 1<1< A, we define the matrix S[J x K] by

S[JxK]:( UlJ,J] VI[J,K] )

WIK,J] Z[K,K]
Here U[J, K] denotes the matrix with the blocks U[J, K];;, where
L. U[J, K];j = Uy it i # jo, J # Jo
2. U[J, K];,; is obtained from Uj,; by maintaining only the rows indexed by J for j # jo,

3. U[J, K];j, is obtained from U;;, by maintaining only the columns indexed by K for
i # j07
4. U[J, K;y;, 1s obtained from U ;, by maintaining only the rows indexed by J and the

columns indexed by K,

and, furthermore, all maintained columns and rows in the blocks U[J, K];; appear precisely
in the order which is indicated by the tuples J, K.
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By |J| we denote the length of the index tuple .J, in the case at hand |J| = k. Note
that also the trivial case of empty index tuples is admitted, where no rows or columns are
maintained in the respective blocks. Then the length of the index tuple is zero.

Finally, we need a substitute I of the identity matrix. With respect to the expansion
we have in mind (confer Proposition 5.1.6) we define

~ 1Go)
]:( 0 mo))

for the diagonal matrix 7U0) with the blocks I](jo) =0,7 €A, and I](go) = I, on the

. Jo”?
diagonal.
Routine arguments yield the following expansion rule.

Lemma 5.1.10. In the situation described above, the following expansion rule holds:

T30 Mo

det (T+5)=3"5" 3" 3 "det (51 x K]),

~r=0A=0 [J|=k |K|=A

where the inner sums are taken over all index tuples J, K from {1,... ,n;,} and the prime
means that only index sets with strictly increasing entries are admitted.

Note that the cases Kk = 0, A = 0 correspond to the appearance of empty index sets.

J K
\ \

K-

To illustrate the expansion, we indicate the position of the blocks
where only the indices listed in J, K, respectively, are main-
tained in the case jo = 1.

We also need another, technical result for the evaluation of a certain determinant which
has already been proved in [88]. Let us start with the following preparation.

Lemma 5.1.11. For all v € C,

wol k B(E43 kol
det( U[(’y—(u—l))—m] ) :1:(—1)J2_l UH! )

where it is understood that empty products equal 1.

Proof With special regard to the order induced by the numbering of the indices, we pursue
the following strategy: Multiply the p-th column by [(7 —(n— 1)) - ,u] and subtract it
from the (u + 1)-th column for p =& — 1,...,1. This yields

A = det( ﬁ[(’y—(u—l))—m])k

k=1 v,p=1
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u—2
= d — —(y—1) =
et ( 1, (k-v) H [(7 (v—1) H)] ) .
r=1 MSl
Now we expand the determinant with respect to the k-th row, which is zero except of

the first entry. Then we extract the factor (k — v), which is common to the v-th row
(v=1,...,k—1). As a result,

ul k-1
A= (=D)Mk—-1)! det ( H (v = (v=1)) - H]) ,
r=1 v,u=1
and the assertion follows by induction. O

Corollary 5.1.12. Let n > k be natural numbers. Then the determinant of the matrix
= (facw)fuzl € My, 1 (C) with the entries

1
< 1
fac,, =< [n—w+p-1D]V vhpsntl
0, v+ pu>n41,

has the value
) k(k2+3) kHH 1 &)
HH:I (n - H)'

where it is understood that 0! = 1.

det(F) = (— ’
Proof For v+ pu <n+1, we have

(n—v)! .

(n_(,/_|_lu_1))!:HK”_(V_U)_H]- (5.13)

r=1
If, on the other hand, v+ pu > n+ 1 the identity (5.13) holds all the more since the product
on the right then contains the factor corresponding to K = n — (¥ — 1) < p and hence

(n —v)!fac,, =

vanishes. Therefore,

pn—1

det(F) = det (ﬁ . H

r=1

[<n<u1>>4)ku .

Vo=

and, extracting the factors 1/(n—v)! common to the v-th row for all v, the assertion follows
from Lemma 5.1.11. O

Proof (of Proposition 5.1.9) For the jp-th negaton ¢\%) the only dependence on the
variables z, is due to the block Mj,. Therefore, we take a closer look at the behaviour of

()

its entries m; " along the curve (v,(t),t) for p € R fixed.

To begin with, for {(2,t) = exp (aj, @ + fo(ajy)t) = exp ( Re(ay,)[z — vjot] +1T 5, (2,1) )

we have
((y,(1),) = |t]” exp (irjo (%(t),t)).

Set Q,(z,t) = (8“£(ac t) /804 )/ﬁ (z,t). Then @, are polynomials satisfying the recursion
relation Q41 = Q,Q1 + Q’ with Qo =1, Q1 = z + f{(a;,)t (the prime denoting the

derivative with respect to O‘jo)- Thus an induction argument shows

Qu('yp(t)vt) = (Ciot)ﬂ {1+O(1Oi|t|)}7
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and from (5.8) we get
(cjot)™o ™"

TR 11]? {Ho(logltl)}_ (5.14)

t
Now we consider the determinants P{) = det (T—I— S), plio) = det (T—I— So). Application of
Lemma 5.1.10 combined with Proposition 4.1.9 yields the expansions

m (7,(t),1) = b;,:m) exp (iTjO (7, (1), t))

plio) = f: STTY et (SolJ x K]),
k=0 |J|=k |K|=x
plio) — f: Z’ Z/det(S[JXJ])—I—
r=0 |J|=x |K|=x
njo—l

+3 Y Y et (ST x K] (5.15)

£=0 [J|=x  |K|=k+1

In the sequel we restrict the arguments to the treatment of PU°), which is the more involved
case. Indeed the result for p(®) follows by completely the same line of arguments but only
the sum concerning | K| = k has to be considered.

Our next aim is to calculate the principal minors det (S[J x K]) for |J| = &, |K| = A
with A € {k, k + 1}, where, by Proposition 5.1.6,

0 — M Go) (o)
S = M(jo)(T(jO))/ M(jo)(f(jo) ®f(]‘0)) )

To reduce the expression to the calculation of determinants with known values, we have to
expand once more.

For the moment abbreviate U = —M ) T(@0), Then U = (Uij) and its

ijEAT Uljo}
blocks are given by Us; = —Tj; for i € A} and Uj,; = —M;, Tj,;, where

njo—(v—1)
N - (ru) (v+r—1)
M;,T5; = ( E , tii My, v=1, g
k=1 M=17~~~7"]

Observe that the matrices in the lower left and right corners of .S have a similar structure.
By the usual rules for the calculation of determinants (linearity with respect to rows),

we observe for J = (0y,...,04), K = (71,..., 7)) with strictly increasing indices
nj, —o1+41 nj, —ox+1
. o14+51 -1 ox+ok—1
det (S[J x K]) = Z (mgo1 =1 Z (m§0 )
o1=1 Tr=1
nj, —71+1 R nj, —7x+1 R
Sy Y (@Y det (RIT < R))) ) (5.16)
T1=1 =1
with J := (G1,...,64), K := (71,...,7\), and

0 —7(0)
R= (T(]o))’ f(]o) ® f(]o)
Recall that J, K contain strictly increasing indices. Moreover, det (R[fx R]) = 0 whenever

J (or K ) contains two coiniciding indices. Thus

01 < ...<0, and o pairwise different for k =1,...,k, (5.17)
T1 <...<7\ and 7] pairwise different for [ =1,..., . '
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Searching for the leading term in ¢ of (5.16), we consult (5.14). This shows that in (5.16)
the following powers of ¢ occur:

R

A
Z(,O+n]‘0—(0k+5k—1 -I-Z p+nj,— (n+7-1))
k=1 =1

”MV

= (H—I—/\)(p—l—nj0+1)—(z o +0x) + Tz-I-Tl)
k=1

with the constraint o,+0,, T\+7\ < njy+1forl <k < k, 1 g A < [ due to the limitations of
the summation in (5.16). Taking into account (5.17), this expression is maximized precisely
by the choices

(i) o = k and o), = 7 (k) for 7 € Perm/(k),
(ii) =1 and 73 = x({) for x € Perm’(}).
Here Perm () denotes the group of permutations of {1, ..., s} and Perm’(x) is the subset of
those of the permutations 7 € Perm(x) which satisfy k4+m(k) <nj,+1forallk=1,... K
Therefore, the leading term in ¢ of (5.16) is given by
1

det (S[J x K]) = Hu(t)[1+ O(Z)} (5.18)

with

H.\ (t) _ Z Z ( ﬁ m! (k+m(k H l+><
k=1

mEPerm’ (k) xE€Perm’ ()

det (R[(x(1),..,7(1)) x (x(1),.-. ,X(A))])). (5.19)

As for the calculation of H,), we first exploit (5.14) and use Y;_, (nj, — (k+ (k) — 1)) =
(nj, + 1)k — 230, k = (n;, — #)k, which yields

T eny-1) __ Gu() e g log |1
Hmyo ﬁ(njo+1_<k+77(k)))! {1+O( t )}

k=1

with G (t) = (b;:m)(cjo)”ﬂo_“ exp (iTjO (75(t), 1) ) )H

(note that G/ (t) does not contribute to the growth in ¢ since |G (t)] is constant). Inserting
this into (5.19), we get

log |¢|

Hoo(t) = Doy Gua()Gr(D) [t grlrag=m)+A(ms =3) {14_(9( )}7 (5.20)

where N
1
Dﬁ/\ =
ﬁef;;’(ﬁ) 1;[ (njo + 1= (k47 (k)))! 11} (njo + l‘I'X(l)))
x€ePerm’(»)

- det (R[(m),...,ﬂ(m)) X (x(1),... ,X(A))]).

We can drop the restriction on the permutations # € Perm’(k), x € Perm’()) if we pass
from the faculties to the quantities
1

, +rv<n; +1,
fac,, =4 (np+1—(uropl  HTU=TRT
0, v >ng, + 1.
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Thus, by Corollary 5.1.12,

D, = Z l_IfaC,Wr l_Ifacb< det( [(m(1),. ,T(H))X(X(l)v---vX(/\))])

mePerm(x )
XePerm(k

= det (R[(1,.. %) x (1,...,V)])
(e [Tciri) 3 (ant0 [Toe)

r€Perm(x) k=1 x€EPerm(}\)
= det (facy, ), det (facy, )\, det (R[(L,....5) x (1,...,A)])
= () HHZ;} k! (102 15
[Tk= (njo — K)! [Tz (njy = 1)!
det (R[(1,.. k) x (1,2, 0)]).
Therefore,
DanGr(t)GA() =
= (DT RWED det (R 8) % (1. 0)]) (5.21)
As a consequence of (5.18), (5.20), and (5.21), we infer
det (S[J % K1) = (=) 57 (=) "% det (R[(1,... ) x (1,...,1)])
F () F\(t) [t FNe 5(mse =)+ (m50 =) {1+0(10g|t|)}. (5.22)
Finally, we state
det (R[(1,... k) x (1, A)]) = CCay for A=t 1. (5.23)

Actually the proof of (5.23) is very involved. We refer to Theorem 6.2.1 in Chapter 6.
Inserting (5.22), (5.23) into (5.15), and using (—1)%" = (=1)* yields Proposition 5.1.9.

O
Now we are in position to give the asymptotic behaviour of the jp-th negaton.
] nj,—1
Proposition 5.1.13.  ¢Uo)(z, 1) & Z glaod) (x,t) fort ~ —
Jo'=0
with
» (—1)H e exp (5 (0,1) )
gl (@, 1) = (aj, + o) - (5.24)

1—|—exp( (w t)—I—FJ_JO( ,))

where € = sgn(t) and the function Fj_()j(,) = Fj_()jé(x, t) is defined by

F]‘_O]‘(/) (xvt) = QT+ fo(Oé]‘O)t - J(/Jlog |t| + @i + 99]‘_0 - 99]‘_0]‘6

for the index J)) = —(nj, — 1) + 24 associated to jj, and the phase ¢;,, and the phase-shifts
Pior Pioir 45 defined in Theorem 5.1.2.
0
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Remark 5.1.14. In (5.24) we did not include the sign €’o in the power of (=1) in order
to stress the symmetry between the cases t &8 —oo, t & 400 .

Proof Without loss of generality, t < —1. (This assumption is only needed to guarantee
that the intervals defined below are proper).
Recall from Proposition 5.1.9 that the curve (t, 'yp(t)) for p € R is defined by

7p(t) =vjt+p log |t|/Re(Oé]‘0).

Fix jj and set Jj = —(nj, — 1) + 2j;.

Let € Zy(t) = (vy-1(0) 7541 (1).
This interval Zj, (t) has the center 'yJ/( )=
vt + Jjlog |t|/Re(04]0) and its diameter

grows logarithmically with ¢.
Moreover, we define Cj; = Uicq Ly (t).

We subdivide our task in three steps:

Step a: First we show that, in the asymptotic sense, the only contribution to the jo-th
negaton ¢\ in Cj(') is due to the soliton ¢l0do).

Step b: Next we show that outside Cj(/) the soliton ¢(%970) asymptotically vanishes.

Step c: Atllast we show that the jo-th negaton ¢l0) vanishes asymptotically outside
UZ/)]O:O Ciy-

To avoid confusion we point out that we are not going to show that the maximum of the

Jo-th soliton moves along the center v, (¢) of the interval Zj (¢), but on a curve parallel to

('yjé (1), t) where the distance between the curves is determined by the term ¢, +¢; — 99]‘_0]‘6'

Note that there is a certain flexibility in the choice of the Ty (t). For example, they could

be replaced by their translates Ty (t) + to by a fixed but arbitrary to € R.

Step a: Parametrize z = 7J6+p(t) by p € (_%7 %)

By Proposition 5.1.9, the order of PUo) (7J6+p(t), t), plio) ('yJé_H)(t), t) in ¢ is determined
by the exponents

fo(8) = =2r*+2(nj + (Jo+p))5
= =2 +2((2j5+ 1) +p)k for ke{0,...,n;} (5.25)
and
go(r) = —26"+2(nj, — 14+ (Jo+p))k + (njo — L+ (J5 +p))

—2k% + 2(24 + p)k + (255 + p) for x€{0,...,n;,—1}.  (5.26)

Again we search for the exponents which maximize the order of t.

Regarding ~ as a continuous variable for the moment, the function f, is a concave
parabola. It attains its global maximum in rq(p) = (j§+3)+p/2. Since |p| < &, candidates
for the dominating exponents correspond to the indices x = j§, j, + 1. Moreover, the other
exponents do not disturb the order estimation, since the minimal distance to them is

min { £,i6): £, G+ 1) } = max {£,Gi6 = 1), foig + 2 } =

_ { Lo+ 1) = fUo—1) = 4(14p), ifp<O
folio) = foo+2) = 4(1—p), ifp>0
> 2
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Analogously, g, attains its maximum for ko(p) = j} + p/2 what shows that x = j maxi-
mizes the concerning exponents. Here the minimal distance to the other exponents can be
estimated from below by ¢,(jo) = max {g,(j, — 1), 9,(jo + 1) } > 1.

Keeping only those terms in Proposition 5.1.9 (note that v,, j; (¢) has to be inserted),

q(jo) <7J6+p (t)v t) =

(_(_1)J’éc (i) Eyg (0 F 41 (8) [t 7ot 0) {1+O( }

(CJ(/)J(/) i O F (0 + Cigryis+n) Fig ()F'+1() |2+ t_wl) { + (logm)}
_ (=1)%H1es Cy gy Fyy () Fyya () 1117 (1 g ]
Cisig Fig O F5(8) + Clipanyggany Fign (O Fr 0 () (2%

where the sign ¢ is defined by t = €|t].
Recall the definitions of Cyy, F,(t) in Proposition 5.1.9. With regard to

), (5.27)

dj, = (ajo + ajo)cjov exp(@jo) = b]‘OJO /(ajo + ajo) 7o

and the definitions of the phase-shifts ¢ , ©o in Theorem 5.1.2, these read
Jo

Co(ota) (oten) (i)’

and

! Nnj,—2K— N5 . o
Fror (0)/ Fult) = ————— o770 ploa) ey (40 Go) (4, (1), 1) )

(njo — k=1t
k! K — \n -~ (o)
= m 7o (ajo +@jy)"0 exp (IT (7J/+p( ), ) + @i )
—  \2k+1 k! -K -~ (o)
= (oj, + @) mdh exp (1T (Vag40 () 1) + @54 )
= (O‘jo + aJ'O)QH-H exp ( iT(jO)(7J6+p (t),t) + Pio — S‘Qj_om ) :
for K = —(n;, — 1) + 2, the index associated to x.
Inserting these into (5.27) and reordering a bit, we end up with

(Jodh) P
1 4 Plioio) (t)yplioo) (¢) |¢[20 t

for PU) (1) = (= 1)+ e exp (110 (3, (0),8) + 0o + 2, — 2y ) - (5:29)
Our aim is to compare ¢\%0) with ¢o7) on Ly (t). To this end, we also have to calculate
gliodo) (Yaz40(8),t). From
it (Yar4o(1)1) =
= Re(ajo) [1y4,(t) — viot] = Jolog [t] + 1T (v14, (), 1) + i + €5, — @50
= ploglt| +iT (v14,():t) + @jo + ¢ — ¥3,

Jogb

q(jo) <7J6+p (t)v t) = (ajo + @]‘0)

it is straightforward to check that
P il
1 4 Ploit) (£)Plioid) (1) |¢[20

q(jOjé) <7J6+p(t)7 t) = (ajo + @]‘0) (5'30)

115



As a consequence of (5.28) and (5.30), we may conclude

; it log |t
Sup q(]O)(x7t) _ q(]0]0)($7t)‘ — (/)( gt| |)7
l’EIJ(/) (t)

and hence the supremum converges to zero as t — —o0.

In summary, we have shown that ¢(%) asymptotically behaves like the soliton q(jOj(/J) on
C]‘(’) as ¢ tends to —oo. More precisely, we have 1CJ6 qlo) 1CJ6 ¢l9030) for t ~ —oo, where 1CJ6
is the characteristic function of Cj(/). Step a is complete.

Step b: Next, we discuss the behaviour of the soliton ¢li0%) outside of Ly (). We distin-
guish two cases:

(i) Let 2 € Ij_(,)(t) =( —oo,'yjé_%(t) |, say . = V54, (8) with p < -1

First recall that q(jOjé)(7J6+p(t),t) has been determined in (5.30) with PU0o50)(¢) as

defined in (5.29). Note that the modulus of PUoJs)(t) does not depend on t. Set
¢ = [PUoso)(t)|. Then, by (5.30), for |¢| > ¢?,

(Godd) < | —
‘(] <7J6+p(t)7t>‘ = |04]‘0 + Oé]‘0|1 _ C2|t|2p
1
_ clt|=2 _1 1
S |Oé]‘0—|—04]‘0|1_02|t|_1 = O<t 2) Vp§—§

(if) Let @ € T (t) =[ 741 (t), 00 ), say @ = yy54,(t) with p > 3.
Here we rewrite (5.30) in the following way:
(P )~
L (PG (0 PG (1) ) -2

gUodt) (04, (1), 1) = —(aj, +7j,)

Now the same argument as in (i) yields ‘q(jOjé) (7J6+p(t), t)‘ = (’)(t_%) for all p > 1.

Consequently,

sup ‘q(jOjé)(x,t)‘ —0 ast— —oc0.
v€T (t)uI;f, (t)
0 0

Thus ¢l09) vanishes on Rz\Cjé as t tends to —oo. More precisely, (1 — le,, )q(jOjé) ~ 0 for
0
t &~ —o0. Step b is complete.

Step c: It remains to check that ¢%) asymptotically vanishes outside U?,Jo_glcjé ast — —oo.
/=
This is done in the remainder of the proof.

Consider z € fjé (t) = hJé-l-%(t)’ 7J6+%(t)]. It is clear that, if J{ is the index associated

to j} according to Theorem 5.1.2, then J) 42 is the index associated to jj+ 1. Thus, ijé (¢)

is just the interval covering the gap between the two neighbouring strips Z;, (t) and Zjs 1, (t).
13
73] 4 4

As before we investigate the behaviour of PUo) (y,(t),t), pli©) (y,(t),t) with the aim to
find the maximal contribution to the order of t. The latter is again determined by the

exponents f,(k), g,(x) defined in (5.25), (5.26).

Parametrize v = v;,1,(¢) with p € [
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Recall that f, attains its maximum for ko(p) = (jo + %) + p/2. Since % <p< %, the
only candidate for the dominating exponent is k = jj + 1. As for the minimal distance to
the other exponents, we observe

FoGo 1) = max { £,(i8), olia +2) | =

_ { LU+ = flG) = 2 if p<1
Lo+ = folig+2) = 2(2-p), ifp>1
> 1.

The maximum of g, is attained for ko(p) = j{+p/2 and thus k = j|, jj+1 are the candidates
to maximize the concerning exponents. Here the minimal distance to the other exponents
can be estimated from below by

min {,079), 8,6+ 1)} = max {g, (s = 1).,G5 +2)} =

_ { 9,6+ 1) —g,(i6—1) = dp, ifp<l
9,0) —9,(Jo+2) = 4(2-p), ifp>1
> 2.

Keeping only those terms in Proposition 5.1.9, we get
(Gj(g (t) + G (1) |t|2(J6+p)t—2(J5+1)) {1 n O(logt|t|”
& ) -J§ lo
(Gjé-l-l(t) |t oot JO) {1 + O(—%f't')}

for Glig (1) = (=187 Cly iy Fiy () Fig 1 (1) and Gl (1) = Cg o By (1) (1)
Recall that the moduli of G (t) and G (¢) do not depend on ¢, say |G (t)] = ¢

|G]‘(/) (t)| = /C\]‘(/). Then

059 (1,0, 0)] < (e 172 4 e 1) [ 1+ (1) = 0 (13)

Cig+1 t

q(jo) <7J6+p (t)v t) =

.
Jo?

since % <p< % This shows

sup
l’EIJ(/) (t)

q(jo)(w,t)‘ —0 ast — —oo

forall j5=0,...,n; — 1.

We still have to consider the boundary regions. To this end we keep the notations G, (t),

-~

G, (t) from above and proceed as before.

(i) Let 2 € Zin(t) = (- oo,'y(_(njo_l)_%)(t)]. Note that, for j) = 0, J) = —(n;, — 1),
the associated interval Zj (¢) is the one which is the farthest to the left. Thus Zn(t)
closes the gap between —oc and Zj (t).

Parametrize z = V(= (nyy—1)+0) (t) with p € ( — o0, —%]

Recall that the functions f,, g, responsible for the maximal contributions to the order
of ¢ are given by (5.25), (5.26). Candidates for the dominating exponents are 0 in
either case. The minimal distance to the other exponents can be estimated from

below by
LO) = f(0) = =2p > 1,
95(0) —g,(1) = =2(p-1) >
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If we keep only these terms in Proposition 5.1.9, we get

Go(t) [t](=(mo=D+e)nso—1 {1_|_O(logt|t|)}
G 1o

G (V= nyy—1)40) (1) 1) =

9

showing |q(j°)(’y( (njo—1)+p) ) (8), )| = ( L)

(i) Let 2 € Iax(t) = [7((71] _1)_|_;)(t),oo). Since the interval Zj (¢) corresponding to
0 2

Jo = (nj, — 1), J§ = (nj, — 1), is the farthest to the right, this covers the gap between
Z; () and foo.
Parametrize @ = Y((n,, ~1)+p) (t) with p € [%, oo)
Again the functions f,, g, which are responsible for the maximal contributions to the
order of ¢ are given by (5.25), (5.26). With regard to the different sets of admitted
indices for f, and g,, here the candidates for the dominating exponents are n;, for f,
and n;, — 1 for g,. The minimal distance to the other exponents is

fl)(njo)_fp(njo _1) = 2p Y
9p(njo — 1) = go(njo — 2) 20+1) > 3.

Thus

Gy (t) || Zrio =1 (p+(ntdo=1)) gnjo 1 {1 i O(logt t|)}

(7o) —
q (7((77‘J0—1)+P)(t)7t) é\,n (t) |t|2nﬂo(p+(n+j0_1)) |:1‘|‘O(logT|t|):| 3

showing again |¢{°) (7((71]0—1)4-0) (1), t)| = (’)(t_E).

Thus ¢°) vanishes on RQ\U o C]o as t tends to —oo. More precisely, (1— Z;JO o le,, )qlo) ~
- 0

0 for t &~ —o0. Step ¢ is Complete.
In summary, Proposition 5.1.13 is proved. U

Proof (of Theorem 5.1.2) For the proof of Theorem 5.1.2, we collect what we have
achieved so far. By Proposition 5.1.6 and Proposition 5.1.13,

N n;—1

t) ~ Z Z gV (x,1) for t &~ —o0

with
(=17 e exp (T7 (2, t))
L exp (I (2, 1)) exp (T, (@,1))
— (—1)iH Re(ozj)exp(— il (7 (2, t))) cosh™ (Re( (2, t)))

(](jj/)(ﬂvvt) = (aj +@;)

and
U@, t) = aja + folag)t — J'logt| + ¢ + 7 — ¢

To obtain the assertion for ¢ &~ —oo, we have to integrate the sign e. This is done by
reordering the solitons in the following manner.
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Replace j' by k' = (n; — 1) — j', and let K/ = —(n; — 1) + 2k’ be the index associated
to k" according to Theorem 5.1.2. Thus,

J=-K, j=K-K.

Note that this replacement just reverses the order of the solitons q(ij/) within the j-th
negaton. In particular, 0 < &' < n; — 1. Moreover, we check
g _y (K=K

exp ( — 99],_],,) = W d], = T d?’" = exp ( + goj_k,).

Thus, the reordering results in

q(jk’)(gg7 t) = (—1)]“'1 Re(a;) exp ( —ilm (Fj_k,(x, t))) cosh™? (Re (Fj_k,(x, t)))
with

Do (@, t) = e + folaj)t + K'log [t + ¢; + 7 + ¢

This completes the proof in the case t &~ —oc.

As for the asymptotic result in the case ¢t &~ +oc¢, the proof is completely the same as
in the case t &~ —oo with the following two modifications:

(i) In Proposition 5.1.6 the index set A7 is to be replaced by A}';.

(ii) The reordering procedure above can be skipped. Here it is not necessary because the
sign € produces no effect. Since exp (— c,oj_j,) = exp (—I— c,o;"j,), the assertion in this case
follows immediately.

This completes the proof of Theorem 5.1.2. U

Remark 5.1.15. Imposing assumption (ii) in Theorem 5.1.2 we excluded the degenerate
case d; = 0 for some j. In this case the estimates (5.14) in the proof of Proposition 5.1.9
are not valid anymore. Instead, contributions to the leading order of t now are due to higher
derivatives of fo. However, for all relevant equations (ii) is automatically satisfied.

5.2 Negatons of the R-reduction — How to include breathers

In this section we will see that the R-reduction of the AKNS system allows to include a
new element in the context of negatons. In this case there are two natural choices leading
to real solutions: a) real eigenvalues and b) pairs of complex conjugated eigenvalues. The
former correspond to the usual bell-shaped solitons, the latter to the famous breathers, a
particularly interesting class of solutions.

In [69], breathers are interpreted as bound states of two solitons. Thus they are the
lowest-dimensional example of a formation of solitons. In general, a formation is a group of
solitons moving with exactly the same velocity, which hence cannot be separated in terms
of the asymptotic analysis. Therefore, breathers were not included in our treatment so
far. The aim of this section is to explain how the asymptotic analysis can be extended to
negatons consisting of breathers.

We are only interested in real solutions of the R-reduced AKNS-system. Thus, we call

N-negaton any solution given in Proposition 4.4.1 generated by a matrix A chosen according
to the following assumption.
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Assumption 5.2.1. Let A € M,, ,,(C) be given in Jordan form with N Jordan blocks A;
of dimension n; and with eigenvalues o, i.e.,

Al 0 0 o 1 0
0 A 0 . .

A= 77 N L A= S| eMan (0.
0 0 - Ax 0 ;

Assume spec(A) C{z € C|Re(z) > 0 and fo(z) is finite}.

Moreover, let fo be a real function in sense of the explanations before Proposition 4.4.2,
and assume either a; € R or there exists a unique index J # j such that o; = @; and
ny =T1;.

In the case of diagonal matrices A, real eigenvalues give rise to solitons and antisolitons,
whereas pairs of eigenvalues which are complex conjugate lead to breathers. For details,
see Section 4.4.3. Recall Definition 4.3.10 for the notion of asymptotic behaviour.

Theorem 5.2.2. Let Assumption 5.2.1 be fulfilled. Assume that a, ¢ € C* (when decom-
posed according to the Jordan form of A) satisfy agl)c;nj) #0 forj=1,...,N, and, that
a;, ¢; € R" if a; € R whereas a; = @;, c5 =¢; if a; € R and 7 is the unique index with

a5 = a;. Define

vj = —Re(fo(a;))/Re(a;).
Assume, in addition,
(i) v; are pairwise different for j € {k|Im(ay) > 0},
(ii) vj + fola;) # 0 Vj.
To these data we associate, for Im(a;) =0, the solitons
—+

0 P "
+ . + . 4+
0 = —18—xlogpié/, where pr(2,t) =1+i(-1)" ¢ exp (lﬂjj,(ac,t))7
Ji
and, for Im(c;) > 0, the breathers
- £
Py
£+ _ - Jj
Q]]/ == —la—xlog P—;tj/’

where P]ij,(x, =1+ ;(exp (F;Ej,(w, t)) +exp (F;Ej,(w, t))) + exp (F;—Lj,(x, t)+ F;Ej,(x, t)),

Vi
with
F;tj,(%t) =ajz + folaj)t F J'loglt] + ¢, + @jﬁ + cp;cj, + (nj +.J) log~;,

where we have set J' = —(n; — 1) 4+ 25"
Modulo 271, the quantities Lp;—L, and c,ojij, are determined by

2nk
a; — oy
exp(¢f) = ][] [f? - ak] 7 (5.31)
reat -7
:l: ]/! J/
exp (7 ) = G
with the index sets A;—L ={k| vksvj}, and d; = 20 (v; + f{(;)). Furthermore,
o 1, if Im(a;) =0,
Vi ‘ Im(e;)/Re(e;) ‘, if Im(a;) > 0.

Finally, the ¢; are determined by agl)c;nj)/(Qoaj)nﬂ = ¢exp(p;), ¢; € R, ¢ = %1, if

Im(a;) = 0 and (modulo 27i1) by agl)c;nj)/(Qoaj)”ﬂ =exp(p;), ¢; € C, if Im(a;) > 0.
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Then the asymptotic behaviour of the solution in Proposition 4.4.1 is described by

n;—1 n;—1

Z Zq]]xt—|— Z ZQ wt for t &~ +o0.

Im( =0 Im( J)>0

])

Since the geometric content of the theorem is quite similar to that of Theorem 5.1.2, we
concentrate on the differences. First recall that the assumptions on the eigenvalues (and
on the corresponding parts of the vectors a, ¢) either to be real or to appear in complex
conjugate pairs guarantees reality of the solution (see Proposition 4.4.2).

There are negatons consisting of solitons and antisolitons (Im(a;) = 0) and nega-
tons consisting of breathers (Im(a;) > 0). For a description of solitons, antisolitons, and
breathers we refer to Section 4.4.3, in particular the comments after the proof of Propo-
sition 4.4.9. Note that in the case Im(oe]) = 0 all phase-shifts c,o] , c,o s and thus also the
functions F]i] determining the path of the solitons in the j-th 1r1e)g_>;:aLton7 are real.

In contrast, if Im(a;) > 0, the functions F;Ej, are no longer real. Their real parts give
the trajectories of the breathers, the imaginary parts their oscillations. Accordingly, the
phase-shifts c,o]i, c,ojij, effect both the trajectories and the oscillation. Note also that the
logrithmic term is absorbed in the real part. Moreover, the additional term «; is only
present in this case.

A remarkable difference between Theorems 5.1.2 and 5.2.2 concerns the expressions for
the external phase-shifts (5.3) and (5.31). For illustration, let k € A;’ with Im(ay) # 0. In

the C-reduction there need not be another index & with az = aj. Thus here the contribution

o (5.3) is

2n
o5+ ag

In the R-reduced case, we have k, k € AT, and therefore the contribution to (5.31) is

]7
— 2nk
a; — oy | [o; —ay
([%‘Jrak] [%‘Jr@k]) '

However, again the sum over all phase-shifts is a conserved quantity.

Corollary 5.2.3. The sum over all phase-shifts vanishes:

Z Z ( 99] + 99]] [‘P]_ + @;j/]) =0 (mod 27i).

j=1j'=

Another conserved quantity is the ’topological charge’ @),

Q= %/_Oo u(z, t)dz,

for u a soliton, an antisoliton, or a breather, see [69]. For solitons, we have ) = 1, for
antisolitons, () = —1, and breathers - as bound states of a soliton and an antisoliton - yield

Q=0.

This generalizes naturally to negatons.

Corollary 5.2.4. The topological charge (Q of the N-negaton is given by

Q:_Zjejv

where the sum ranges over all j with (i) Im(a;) =0 and (ii) n; is odd.
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Already the N-solitons show that every integer is attained as topological charge. In a
single negaton solitons and antisolitons alternate. Hence (i) means that the charge of a
negaton with an even number of members always vanishes.

For completeness we give an interpretation of our result.

Interpretation 5.2.5. a) To start with, consider a single eigenvalue oo € R of multiplicity
n. Then the solution is a cluster containing n waves which are either solitons or antisolitons.
Such a solution is called a (single) negaton. The main observation is that the geometric
center of the cluster propagates with constant velocity v = — fo(«) /o, whereas its members
drift away on logarithmic curves.

Thus we may visualize, for large negative times, each soliton and antisoliton on one
definite side of the center approaching it logarithmically. As time goes by, they get closer,
collide, and separate again. For large positive times they can be found on the opposite
side of the center, moving away from it again logarithmically. In particular, solitons and
antisolitons appear exactly in reversed order in the asymptotic forms for —oo and +oo.

Moreover, solitons and antisolitons always alternate. In particular, for each n there are
only two different types of asymptotic forms. Namely, it suffices to know whether the wave
which is the farthest to the left in the asymptotic form for —oo is a soliton or an antisoliton.
The latter is determined by the sign € of the parameter responsible for the initial position
of the cluster.

It is remarkable that the cluster itself, or, more precisely, the path of its geometric cen-
ter, is not disturbed by the internal collisions which the solitons and antisolitons experience
on their way from one to the other side of the center.

b) Next consider a pair of complex conjugate eigenvalues o, @, of the same multiplicity
n. Again the solution is a cluster, but now containing n breathers. Fxcept of the fact
that the velocity of the cluster as a whole is given by v = Re(fo(a))/Re(a), it behaves as
described in a).

In the asymptotic forms for oo, now only breathers appear. However, the statement
that solitons and antisolitons always alternate remains true if we interprete breathers as a
bound state of a soliton and an antisoliton (confer [69]). Let us in addition point out that
the oscillation of the breathers is synchronized in the asymptotic forms for £oc.

c¢) In general, the solution consists of M = My + My single negatons,
My =#|{j=1,...,N|Im(a;) = 0}| clusters of solitons/antisolitons as in a)
My, =#|{j=1,...,N|Im(a;) > 0} clusters of breathers as in b).

Hence, it is called an M -negaton (in general M # N ).

These negatons rather behave like solitons. They collide elastically and the only effect
of the collision is a phase-shift (of the whole negaton). Moreover, the resulting formulas for
phase-shifts (5.31) are a very natural extension of the known formulas for the collision of
solitons, from which they differ only by the exponents n;.

The proof of Theorem 5.2.2 follows precisely the line of arguments pursued for Theorem
5.1.2. The main advantage in this case is, that the relevant determinant p in the solution
formula of Proposition 4.4.1 is considerably easier to handle, because its dimension is only
half as large.

On the other hand we have to overcome the difficulty to include also breathers in our
asymptotic analysis. As bound states of two solitons, these are the lowest-dimensional
examples of a formation of solitons. Solitons in such a formation cannot be separated in
asymptotic terms but have to be treated as a joint entity.
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In the sequel we will not repeat the full argument but carefully indicate all changes
necessary to adapt the proof of Theorem 5.1.2 to the case at hand.

Sketch of the proof of Theorem 5.2.2

The organization of the proof will be the same as that of Theorem 5.1.2. For every step
we will explain only the necessary modifications. As the arguments for p and p, are very
similar, we concentrate on the treatment of p.

Part 1. Technical reductions

As for the preparational reduction, the main difference to the proof of Proposition 5.1.6
is that, instead of the operators @ZZ(E ® c), @i}A(a ® ¢), now only one operator (but a
different one), namely ®,',(a ® ¢), is involved. The result is:

Proposition 5.2.6. The formula of the solution given in Proposition 4.4.1 can be refor-
mulated as follows:

L0 plat)
q(z,t) = —18—$10g o)

with p(z,t) = det (1 + iZMT)7

where

(i) T = (T4);._, with

B v4+u—1
T;; = ((—1)”+M (V+“ 2) ( L ) ) ;
v—1 i + o ey

(i) M as defined in Proposition 5.1.6.

Note that the definition of the matrix T is different matrix from that in Proposition 5.1.6.
Subsequently this will lead to minor changes whenever the determinant of T is evaluated.
To be precise, this changes

a) the constants Cy in Proposition 5.2.9,

b) the initial phases ¢;, the phase-shifts Lp;—L, and the constant d;.

Part 2. Asymptotic estimates

Recall that, for j € {1,..., N}, the index 7 € {1,..., N} is the unique index such that
a5 = @;. There are two cases: If o; € R, then 7= j, else 7 # j.

Step 1. The essential change concerns the index sets, because two indices j, 7 with 7 # 5
correspond to solitons with the same velocities v; = v;. Since they cannot be separated in
asymptotic terms, they have to be treated on equal footing.

The same reasoning as in the proof of Proposition 5.1.9 yields the following result, which
shows how ¢ decomposes into single negatons.

N ,
Proposition 5.2.7.  q¢(z,t) ~ Y ¢U0)(x,t) for t & —oc,

Jo=1
where
. o (jO)($ t) . . . .
(Jo) — i v Py : (Jo) — (4o) 1z aq (o) p(do)
gV (x,t) i log 0 (2. 1) with p det (1 + iMVoIT )
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and the entries are defined by

Tlio) — (Ti')Z'JGAJ_OLJ{J'OJO}7

j j j In 1 . . 7_ 1
100 = diag{I" | j € A5, U {o.To} } with blocks 1) = { o0 4 € Lo do}

J 07 je A]_O7
j —_ : (] ) : — P = . (] ) _ M] 3 ] € {j0770}7
M) = dlag{Mj “lje AU {jo,jo}} with blocks M; — { Inj((; JEA.

Step 2. Let us first adapt the expansion rule, which has been the main tool of the proof
of Proposition 5.1.13, to the present situation. To this end, let us consider a matrix S with
the particular block structure

S =(Si) with 5 =( 5"

7€M U{To do}t
Let us assume J, # jo for the moment.
For index tuples J = (oy,...,04) and K = (7,...,7\) with o5, 77 € {1,...,n;},
1<k<k, 1<I<) wenow define S[JXK] as the matrix
S[JXK] :< S[JXK]Z']‘ )2.7],

where the block S[JXK]J;; is obtained from S;; by maintaining only

. J7 if 1 = j07

1. the rows indexed by { K, ifi=7,
2. the columns indexed by J’ lf‘] B ‘107
1(7 lf] = Jos

and, moreover, all maintained columns and rows in the blocks S[JQK]M appear in the order
which is indicated by the index sets J, K.
For 3, = jo, we can use the usual expansion rule.

Lemma 5.2.8. In the situation described above, the following expansion rules holds:
a) For 3y = jo,

0
det (100 4.5)=3" 3 det (S[7,.7]),
R=0  |J]=r
where the inner sum is taken over all index tuples J from {1,... ,n; }.
b) For jy # jo,
50 Mo

det (169 +5)=3"%" 33 "det (SIRK]),

£=0 A=0 [J|=k |K|=A

where the inner sums are taken over all index tuples J, K from {1,... ,n; }.
In both cases the prime means that only index sets with strictly increasing entries are
admitted.

Following the arguments of the proof of Proposition 5.1.9 (note that for the R-reduction
Theorem 6.1.1 suffices for the calculation of det(7")) we get as result:
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Proposition 5.2.9. On the curve (v,(t),t), where v,(t) = vj,t + (plog|t])/Re(aj,) for
p € R, the determinant pl®) behaves according to

a) Iij = jO; then
o

p(jo)(’yp(t),t) S (Ziﬁ(_l)ﬂ(ﬁﬁ D, G|t njo—ﬁ)ﬁ) {1_|_(,)(10g;|t|)}7

with C' = det (Tu Iy
1 K
D, =
[2%] H
JE

Gr = m(l’xm)(%+f6(04¢0))”“_")ﬁ.

b) If Jo # Jo. then
, Mo o K(e40) A(A+3) S
p(]o)(’yp(t (Z Z RN (L (=) 2 Cux FL () EFN() -

,|t|p(ﬁ+A)t(nJ0_ﬁ)ﬁ+(nm_A)A) {1 N O(loglﬂ)}’

t
with C' as in a),

1 K2 1 A2 ) — 2R ) . 126ny ) — 2/\nj
oo - ] B ] I e
20, 2@, aptpl o Sb Leg ey a; + @, ’
Jo
15z k! (ns0) - . §
Fu(t) = —szl(kn;—k)! b (v, + o)™ " exp (i Im(agz + folay)t) ) ) -

In Lemma 5.2.8, Proposition 5.2.9, the statement a) is a special case of b), namely A =0
(and o real).

Now the proof of Proposition 5.1.13 carries over in a straightforward manner, and we
obtain the following description of the interior structure of a single negaton.

Proposition 5.2.10. q(jo)(x,t) ~ Z?/O_gl q(jOjé)(x,t) for t ~ —oco with
=

- 9 W
(=1, liexp (T, (2,1)), if Jo = jo,
PR (. t) = § 1 fieiy ) (eXp (I g (2:1)) +exp (W))
texp (T3 (0 0) + T3 (5,0)),if To # oo

and where € = sgn(t), the function I', (w t) is defined by
F] i (x t) Qjo T + fo(Oé]‘O)t - JO log [¢] + ©jo T 99]‘0 - 99]‘_0]‘6 + (njo + J(/J) log v,

for the index J|) associated to j), and the phase ¢;, (together with €;, if 7o = jo), the
phase-shifts ¢, P and vy;, as defined in Theorem 5.2.2.
0

By the same reordering argument as in the proof of Theorem 5.1.2, the assertion of
Theorem 5.2.2 follows. The sketch of the proof is complete. O
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5.3 Illustration of the result in the lowest-dimensional cases

In this section, we assemble some computer graphics, which we found instructive during the
preparation. The main point is of course the difference between straight lines of solitary
waves and logarithmic rayes of the members of clusters. Furthermore the diagrams confirm
that the convergence we have established by asymptotic formulas is in fact very rapid.

5.3.1 Computer graphics for the derivative sine-Gordon equation
in laboratory coordinates

First we provide material for the derivative sine-Gordon equation, which serves as proto-
typical example of the R-reduced AKNS system. For a better geometric description, we
have turned to coordinates { = +t, 7 = —x + ¢.

First we present pictures of solitons and breathers, which are the building blocks for
the negatons. Note that the plots for breather confirms nicely its interpretation as a bound
state of a soliton and an antisoliton (see Novikov [69]).

In the pictures, the variables £ and 7 are depicted in canonical fashion.
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soliton (a1 = 1.1) meets antisoliton (a2 = 0.9)

N =
0

-100

negaton (a = 1) consisting of a soliton and an antisoliton
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5.3.2 Computer graphics for the Nonlinear Schrodinger equation

Secondly, we turn to the Nonlinear Schrédinger equation, which is the most prominent
member of the C-reduced AKNS system. Since its solutions genuinely are complex, here
we plot real part and modulus.

Again we start with a series of plots of one-solitons. Note that these are plotted in the
coordinates (z — vt,t), where v is the velocity of the soliton.
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Note that the solution is drawn as usual in the coordinates (z,t¢). The plot above shows
the modulus, the plot below the real part of the solution.
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Here the same solution is drawn as before, but in the coordinates (z — vit,t), v1 = —2 the
velocity of the soliton corresponding to a;, Again the plot above show the modulus, the
plot below the real part of the solution.
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Chapter 6

Determination of the phase-shifts

In the proofs of Theorem 5.1.2 and Theorem5.2.2 we used for the determination of the
phase-shift explicit knowledge of several complicated determinants. The content of this
chapter is to complete the asymptotic analysis by proving the Theorems 6.1.1, 6.2.1.

The results of this chapter may be also of independent operator-theoretic interest, be-
cause they compute the determinants of solutions of the operator equation AX + X B =C
(see Proposition 4.1.3).

As the following chapter will be very technical, it may be helpful to survey the main

points. We consider matrices of the form 7' = (TZ’]‘) i=1,.. v with the blocks
g=1,... M

T = ((ﬁ)yﬂ_l ((V : BJ—F (1’; : 1))) o Mo, (O

1,...
n=1,...,m

where a; + 3; # 0 (Vi,§). Note T € My (C) with n = "N n;y m = Z]]\il m;. In
particular T need not be square.
To prove Theorem 5.1.2, first we have to evaluate

0 -T
det(T, 0 )

One readily sees (confer Lemma 4.1.8) that this determinant is only non-zero for square
matrices 7', in which case our task can be reduced to the evaluation of det(T’).

In the very special case that all m; = n; = 1 (corresponding to N-solitons), the result
is classical (see [20], p. 151-159, [78], VII, §1, Nr. 3). The general case is substantially more
involved and will be treated in Theorem 6.1.1. The proof contains the main ideas of the
present chapter.

For m; = n; the result was already proved in the author’s thesis [88]. Actually this case
would be sufficient for the proof of the asymptotics in the R-reduced case in Theorem 5.2.2
(see also [90], [91]), but not for the C-reduction in Theorem 5.1.2.

Next we turn to the evaluation of determinants of the form

0 -7
det
€ ( T/ f® f ) 3
where f® f is a matrix representing a one-dimensional operator. Now there are two cases
where the determinant can be non-trivial (see Proposition 4.1.9). If 7' is a square matrix,

general arguments reduce our task to Theorem 6.1.1, but we have also examine the case
where 7" is an n x (n + 1)-matrix. This is done in Theorem 6.2.1.

138



6.1 Extension of a result of Cauchy

In this section we prove Theorem 6.1.1. In the simplest case (n; = m; = 1) the result was
already known by Cauchy ([20], p. 151-159), see also Lemma 6.1.2. For n; = m; the result
was shown in the author’s thesis ([88], Theorem 4.2.1). The proof presented below is an
extension of the argument in [88].

To start with, we introduce the following notation. Calculating determinants, the first
row/column often has to be treated separately. In this case we write

. T Ty
U det( T Ty )it

7>1

det (Tij) ;

Now we state the first main result of this chapter.

Theorem 6.1.1. Assume that o, v =1,... N, and 3;, j =1,..., M, are complex num-
bers satisfying o; + 3; # 0 for all 4, j. Letn;, 1 =1,...,N, and m;, j =1,..., M, be
natural numbers such that Zf\; n; = Z]]\il m; = n.

Then the determinant of the matriz T = (T3;)

1 viu-l v —2
n=((a1s) " (31) L Mo

has the following value:

N M N M
det(T) = H (o — aj)™™ H (8; — ﬁf)mim]/HH(ai + B
<y e<y =1 7=1

t,3=1 i,7=1

Before we enter the proof, we discuss two special cases, each of them requiring a strategy
of its own. In the proof of Theorem 6.1.1 we will combine both strategies skilfully.

First we treat the case of one-dimensional blocks, i.e., n; = m; =1for j =1,...,N.
Here the result is classical, see [20]. We recall the proof in [78], but modify the arguments
slightly to adapt it to the proof of Theorem 6.1.1.

Lemma 6.1.2. Let oy, 3; € C, t,5=1,... N, with o; + 3; 0 Vi,j. Then

% o1 T (- a)(Bi-5)
d — ° J [ J .
“ (O‘i+ﬂ])i7j:1 21:[1 (i +3) 1;[1 (ai + B;) (e + 5:)

Proof We pursue the following strategy:

(i) (Manipulations with respect to rows) Subtract the first row from the i-th row for
i=2,...,N.

(i) (Manipulations with respect to columns) Multiply the first column by (a1451)/(a1485;)
and then subtract it from the j-th column for j =2,..., N.

This yields

1 N
A = det ( )
o; + 3 ij=1
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1
o + 535
1

—_
o
=

det

1
ai+ﬁj_a1+ﬁj i>

( g>1
1
_ oy + f;
= det ( 1 041]— o

a; + 35 a1+ B

i>1
Jj21

1
o +
1 o) — o [ 1 1 ]041—042'
o+ 8 o+ 5] a4 i>1
>

0

= det

o+ B oo+ B

1

0
= det ot B

1 [041—042'] 1 [ﬁl—ﬂj] [041—042']
ar+ 65 Lo+ 5 ai + 35 Lo+ 58] Lo+ B 21
J
Next we extract the common factors (8; —3;)/(a1+4;) from the j-th column (j =2,...,N)
and (a1 —a;)/(a;+61) from the i-th row (i = 2, ..., N). Finally, expanding the determinant
with respect to the first column, we obtain

1 (1 —a)(Br=Bi)
oy + By H(Oéj+ﬁ1)(041+ﬁj) dt(

a C )
?
]<j ? J i7j 2

and the assertion follows by induction. O

Next we consider the case that T only consists of a single block, i.e., M = N = 1.
Lemma 6.1.3. For v € C, it holds
det(’yy-l_“_1 (V—I_H_Q)) = ’Yn2.
v—1
v,p=1

Proof With special regard to the order induced by the numbering of the indices, we pursue
the following strategy:

(i) (Manipulations with respect to colums) Multiply the (x — 1)-th column by v and
subtract it from the p-th column for g =n,...,2.

(i) (Manipulations with respect to rows) Multiply the (v — 1)-th row by v and subtract it
from the v-th row forv=mn,...,2.

This results in

A = det (Pyu—l—u—l (V + M — 2))
v—1

v,p=1
@ det 71/ 71"|‘M—1 V—I_ILL_Q B V—I_M_S
v—1 v—1 Vo1
pu>1
0 0
= det i [V —3
71/ v +u 1( K )
vV — 2 r>1
u>1
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.

i pwtl _
@) det 0 7 {1 0 5 A
- L U vVt —
0 v4+u—1 v _
e [(00) - ()] )
nz2
7y 0
e det 0 72,71’+M_3(V—|—'u_4) .
I/_2 v>1

p>1

Next we expand the determinant, and then extract the factor 42, which all the remaining
rows and columns have in common. We end up with

n—1
)
A = gyl det(7”+“_1 (ij )) :

v,p=1

and the assertion again follows by induction. O
Keeping these strategies in mind, we now enter the proof of Theorem 6.1.1.

Proof (of Theorem 6.1.1) It suffices to consider the situation where o; # «; for all
tyj=1,...,N,yi#j,and §; # 8; forall 4,5 =1,..., M, ¢ # j, since otherwise the matrix
T would contain linearly dependent columns or rows.

Our aim is to argue by induction. To keep the manipulations as clear as possible,
we replace the usual operations of columns/rows by the multiplication with corresponding
matrices.

We use the following notations. By 7;; we denote the ¢j-th block of 7', and for its entries
we write

1o\t
Tij = ((042+ﬂ]) t[’v]]uu) B . (6.1)

1,..
n=1,... Mg

In the proof we will construct matrices 7} with blocks TZ'(]‘k>- The numbers ¢[1, j]i’f} will be

related to the entries of T;ﬁ exactly as in (6.1).
Moreover, we define
s B

¢, = , O =
a; + B %

B — B,

Q) — a; \Iﬁ_ﬁl—ﬁj
a; + 3

ay + 3 T ar + 85

and ;=

fori=1,...,N,j=1,..., M. Note in particular, ¢;; = 0 and ¢; = 0 (V¢, 7).

Claim 1: det(7) = det(T{")), where the blocks Tigl>, i=1,...,N,j=1,..., M, of TV
are given by (modulo (6.1))

(1) _ L & )
(t[l"]]”“) vl ( G (T b+ (T s+ (CTE [ b)) s

1,...,n
n=1,... My e
In particular,
1 0 1
1 1 *
T1<j> =| a1+ 5 and Tfl> = a4+ 3

* * v>1 0 * v>1

n>1 n>1
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Proof of Claim 1: (Arguments within the single blocks) Here we use the strategy
developed in Lemma 6.1.3 to create zero entries in the first column of the blocks T},
t=1,...,N,and in the first row of the blocks T3;, j =1,..., M.

To this end, define

1 0 1 0
Xi= o € M, (C); Y= o € M, m; (C),
0 z; 1 0 y; 1
1
with 2, = ————, y; = — fore=1,...,Nand j=1,..., M.

a; + By oy + 53
Since the det(X;) = det(Y;) = 1 Vi, j, the following manipulation does not change the
value of the determinant of 7"

X, 0 - 0 Y/ 0 - 0
/
det(T) = det ( 0 Xy 0 T 0 1 0 )
0 0 Xy 0 0 Y,

= det ( XiT};Y/ )

SN .
M

1,.
1,.
Let us now explicitly calculate T<1> XiT;;Y] € My, m,(C), where we use the notation

introduced in the beginning of the proof for the entries of Tfj ) (

L A R A
(i) = (o) il

1o\
‘|‘(1 - 51#«) Y5 (O&' T ﬂ) t[lmj]u(u—l)
i fi

1o\
—|—(1 — 511/) x; (O&Z' T ﬂ]) t[%«]](u—l)p,

confer (6.1)). We compute

1 v+u—3 o
+(1 = 61) (1 = b1) yj (042' - ﬁj) t[4, Flv—1)(u-1)-

Therefore,

L. L. i+
B0 = i gl — (1= 61,) 2T

o + 535
+(1 = 61,) (1 = d1,)

. @i + 3
t[l ]]u(u—l) - (1 - 511’)& n ﬁjl

O‘Z‘I’ﬁ] O‘z‘I’ﬁy
o+ B o+ B

t[l j](u—l)u

t[lv j](u—l)(ﬂ—l)

il (0= 81) [1= 04 ] i gy = (1= 00) [1= 3] i,y
‘|’(1 - 51;;)( - 511/) [ 1- ¢ij ] [ ¢]2 ] [ ] 1) (p—1)-
Since t[¢, 7], = (”tf;z), we immediately find

I, v=1lpu=1,
[7’ ]]uu: ¢2]7 V:17H>17
¢]27 v > 17,u: 17
and as for v > 1, p > 1, we finally calculate

it = (VT e (T TN - (V117)
+(1 = ¢ij) (1 — ) (V—;ﬁgll)
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~3 ~3 —4
= %(VJFH )+¢ﬁ(yj62 )+(1—¢z’j)(1—¢ﬁ)(yjﬁg )

v—1

= () (T Nl (1) ()
- () rel(E)- ()

_ o, (rtp—4 (v tp—4 VR e (s
S I Gty SO G |

This completes the proff of Claim 1.

Claim 2: det(T<1>) = d(e‘c(T<2>)7 where the blocks TZ»<]42>7 i=1,...,N,j=1,...,M,of T
are given by

2@ _ L =1 Ca ) das, J=1, ,
1,55 = { 0. j>1. th, jliy = { Gitrs, G5 1, fori > 1,

and t[z,]]ﬁ = t[z,j]glﬂ> whenever (v, ) # (1,1). In other words, in each block Tfjn we do
only change the (1, 1)-entry.
In particular,

T1<f> =| o1+ and T1<]24> = ( 00 ) for j > 1.
0 * | s A
u>1

p>1

Proof of Claim 2: (Arguments between the single blocks) Now we apply the strategy

explained in Lemma 6.1.2 with respect to the (1, 1)-entries of all blocks.
(1)

Recall that we denote by ekl the first standard basis vector in C*. Define the matrices

Xi=—eV@el) € My 0 (0, Y =—y;eld @el) € My, m, (O,

1 m;
with y; = a1+ 5 fore=2,...,N,j=2,...,M, and consider the manipulation
oy + B3;
1 0 0 Y] Y,
det(T) = det ([ 21 O fpm] 01 "D
XNO ....... ] 00 ......... ]
= det(T%),

where

T =1 4 (1 s X i+ (- s )T (1= 6 (- s XY

i i j
fori=1,...,N,j=1,..., M.

Concretely this means that we subtract the first row from the first rows of the horizontal

strips (TZ»<11>7 ces ,TS\I/}), i =2,...,N, and the (modified) first column from the first columns

K3

of the vertical strips (Tfy, e 7T]<\,1]>)’7 2=1,..., M.
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Exploiting the concrete form of Tfy (Vj) and TZ»<11> (Vi) as given by Claim 1, we directly
verify

X1 = —((T)el)) o el = L mgem,

1y n1 nq 041‘|’ﬁj M nq

and, analogously,

6%) ®e( ) XinpY/ =y

Ty = Ly b, :
il yJOérl-ﬁ1 ;@ Cn; j Tog + B ™

J

From the fact that the matrices 6%]) ® 67(111.) € My, m, (C) are zero except of the (1, 1)-entry,
it is clear that the performed manipulation does only change the (1, 1)-entries of Ti<]‘1>v in
other words t[z,]]ﬁ = t[z,]]w whenever (v, ) # (1,1).

As for the (1, 1)-entries we get

1 ~1(2) 1 1 1

t[i, — —1=-6)———-(1=656)y;——
04i‘|‘ﬁj [l ]]11 04i‘|‘ﬁj ( 1 )041‘|‘ﬁj ( 1])y]04i‘|‘ﬁ1
1
‘|‘(1_51i)(1_51j)yjm7
yielding
o2y a; + 3; a; + B a1 + Py
i, = 1-(1-6; —(1—6y
uni ( l)oel—l—ﬁj ( 1J)Oé¢‘|‘ﬁ1041+ﬁj
a; + f3;
1—6)(1— 6 3
+(1 = d1:)( 1])a1+ﬁj
ay + By i + 35 a; + (1
= 1—(1—-56 —51:(1 =8y
( lj)oei-l-ﬁl Oé1-|-ﬁj 1]( 1)041‘|‘ﬁ1

(we may replace 3; by 31 because of the Kronecker symbol)
a1 e ] =1 =80 [1-6u ]
Thus it is straightforward to check
i, 112 = { L= nd o )% = gy forj > 1.
ba, 1> 1,
Since 11; = 0 for all ¢z, this completes the proof of Claim 2.

1

ar + B
j=1,...,M, of T® are given by

() o
nuzl

= ( @i ) fori>1
ek SRR G (e IS G L T ’

n -|—T)’L1—1
Claim 3: det(T<2>) = ( ) det(T<3>)7 where the blocks TZ»<]43>7 i1=1,...,N,

~—

nuzl
() e = (0 CED)VH DI )L, forg>
n=1,. ﬁzj p>1
(t[i il 3)) _ [ Dt ¢¢]J‘r D s s )
T, Vi (I b+ () i+ () [1+ 6]

fore > 1,5 > 1.
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The new dimensions are defined by 7y = ny — 1 and n; = n; for i = 2,..., N, as well as
my = my — 1 and m; = m; for j = 2,..., M. For simplicity, we consider matrices of the
types 0 X k, k x 0 as non-existent.

In particular, T%) € Mi—1,,-1(C).

Proof of Claim 3: (Expansion of the determinant) As a preparation, we simplify the
results observed so far.

To this end, abbreviate v = (ay + 81)7!. The entries of T1<f> only experienced the
strategy of the first step. This was described in Lemma 6.1.3 and we can copy the results
from there (they are recorded below).

As for the entries of T1<24>7 J > 1, we rewrite ;1 = (aq + 5;)7¥; (recall ¢1; = 0), to see

LA = (et )7, (Vv > 1),
HLAE = () () e+ )Y
(o )y (S O+ )+ (Y )
= (ot By ((HY + () (V> 1,0 > 1),

As for the entries of TZ»<12>7 i > 1, inserting ¢ = (a; + F1)7®P; (recall also ¥1; = 0) we
analogously get

005 = (ot By (1),
i, 1058 = (5 + (HT) (i + By @
S e (T2 + <”ti¥4>‘1’f)
= (oot )y (357 + () @) (¥ > 1,Y0 > 1).
Above we have used the identities
041+ﬁj7_1:1+q1j7 Oéi-ll-ﬂ17_1:1+q)i' (6:3)

(2)

There is no need to consider T}
expansion below.
Let us sum up what we have achieved so far.

T ( [ +u-3 )
11 = 1 YITHT v+u—4 ’
0 7 (m) (75 ) e

for ¢ > 1, j > 1, since these blocks are not altered by the

p>1
72 ( ’ ’ ) > 1
= v—1 v+p—2 _ _ 7>

1 1 , 1 vtu—4 vHu=3\ . J J

! v (0‘1+ﬁj) \II] v (0‘1+ﬁ]) (( UKQ ) + ( p,il )qu) D;i

n
pn—1
o o~ [ 7(a+ﬁl)+ § i>1
% vrp— y-|— 4 v4+u—3 ' ‘
0 (%) (331 + 03 0) w21
n

Note that, in the first row of T(?) only the first entry is non-zero. Hence expanding reduces
the dimension by one, and Claim 3 then follows by extracting the factor v which is common
to

(i) the v-th row, v = 2,...,ny, of the blocks T1<]24> (V5),

(ii) the p-th columns, p =2,...,my, of the blocks TZ»<12> (V7).
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N M

Claim 4: det(T)) = (Hq)?’ H\Il;nj) det(T), where the blocks ﬁj fori =1,...,N,
=2 7=2

j:l,...,Moff are given by

~ 1 viu-l v —2
n=(() " (3 L e

1 7
n=1,... Ry

and n;, m; are defined as in Claim 3.
Therefore, T is a matrix of the same form as T but of lower dimension.

Proof of Claim 4: (Reestablishing the original structure) For i = 2,... N, j
2,..., M we define the matrices

Xo= (ol)” € Maa(©) with all={ %oy “2Y
= (40h) € Maa, (©) with il={ s 420
where z; = - -Il-ﬂl Oy = - -1|-ﬂ . Again det(X;) = det(Y;) = 1, and thus the
; J
following manipulations are allowed,
I 0 0 I 0 - 0
det(T<3>) _ det( 0 X3 --- 0 73 0 YQ’ e 0 )
0. . 0 ......... XN 0 . 0 ......... Y]\%

- xrf xadvy ).
= det(T).

Here 7% has the blocks T’ ( ) = = X; T< >Yj’7 where, for the sake of convenience, we adopt the
convention Xy = [ € ./\/lnhn1 (© and Yi =1 € Mg, »,(C). With regard to 0° = 1 the
latter can also be stated by z; = y; = 0.

Calculating the entries of Tfj4> we get

1 vhp=1 o v 1 Atr—1 )
(O&Z+ﬂ]) t[h]]uu = Zz_: (a2+ﬂ]) z; t[lvj]/\ﬁ y]

A=1 k=1
v+pu—1 v K e —r
= (Oé'iﬂj) ZZ((aﬁﬁj)%) /\((O‘i‘|‘ﬁj)yj)u tli, 15
! A=1 k=1

With p;; .= (a; + 5;)z; and ¢;; := (o + B;)y;, the above identity rewrites as

ZZP” el 15, (6.4)

A=1 k=1

where, for later use, we note

0, i=1,j>1, 0, j=1,i>1,
pi=9 -~ i1, =1 g;= —\IJ;% j>1,i=1, (6.5)
1— ot i>1, 5> 1, 1 - J>1 1> 1

]27
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To evalulate (6.4), the following simple identity, which can be shown by an obvious argument
with telescope sums, is helpful. For v € Cand S, R € N,

35 () - CE)] =07 - O, (6.6

We start with the calculation of (6.4) in the case ¢ =1, j > 1. Since py; =0, ¥; = —ql_j1
for j > 1 by (6.5), we observe

1
(L8 = Zqi}_ﬁt[l A5

= ‘]1] \I’ +Zq H{D—Iu—ﬁlzg +<y—::2)q’]}

_qu _I_ Z (] —K { u—IU—HIS q1_]‘1 (u-ly—iIZ)}

—ai; ("7E77)

Uy (UTETR).

Analogously, in the case i > 1, j = 1 we get t[4, 1]5,? = @i(”jﬁ;?).

The case i > 1, j > 1 is slightly more involved. Here ¢;; = (1 —p;;)~!, ¥ = (1—¢q;;) 71,
again by (6.5). Thus the entries t[z,]]@ we start from are represented as

i) = it = (A —pi)(1—g)) 7,
il = v = (Q=p)0=a)) " -(=py),  A>1,
i, 5 = ¢y = (Q-p)(-g)) " U-gq;),  w>1,
15 = O e+ (Rt s+ CFE3 ") [+ i
_ <(1_p2] q” 1{<A+H 2) ai; (A-m 3) Dij </\-|—i 3) + i </\-|—i 4)}7

A>1,6> 1,

the latter by the usual properties of binomial coefficients. Let g > 1, v > 1. Exploiting
these representations, we obtain

I

(1—pip) (1= qi) > a7 tli 1)

r=2
/\-|— 3 A 2 /\-|— 4 —1 (A 4r-3
— 5 Zf] { Aﬁl — Y ( o ]"‘pw‘]w Z‘] { Aﬁz — 4 ( /\j2 )}
(6.6) —1 (A pu—2 —1 (A +u—3
= —qj (QZ —4; ( "1 )) + Pijd; (‘]Z — 4 ( /\M2 ))

[ G T ot IR CE

= [ = ()] - - p), if A > L.
Hence,
(1_]72] %] Zzpy /\QZ " Z ]]<>
A=2K=2
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/\ —1/A 1
pZ]Zp { ) p211(+52}+pqu Zp (1-p;"

—Pij (p?j - pw (l/—l—i 2)) —I'pwq (p;'/j_Q - pi_jl)
(P (G =pih =g ) -1 (6.7)

In addition, we immediately verify

<1—pij><1—qij>(p;1qg1[u1§3+q¢312p mlwlzq i, 1))

= Pt T e = ) + ! Zq — qij)
= —(1=piH—g)+1. (6.8)
Consequently, inserting (6.7), (6.8) into (6.4) yields (1 — pi;)(1 — ¢;5) t[e, ]]<A> = (”"1:512)7

which by (6.2), (6.5) finally shows

i, Y = Gijbi (VTETR) = @ (VTR

To sum up,
4y A Tfl4> = @iﬁ'l, > 1, (4)
Ty =T, :@KIIJT”, 1>1,7>1

PO Tt
T =Ty, > !
and Claim 4 follows by extracting common factors.

Induction with respect to the dimension n: We conclude by carrying out the induction
argument. To this end, assume that the assertion holds for all dimensions less then n. By
Claim 1 to Claim 4,

. t(T) B |: 1 :|n1+m1—11]l7[ |:041 - 042:| lH |:ﬂ1 ﬂ]:| d t(f) (6 9)
¢  lar+ 6 a; + b1 oy + 53 ¢ 7 '

=2 7=2

where T' € M _1,,—1(C) is of the same structure as 1T'. Thus, by assumption,

N . M L N M L
det(T) = T (@i — ay)™™ T (8= 8™ / T] TL(evi + 55"
‘i<—]1 ii]<=]1 =14=1

o1 + B (042 + ﬁl)ml—l s
N M N M
for &= T (e = ™ T 8= g7 / T TLtei+ 3™
b= =2 i=2 j=2
1< 1<

Inserting (6.10) into (6.9) immediately yields the desired formula for det (7).
Therefore, Theorem 6.1.1 is shown. U
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6.2 Determinants of double size with a one-dimensional
perturbation

Now we are in position to fill in the last remaining gap in Theorem 5.1.2. The following
theorem contains the determination of the phase-shifts.

Theorem 6.2.1. Assume that o, v =1,... ,N, and 3;, j =1,..., M, are complex num-
bers with the property o; + 3; # 0 for alli, j. Letn;, i=1,...,N, andm;, j=1,..., M,
be natural numbers, and set n = Zf\;l ng, m= Z]]\il m;.

Define the matriz T = (Ty;) i=1,... x € M, 1, (C) with the blocks
1. M

=1

1 vl =2
Tu‘_((%’—l-ﬂj) ( v—1 ) =1, ,GM%m](Q

H=1,..,my

and the vector f = (6%3, e 76%3\4)’ € C™ consisting of the first standard basis vectors
e&lj C™ forj=1,..., M.

If m € {n,n+ 1}, then

0 _T N M N M
TSRS THNSS TR,
i<y 1<y =1 j5=1

t,3=1 2,9=1

Recall that T denotes the transposed of T'.

Proof As in the proof of Theorem 6.1.1, it suffices to consider the situation where a; # a;

forall4,7=1,...,N,i# j,and 8; # 3; forall o, =1,... , M, 1 # j.

To start with, we consider the case m = n. Then T is a square matrix, and invertible
by Theorem 6.1.1. By Lemma 4.1.8

0 =T I 0 0 _7T )
det(T’ f®f) :det(—(f@@f)T—l I)det(T’ 0 )Zdet(T)-

Thus our task is reduced to Theorem 6.1.1 and the assertion follows. It remains to treat
the case m =n 4+ 1.

In the case m = n 4+ 1, the proof follows to some extent the arguments of the proof of
Theorem 6.1.1. For convenience we premise an outline of the main steps.
First, to simplify the argument, we write

0 -7 . /(0 T
det(T, f®f):(_1) det(S5), WhereS_(T, f®f)

As for the calculation of det(S), we proceed as follows:

Step 1: (Preparational manipulations) First we apply the strategy developed in
Claim 1 and Claim 2 of the proof of Theorem 6.1.1 to the block T in the upper right
corner of S, where we only have to pay attention to the fact that 7 is no longer a
square matrix. Secondly we perform the transposed strategy with respect to the block
T’ in the lower left corner of S.
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If the manipulations applied to 7' are written as matrix multiplication X7TY’ with
X e M, ,(C), Y € My, 1, (C), then the transposed manipulations amount to Y77 X".

As a consequence,
X 0 0 T X' 0
det((o Y)(T’ f®f)(0 Y’))

0 XTY'
= det ( (XTY'Y (Y f)o (¥ f) ) ' (6.11)

det(S5)

Obviously these manipulations do not change the zero block in the upper left corner
of S, but we have to check their effect on the one-dimensional perturbation f® f in
the lower right corner of S.

Step 2: (Expansion of the determinant) By the proof of Theorem 6.1.1, the block
XTY' has zero entries in the first row with the only exception of the (1,1)-entry. In
analogy, the block (XTY’)" has zero entries in the first column, again except of the
(1, 1)-entry.

Thus we can expand det(5), with respect to (i) the first column and (ii) the first row,
reducing both dimensions n, m of the problem by one. As a result we obtain

det(S) = —X det(S)  with A € Cand § € Mppm_2.n4m—2(C).

Step 3: (Reestablishing the original structure) In the last step we prove that
det(§) =\ det 9/ AT ~ 1,
" fef
where T € Mi—1,m-1(C), f € C™~ 1 are of the same structure as in Theorem 6.2.1,

and A € C. To this end, we use the strategy developed in Claim 4 of the proof of
Theorem 6.1.1 in the same manner as in Step 1.

Summing up the content of Step 1 to Step 3, we observe

det(jq, - ) — (“1)"det(S) = (~1)"™'AR det(3)

® f
= Mdet| 2 1)
T fof

The result then follows by induction.

Recall that for T :( T ) .

notation

( %1 %J )i>1 or (f17 fi )j>1 respectively,

7>1

..~ (and analogously for f :( 1 )]]\il) we often use the

=

if the blocks T3; € M, (C) with @ > 1, j > 1 (or the vector f; € C™ with j > 1) are
treated separately from the others.

Let us now enter the proof. In the sequel we will use the notation le, v® for
the matrices X;, Y; used in the proof of the k-th claim of Theorem 6.1.1. Note that
their dimension depends on k, for example ij € My, m,(C) for j = 1,..., M and

Y € My, i, (C) for j=2,..., M.
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To keep the presentation as clear as possible, we gather the ij in one common matrix

y k), Analogously, the matrix X {8 collects the X]m. For example,

e 0 %2) ’

vy = . Y@= el 0 (6.12)
ST
0 vy v g 1

Recall det(X*)) = det(Y*)) = 1 for all k.

Note that the manipulations with respect to rows and columns used in the proof of
Theorem 6.1.1 apply for n, m arbitrary. The fact that T is a square matrix was only
needed for the existence of det(7"). Hence we can be brief in the following arguments.

Step 1: With X = X@ X1 v = y@y 1) we can apply (6.11), since det(X) = det(Y) =
1, and it follows

0 7(2)
det(S) = det ( (T<2>), f<2> ®f<2> ) )

where T¢?) is the matrix obtained in Claim 1 and Claim 2 of the proof of Theorem 6.1.1,
and f®) =Y f. With f = (fj)j]\il, we infer by (6.12)
1 1 2)5-(1
o= (Y1< ‘11, Yj< >fj + Yj< >Y1< >f1)j>1-
Inserting the concrete forms for Y4<1>7 Y4<2>7 as given in the proofs of Claim 1 and Claim 2,

j j
Theorem 6.1.1, and f; = 6%3, we get

We _ m__ 1L _
Y €m, a1+ﬂjemj, j=1,..., M,

(2)y-(1) _at B _
Y; Yl fl — 041—|—ﬁ]‘6mj7 ]_27 3 3

(=)

where, for simplicity, we consider the x-th standard basis vector e, ” € C* as non-existent
for k < k. In summary,
@ (egp e B ;67@) _ (6.13)
oar 6 o+ 0 " a6 )
The key point is that, except of the (1, 1)-entry, T{2) has only zero entries in the first row.

Similarly, (T¢*)’ has only zero entries in the first column except of the (1, 1)-entry. The
value of these (1,1)-entries is (ay + 1)~ L.

Step 2: Set v = (ay + 31)"!. In the proof of Claim 3, Theorem 6.1.1, we have shown that
the matrix 712 is of the form

! ! 3 03 7 with ny — 1 rows (V)
T<2> — * 72T1<1> 7T1<]> 7 1<%> ‘ 1 J)s .
« 7Tz’<13> Ti(]?)) o T with my — 1 columns (V7),

7>1

with Tfj3> as defined in Claim 3 of the proof of Theorem 6.1.1.
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Moreover, by (6.13) we have obtained 72 :( f]<2> )]‘]\ip where f1<2> =(1,-7,0,...,0) =
(1, —7623_1). Let us define

(1)

mi1—1°

_f]@ —

e 7 =1,

= (6.14)

B — B o)

1
)+ e@ > 1.
ap+B; " J

o+ 3 "

Then f(2 = — ( -1, ’Yf1<3>7 f]<3> )j>1'
Since f2 @ & = (—f) @ (- ), the one-dimensional block becomes

1 * *
o=« 2P 4 Pe @
S =D A R L

7>1

Therefore!, the expansion results in

1 2(n1—|—m1—1) R . —~ 0 T<3>
det(S) = — (al _|_ﬂ1) det(S) with S = ( (T<3>)/ f<3> ®f<3> ) 3

M
=1

where, as usual, f{ =( f]§3> )

Step 3: To reestablish the original structure of the determinant, we apply the manipu-
lations used in Claim 4 of the proof of Theorem 6.1.1. Arguing analogously to (6.11), we
infer

. (4)
det(S) = det(S))  with 5<4>:( 0 r )

(T f) @ p)

where, by Claim 4 in the proof of Theorem 6.1.1, T™ differs from a matrix T of the same
structure as in the assertion only by certain factors. To be precise, T has the blocks

4

. T =&, Ty, i>1
T1<1>:T117 e bt 7

o — OV T, i>1,5> 1,
T = w1y, j> 1, 4 7 J

with @®;, U; defined as in (6.2) and T =( ﬁj )

Moreover,

=1, ~v as in the assertion of Claim 4.
g=1,...,M

'For illustration, the determinant to be expanded has the form

0 0 0 ~ 0 0
0 0 0 * S v T8

0 0 0 * y T )

¥ * * 1 * *

0 2Ty @Y | P v e r®
o Ay @Y | v fPes® fPer®

152



Inserting V{4 = diag{Y}(4>|j =1,...,M} with Y1<4> = 1, and using (6.2), (6.14), we observe

@ (0 oy m <2>) _

As in Claim 4, set y; = — ( (0q + 3;)V; )_ Then, from the concrete form of Yj<4>7
j=2,...,M,in Claim 4, we immediately find
Y4<4> {\Ille(l) i 1 6(2)} — \Ille(l) n "y (\I]‘ymj_l + 1 yfn]—2)e(ﬂ)
J Jmy ay ‘|‘ﬁj my Jmy MZZQ 193 ay ‘|‘ﬁj J my
1 . 1 —1 -2
— p.e E : _ L my my (w)
7€my T ay + B p=2 ( Yj i TY; )emﬂ
_ (D)
= Ve

As a consequence,

if we define f = W and f] = 6%3. In addition, set f = (f])]]\il

T)’Ll—l
Therefore?, we can extract the factor ®; from the n; rows, ¢ = 2,..., N, of the blocks
in the upper right corner of S® and the factor ¥; from the m; rows, i = 2,..., M, of

the blocks in the lower left corner of S, Similarly, we extract the factor W, from the m;
columns, j = 2,..., M, of the blocks in the upper right corner of S and the factor ®;
from the n; columns, j =2,..., NV, of the blocks in the lower left corner of S,

As a result,

S N l 2 0 T
det(S) = JTe [ v ™ det( DN A).
Pl s " fof

Result of Stepl to Step 3: Let us sum up what we have achieved so far. Namely,
starting from the original matrix, we get

det ( 19, _®Tf ) = (=1)"det(S)
2(n1—|—m1—1) N
Step 2 (—1)mH [ 1 ]

1 :|2(711-|—T)’L1—1) N

M 0
- &2 TT U™ det | ~
o + ﬁl H ? H J € ( T/

=2 7=2

S 3y [

7
1 Amtmi—1) T 2'M 2m 0 T

— QU det | 5 4 A .
e R ) | G PO

2For illustration, in summary we now have observed

0 0 T U, T,
= ‘ 0 T | | o 0| T o,0,T, ‘
Ty ) g o T, eI, | helh wioh
uT e, T | Whef WY fef
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Inserting (6.2), we in summary have proved
0 =T
det ( T fof ) = (6.15)

[ 1 ]2(”1+m1_1) ﬂ [041 — Oéi:|2ni ﬁ [ﬁﬁ - ﬂj]zm] det [ O -7
= [ e ~ ~ o~ ,
a1+ b iy L+ 6 i Lt B T fof

2

where the latter matrix is of the same structure as in the assertion, but of lower dimension.
Induction: Comparison to the proof of Theorem 6.1.1 shows that the induction step with
respect to (6.15) can be carried over almost literally. The only difference is an additional

square appearing in the factors.

This completes the proof. O
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Chapter 7

Countable superpositions of
solitons and negatons for the

reduced AKNS systems

It is a characteristic property for soliton equations that solutions with particle-like be-
haviour can be combined to solutions representing the interaction of finitely many particles
by ‘nonlinear superposition’. Hence it is quite naturally to ask whether it is possible to
superpose also countably many particles.

For solitons, the problem is the following: Given a sequence

aq, g, ey OéN,‘OéN+1,

the first N parameters correspond to an N-soliton ¢(V) (neglecting initial positions for the
moment). Now one would like to find conditions on this sequence such that (i) the limit
g = limy_ye0 ¢Y) exists and (ii) ¢ still solves the reduced AKNS system.

The study of the question was initiated by Gesztesy, Karwowski, and Zhao. In [38],
[39] they were able to find for the KdV equation sufficient conditions for the convergence of
countable superpositions of solitons. The passage to the limit is achieved by hard analysis
going through the complete inverse scattering method. Related results were established for
the Toda lattice in [40] and the KP and mKP equation in [81].

The main novelties of this chapter are the following: First we prove the existence of
countable superpositions for the G- and R-reduced AKNS systems. This is done in full
generality, i.e., for any admissible choice of fp. Secondly this is not only done for solitons
(as in all preceding references) but also for negatons and breathers. Since negatons are
regular for both the G- and R-reduced AKNS systems (indeed even treatable by the inverse
scattering method), this result is particularly interesting.

Furthermore we observe that, working on the general AKNS system, one cannot hope
for optimal conditions, simply because the integral terms require strong decay conditions
for 2 — —oo. We will show that for individual equations for which the integral terms cancel
the superposition results can be considerably sharpened. In Sections 7.5.4, 7.6.2 this will
be done for the Nonlinear Schrodinger and the modified Korteweg-de Vries equations. In
the former case countable superpositions appear for the first time in the literature. On the
level of individual equations we have established results about countable superpositions of
solitons before ([8] for the Korteweg-de Vries equation, [88] for the sine-Gordon equation,
[18] for the Kadomtsev-Petviashvili equation, and [89] for the Toda lattice). It can be shown
(see [19], [89]) that the corresponding theorems in [38], [40], [81] are covered by our results.

We give the full program for the C-reduced AKNS system. The first essential step
is to derive a solution formula for generating operators A on sequence spaces. Sequence
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spaces are not only the natural framework to treat countable superpositions, but also have
the advantage that a bounded operator T has a canonical complex conjugate T, which is
necessary to achieve the reduction. At first glance one could be tempted to do this with
adjoint operators on Hilbert spaces, but this would contradict the essence of our approach
which is, very roughly speaking, that ¢, possesses the ‘best’ determinant.

The use of generalized diagonal operators A to realize countable superpositions of nega-
tons is clearly motivated by Chapter 5. Then the decisive condition on shape and velocity
of the appearing negatons is encoded in spec(A) and the multiplicity of the eigenvalues.
Our main result in this context is Theorem 7.5.5 which proves, for the full C-reduced AKNS
system, the existence of countable superpositions of negatons, if the real parts of the eigen-
values are positive, bounded away from zero, and the size of the negatons (the number
of their solitons, which coincides with the multiplicity of the corresponding eigenvalue)
is bounded. In this case we have 0 ¢ spec(A) + spec(A) and the theorem of Eschmeier
and Dash/Schechter [22], [28] yields a systematic and satisfying method to extract scalar
solutions.

On the other hand it is known from the results about individual equations, that count-
able superposition is already possible under weaker assumptions than 0 € spec(A)-+spec(A).
In Theorem 7.5.10 we present the strengthened result for the Nonlinear Schrédinger equa-
tion. Geometrically, we can drop the assumption that the ‘width’ of the waves is bounded.
In the proof we can no longer use the Eschmeier, Dash/Schechter theorem, but have to pro-
duce one-dimensionality by using factorization techniques in the spirit of the Grothendieck
theorem. Roughly speaking the idea is to exploit convergence not in the original, but in
appropriate intermediate spaces.

As usual we obtain nicer formulas for the R-reductions. These are gathered in Section
7.6. In addition we will explain how to integrate breathers into the picture. Finally we
state sharpened results for the modified Korteweg-de Vries equation.

On the various levels outlined above we will provide a construction called universal
realization. It tells that all our solutions can a posteriori reformulated in terms of the
nuclear determinant on fy. This eventually proves that our superpositions are limits in
the usual sense. In particular, we see that the negatons encoded in A really appear in the
solution and are not lost by some hidden cancellation. As corollaries we will obtain results
on global regularity and reality (in the R-reduced case).

7.1 Solution formulas for the C-reduced AKNS system based
on sequence spaces

Throughout this chapter we will work on sequence spaces, the appropriate framework for
countable superposition. Note that, for the Creduced AKNS system, it is furthermore
important to work on spaces where a canonical complex conjugate of operators is defined.

In this section we deduce the crucial solution formulas from the general formulas of
Chapter 2. Together with those for the C-reduced AKNS system, we also provide a solution
formula for the Nonlinear Schrédinger equation which has the advantage to come without
any growth conditions.

But first we gather some background material on traces and determinants on quasi-
Banach operator ideals, which will play a decisive role in the sequel. In Appendix B the
reader finds a concise introduction to this topic. For thorough information see [41], [73].

7.1.1 Preliminaries

To start with, we introduce the quasi-Banach ideal of operators factorizing over an Lq-
space, a Hilbert space and an L,,-space. Let E, F be arbitrary Banach spaces. An operator
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T € L(F, F) belongs to the ideal L., o oLy if there exists a Hilbert space H, an L;-space,
and an L..-space such that T factors in the following manner
T=YSRX with
XeLl(l, L), Re L(Li,H), Se L(H, L), and Y € L(L, F).

With respect to the quasi-norm
17| Lootto Ly ll=int { 1Y |- [ SI-IRI-IX || 7=vsrx}.

where the infimum is taken over all factorizations of T, L., oH oLy becomes a quasi-Banach
operator ideal.

Proposition 7.1.1. The quasi-Banach operator ideal L., o H o L1 possesses a spectral
determinant dety, which is even continuous.

The proof can be found in Aden/Carl [8]. It mainly bases on Grothendieck’s theorem (see
Pisier [74]) and an application of the deep result of White [100] (confer also Proposition
B.2.5).

Let us next recall a well-known property of nuclear operators on the sequence space {1
(see for example Pietsch [72]). Any operator T € N ({;) can be expressed by an infinite
matrix, say 7' = (7i;){%=;, such that || T | NV |[= > ;sup; | 7; |. For the determinant
dety (I 4+ T') the following expansion holds

dety(T+T) = 14> an(T) (7.1)
n=1
1 & 00 Taar 000 Tinin
where o, (T) = — Z e Z det
e 2'1:1 in=1 T’in’il P T’in’in

In the following chapter we shall mainly use three determinants: the above mentioned
determinants on N ({;) and L., o H o Ly, and furthermore the spectral determinant on Nz.

Next we turn to more specific properties of these determinants for operators on sequencse
spaces. To this end, let I/, I’ be classical sequence spaces, i.e., ¢g or £, (1 < p < 00). First
note that any operator T € L(F, F) is represented by an infinite matrix (7;;)7%_, in the
sense that

T¢= (Y m)  for &= ()
J

Then the notion of the complex conjugate T of T' can be canonically defined as the operator
T € L(E, F) generated by the infinite matrix (7;;)§%_; .
We need a lemma about compatibility of determinants with complex conjugation.

Lemma 7.1.2. Assume that one of the following situations holds for a r-Banach operator
ideal A (0 < r < 1) with determinant 6 and a Banach space I :

1. Ais N2 (r= %), d the spectral determinant dety on N2, and F a classical sequence
3 3
space.

2. Ais N (r = 1), § the nuclear determinant dety on N restricted to the class of
Banach spaces with approzimation property (a.p.), and F = {;.

Then, for any T € A(F), we have T € A(E), and it holds

S(I+T)=0+1). (7.2)

By the classical sequence spaces we mean one of the spaces cg, £, 1 < p < 0.
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Proof In both cases T € A(F) is clear from the definition of A. Identity (7.2) follows in
the first case from the fact that § is spectral and the eigenvalues of T are conjugate to those
of T'. In the second case it is an immediate consequence of (7.1). O

The argument for the first case gives also the following lemma.

Lemma 7.1.3. If T, T € L, oMo Li(E), E a classical sequence space, then (7.2) holds
for the spectral determinant dety on Lo, 0o H oLy,

As for the universal realization, we have to replace some given determinants by a uni-
versal choice of a determinant. To this end we need the following lemma, which is mainly
a consequence of the closed graph theorem (see Aden/Carl [8]).

Lemma 7.1.4. Let A and B be quasi-Banach operator ideals. If A(E) C B(E) (£ Banach
space) and the finite rank operators F (L) are || - | A ||-dense in A(LE), then there is a
unique continuous trace trq on A(FE) and, for any continuous trace 7 on B(FE), we have

T(T) =tra(T) forall T € A(FE).
Of course, the same assertion applies to determinants.

In particular, we note the following consequence.

Corollary 7.1.5. Let T belong to N2({y) or to LoooMH o Li(ly). Then T € N({y), and the
3
identity

dety(I 4+ T) = detp (I + T) (7.3)

holds with dety denoting the nuclear determinant on N restricted to the class of Banach
spaces with a.p., and dety the spectral determinant on N2 or Lo, o H o L1, respectively.
3

For N: the assumptions of Lemma 7.1.4 follow immediately from the definitions. For
Lo © fl o Ly this is quite non-trivial. To sketch the argument, L., o H o Ly (ly) C N ({)
follows from Grothendieck’s theorem, which states that operators in £(L, L1) and in
L(Ly, L) are 2-summing (confer for example [52], [74]), and the fact that the product of
2-summing operators is nuclear (see [72]). To observe that the finite rank operators F(()
on ly are || - | Loo 0o H o Ly ||-dense in Lo, o H o L1({1), the idea is (i) to factorize the 2-
summing operator in £(Ls, L) through a Hilbert space (see [73], 1.5.1), (ii) to pick out the
operator between the two Hilbert spaces, say H, K, which is Hilbert Schmidt, and (iii) to
show that it factors as H — {, — {3 — K with the middle part being a diagonal operator
(see [73], 1.7.10, and use well-known coincidences of ideals on Hilbert spaces). The latter
can be obviously approximated by finite operators. Putting this together, we get a new
factorization, consistent with the definition of the ideal, a part of which is approximable by
finite operators.

In the following statement E can be any of the spaces CN with N € N, or the sequence
spaces cg, {p, 1 < p < o0.

Lemma 7.1.6. Let fy be a rational function satisfying fo(z) = — fo(=%) at all z € C where
fo is finite. Assume for a given T' € L(F) that spec(T) does not intersect the set P of poles
of fo. Then fo(=T) is defined and we have

m: —fo(—T)- (7-4)

158



Proof If € > 0 is sufficiently small and R > 0 sufficiently large, the contour
r={cllcl=ryo J{c|1c-21=¢ (7.5)

zEP

surrounds spec(7'), and we have

Py = [ R -1 c——Z/ _ROE DTG (19

27 Ji¢|=r 271

where all circles are oriented counter-clockwise. We compute

1
B = g [ QT dc+2mz/ L RQG-TG
1 - —
= g PCOC T dc+2mz | D@D

The assumption fo(z) = — fo(—%) implies that P is symmetric with respect to the imaginary

axis. Hence the transformation n = — maps I to itself while changing the orientations of
the circles. Hence we can continue
1
T)=—-—— I-T)  dy+ — (nI —T) Vdn. (7.7
R AR 77+2m%;/ Sl =T . ()

Since spec(—T) —spec(T') and P is symmetric with respect to the imaginary axis, I’

surrounds spec(—T'). Hence the last expression equals — fo(—T), and the proof is complete.

O

Finally we shall often use the following fact without further mentioning. If 7}; € A(F)
for some quasi-Banach operator ideal A, ¢, 7 = 1,2, then

Tll T12)
T = c A(FE 3 F).
(Tzl Ty, (ESE)

Of course this is easily proved by choosing appropriate projections and embeddings and
using the ideal properties (see Proposition 2.4.1).

Furthermore, we shall always identify a € E’ with its standard representation as a
sequence (a;);.

7.1.2 The basic solution formula

Here we provide the basic solution formula for the C-reduced AKNS system. Note that it
is valid for generating operators A on sequence spaces.

Theorem 7.1.7. Let I be a classical sequence space and A a p-Banach operator ideal
(0 < p < 1) with a continuous determinant § which is compatible with respect to conjugation
in the sense that

SI+T)=0(I+T)

for all T € A(E) with T € A(E).

Let A € L(E) with 0 € spec(A) + spec(A), and let spec(A) be contained in the domain
where fo is holomorphic. Choose 0 # a € E', ¢ € E arbitrarily, and define the operator-
functions

L(z,t) = exp (Az+ fo(A)t) @;LIZ(EQQ c),
Lo(z,t) = exp (Az+ fo(A)t) (a®c).

Then L, L belong to A and Lg, Lo are even one-dimensional.
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Assume in addition that exp(Az) behaves sufficiently well for x — —oo. Then, ¢ =
1— P/p, where

1 —L I —-L
P:5(z 1@0)7 P:5(f 1)7

solves the C-reduced AKNS system (4.5) on every strip R x (t1,t2) on which the denominator
p does not vanish.

Proof We want to apply Theorem 2.4.4 b) with the particular choice

() B=1,

(ii) b= —-a,and d ="¢.
Recall that, for the (C—redilcei AKNS system, W = —fo(=%) for all z € C where fy is
finite. Let the operators L, M be as defined in Theorem 2.4.4. By Lemma 7.1.6 and (i),

M is well-defined and E, M are complex conjugate to each other.
Next, for C' = 7', (b® ¢), D = ®3',(a ® d), the conditions (i), (ii) immediately show

D = —C. In particular, L = —EC, T=MD belong to A, and one-dimensionality of Ly,
Lo is obvious. Thus Theorem 2.4.4 b) provides us with the solution formula ¢ = 1 — P/p,
r=1= P/p, where

(1 -L < (I-ILy -L (T -L
P—5(z 1@0)7 P—5( I 1 ) p—5(z 1)'

It remains to establish the linear relation r = —¢q for the G-reduced AKNS system.
To this end, we use Proposition 2.4.3 to rewrite r as r = P/p — 1, where

~ [ I+L, —L
pas(ithe 1),

By the compatibility condition and the usual property of determinants, we infer

Po=olr+ To ) )
)
—L 0 -1 )
L Lo I 0
)
and obviously 7= p. Consequently, §=1—-P/p=1— ]5/p = -
This completes the proof. O

= (1

_|_
~No No

I

>,
—~
+

= (1

_|_

<(
(5 s
0

~ 5

7.1.3 Ameliorations for the Nonlinear Schrodinger equation

For the Nonlinear Schrédinger equation, we have the ameliorated solution formulas of Sec-
tion 2.6 at our disposal. The crucial point is that these avoid the condition that exp(Ax)
behaves sufficiently well for + — —oo. Moreover, since fy(z) = —iz? for the Nonlinear
Schrédinger equation, the condition that spec(A) is contained in the domain where f; is
holomorphic becomes superfluous.

The ameliorated solution formula for the Nonlinear Schrédinger equation based on se-
quence spaces reads as follows.
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Theorem 7.1.8. Let E be a classical sequence space and A a quasi-Banach operator ideal
with a continuous determinant § which is compatible with respect to conjugation in the sense
that

S(I+T)=6(I+T)

for all T € A(E) with T € A(E).
Let A € L(F), and let a € E', ¢ € E be given. Assume that there exist C € A(L),
0+£ a € B' such that AC + CA =a® c. We define the operator-functions

L(z,t) = exp(Aav—iAzt)C7
Lo(z,t) = exp Az —iA%t) (a®c).

Then L, L belong to A and Lg, Ly are even one-dimensional.
Moreover, ¢ = 1 — P/p, where

I -L I -L
P—5(z 1@0)7 P—5(f I )
is a solution of the Nonlinear Schrédinger equation (1.5) wherever the denominator p does
not vanish.

The proof can be taken over from the proof of Proposition 7.1.7. One just has to start
from Proposition 2.6.1 instead of Theorem 2.4.4. Furthermore there are some simplifications
because of the simple form of fj.

7.2 Countable superposition of solitons for the C-reduction

To place ourselves first into a setting where the operator theory is transparent, we start
with countable superpositions of solitons. These can be realized by diagonal operators.

In the sequel, I/ will always be one of the classical sequence spaces cg, £, (1 < p < c0)
and A € L(F) the diagonal operator generated by a bounded sequence o = (o;); € {0,

A:F — F with A(fz)z = (04252)2

Observe spec(A) = {a;|i € N}.
It should be remarked that all results in this section can be transferred to weighted
sequence spaces.

In order to apply Theorem 7.1.7, we need to guarantee that exp(Ax) behave sufficiently
well for 2 — —oo. A neat way to arrange this is to suppose inf; Re(a;) > 0. Geometrically
this means that the solitons are localized to a certain extent. More precisely, one can see
that with Re(a;) — 0 for ¢ — oo the solitons become lower but broader.

Theorem 7.2.1. Let o = (oy); be a bounded sequence such that inf; Re(o;) > 0 and
sup; | fo(ai)| < oo. Then the operators defined by the infinite matrices

a;c; -
Lz, t) = — = i i)t
&:9) (Oéi—l-@j exp (o + fole) ))2'7]‘:1
and Lo(z,t) = (ajci exp ((aiz + foloy)t) )Oo
7,7=1

belong to the component N2 (F) of the %-Banach operator ideal N2 for all sequences ¢ =
3 3

(ci)i € E, 0# a=(a;); € E', and the same holds true for the complex conjugate operators.
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Moreover, ¢ = 1 — P/p, where

1 L I -L
P:det/\(fl_l_fo)7 p:det/\(I ])’

is a solution of the C-reduced AKNS system (4.5) on strips R x (t1,t3) where the denomi-
nator p does not vanish.

In the above statement det) denotes the unique, continuous, spectral determinant on the
%—Banach operator ideal N2 of %—nuclear operators. In Theorem 7.3.2 we shall see that the

solutions in Theorem 7.2.13are globally regular.

Proof Recall that A is a diagonal operator generated by the sequence («;);. Thus, also
exp (Aac + fO(A)t) is a diagonal operator generated by the sequence (exp(aiw + fo(Oéi)t))Z..
Since inf; Re(a;) > 0, exp(Axz) behaves sufficiently well as @ — —oo. Furthermore the
condition that |fo(a;)| be uniformly bounded for all ¢ shows that spec(A) = {a; |} is
contained in the domain where fy is holomorphic.

Next, it is straightforward to check that the operator C' : ' — FE generated by the
infinite matrix

( = )
)y

is bounded and satisfies AC + C'A = @ ® ¢. Since 0 Q spec(A) + spe
we can apply Proposition 2.3.4, which shows C' = &7, A( ¢) € N2(F

3

c(A) by assumption,
). Moreover, a @ ¢ is

obviously generated by the infinite matrix (a]cz)jj e
Thus the assertion immediately follows by applying Theorem 7.1.7 with respect to the

2-Banach operator ideal Az of Z-nuclear operators (see Lemma 7.1.2). O
3

Remark 7.2.2. Note that in Theorem 7.2.1 any continuous determinant § on a p-Banach
operator ideal A, 0 < p < 1, can be used which has the property that (I +T) = 6(I +T)
for all T € A(E) satisfying T € A(E).

7.3 Universal realization and regularity

In this section we will see that the previous solutions can be reinterpreted uniformly in terms
of the nuclear determinant dety on ¢;. The practical use of this is that the determinant
can be evaluated by the concrete formula (7.1). This can be exploited to prove that the
solutions considered in the previous section are globally regular. Note that regularity is not
obvious at all in our general setting. Furthermore we will obtain a better understanding of
the parameters a, c.

Theorem 7.3.1. Let a = (o;); € o be a bounded sequence such that inf; Re(a;) > 0 and
sup; | fo(ai)| < oo. Then the operators defined by the infinite matrices

d; -
L(z,t) = (Oérl-@j exp (oeix—l—fo(oei)t)) -

1,]=
0

and Lo(z,t) = (di exp (oeiac + fo(oei)t) )

1,5=1

belong to the nuclear component N ({1) for all sequences 0 # d = (d;); € {1, and the same
is true for the complex conjugate operators.
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Moreover ¢ = 1 — P/p, where

1 L I -L
P_det-/\/(f I‘|‘ZO)7 p_det./\/(f 1)7

is a solution of the C-reduced AKNS system (4.5) on strips R x (t1,t3) where the denomi-
nator p does not vanish.
In addition, each solution of Theorem 7.2.1 can be expressed explicitly in this way.

In the above statement dety denotes the unique continuous determinant on the Banach
operator ideal A/ of nuclear operators restricted to the class of Banach spaces with a.p..

Proof (of Theorem 7.3.1) As for the proof that ¢ is a solution of the C-reduced AKNS
system, we refer to Theorem 7.2.1 with the following modifications:

e The determinant det s on the nuclear component A(¢;) is used, see Remark 7.2.2 and
Lemma 7.1.2.

e The particular choice d € {1, eg := (1,1, ...) € {, for the sequences is made.

Therefore, the only thing left to show is that each solution of Theorem 7.2.1 can be expressed
explicitly in this way. For concreteness we fix such a solution.

Our first objective is to provide an appropriate factorization of the operators L, Ly in
Theorem 7.2.1.

To this end, consider the diagonal operators A € L({s), A € L({1) generated by
the sequences «, @, respectively. Note that A is not the complex conjugate operator of
A because the underlying spaces differ. Since 0 ¢ spec(A) + spec(ﬁ)7 Proposition 2.3.4
implies that the operator equation AX + XA = eo ® ey on Ng (f1,0~) has the unique

solution Cy := (I> (60 ® €0). We verify Cy = (1/(04Z + 04]))
In addition we deﬁne L(av7 t) € L(L) as the diagonal operator generated by the sequence
(exp(asz + fo(a)t)),. Moreover, let D, € L(E, (1) and D. € L(l, E) be the diagonal

operators generated by the sequences a, ¢, respectively.
Then the operators L, Ly € Nz (FE) in Theorem 7.2.1 factorize as L = LD.CyD,,
3

LO = EDc(eo & 60)Da.

1,5=1"

Consequently the following operators are related,

(7 %) (& @)

with My = DaiDc(eo ®eg), M = DGEDCCO € N2 ({y). Namely, one immediately sees
3

(0 —L) B 0 _—EDCO_
L LO N EE U EE (60 ® 60)
B E B D, 0
B E €0 ® €o 0 D,
and
( 0 -M ) B 0 ~D,LD.Cy
M MO N AECUO Eaiﬁc(eo & 60)

D,
D, 0\ (LD 0 0 —Co
0 Da 0 EEC CO eg @ €eg )

163

¥



As a result,

dem(u(% _ff)):dem(]‘l-(% _M]\f))

det) denoting the spectral determinant on A2. In the latter expression dety can be replaced

3
by the nuclear determinant dety on the component A ({), see Corollary 7.1.5.
Finally we observe that M, My are of the form as required in the statement, namely
o0

d;

1,5=1

o0

My = (di exp (0@'96 + fo(%’)t)) .

,7=1

for d; := a;c;. In particular, d = (d;); € (4.

Carrying out the same manipulations for the denominator p of the solution, we complete
the proof. O

Finally, we prove global regularity of the solutions constructed so far.

Theorem 7.3.2. The solutions in Theorem 7.3.1 (and hence in Theorem 7.2.1) are defined
and regular on all of R

Proof We have only to show that the denominator p does not vanish. By (7.1), p is the
limit of py for N — oo, where py is the denominator appearing in the formula of the
N-soliton corresponding to the first N members of the countable superposition. But in the
proof of Proposition 4.3.7 we have seen that py > 1. Hence the same holds true for p, and
the proof is complete. O

7.4 Sharper results for the Nonlinear Schrodinger equation

Next we turn to degenerate cases. As explained in the introduction, this should be done in
the context of concrete equations. Here we will study the Nonlinear Schrédinger equation
in detail and show that under suitable conditions we can handle the case inf; Re(a;) = 0.
Geometrically this means that we can superpose solitons whose widths diverge.

In the case inf; Re(a;) > 0 we obtained an operator C' = @2%(6@ ) with AC +CA =
@ @ ¢ by the Eschmeier-Dash/Schechter theorem. Furthermore for any choice (a, c) it
was clear that C' belonged to any p-Banach operator ideal A. In the present situation

1

the underlying mapping (I)f_lZ is no longer defined. Nevertheless the matrix expression

((@je;)/(a; + @j))jj,:l still yields a formal candidate for €, which may a priori even be
unbounded. Our task is now to ensure by a clever choice of (a, ¢) that the candidate is
contained in an appropriate quasi-Banach operator ideal.

The following lemma is the crucial step.

Lemma 7.4.1. Let a = (a;); € { be a bounded sequence with Re(a;) > 0 Vi. Then the
operator Cy : {1 —> L defined by the infinite matriz

G, = (\/Re(%)\/Re(%))

o; + o

1,5=1
belongs to the quasi-Banach operator ideal L., o H o L.

The same statement holds true for the complex conjugate operator 6’0 of 5’0.
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Proof We show that 6’0 factors through the Hilbert space L3]0,00). To this end, consider
the operator S : {1 — L3]0,00) which is defined on the standard basis {e; | i} of {; by

Se; == f; with fi(s) = \/Re(a;) exp ( — a;s). Because of
<S/S€]‘,€Z’> = 56]756 / f] fZ

= +/R &Z\/Re&]/ exp —(a; +@;)s )ds

_ \/Re 042' \/_Re oej _ <60€]‘7€i>

o; + oy

actually Cp = §’S. Similarly as above we check | fi | af0,00)= which in turn proves
that .S is bounded. _ N _
As for the complex conjugate operator Cy of Cpy, a factorization Cy = R’'R through

L3[0,00) is obtained via R :{; — L3]0,00) given by Re; := f; with f; as above. O

27

Theorem 7.4.2. Let o = (a;); € lo be a bounded sequence with Re(a;) > 0Vj. Then the
operators defined by the infinite matrices

— o0
ayc;
L{z,t) = I ex oe'ac—ioe2t)
(#7) (%’"‘aj’ P (o ! ) 5,3'=1
o0
and Lo(z,t) = (a]‘/C]‘ exp ((ojz —ialt) ) N
Ja'=1

belong to the component L, oH o Ly(F) of the quasi-Banach operator ideal L., oH oLy for

all sequences ¢ = (¢;)j, 0 # a = (aj); with (¢;/\/Re(a;)); € E, a = (aj/+/Re(wj)); € E,
and the same is true for the complex conjugate operators.
Moreover, ¢ = 1 — P/p, where

1 L I —-L
P:det/\(fl_l_fo)7 p:det/\(f ])’

is a solution of the Nonlinear Schrédinger equation (1.5) wherever the denominator p does
not vanish.

In the above statement det) denotes the continuous and spectral determinant on the quasi-
Banach operator ideal £, o H o L.

Proof Recall that A is a diagonal operator generated by the sequence («;);. Thus, also
exp (Ax—iA2 ) is a diagonal operator, and it is generated by the sequence (exp(oejx — ioe?t))j.

It is also clear that a @ ¢ is generated by the infinite matrix (a]/c])oo, 1

Next we introduce the diagonal operators D Nk cFE =6, D SN e > F

generated by the sequences (aj/\/Re(oej))j € F, c]/\/Re (a;)); € I, respectively. By
Hé6lders inequality, both are bounded. Thus Lemma 7.4.1 implies that the operator

C::DC/MCODa/\/M  F— F

belongs to the quasi-Banach operator ideal L., o H o L1. Obviously, C' is represented by
the infinite matrix ((@;c;)/(a; + af'));j":p and the equation AC' + CA = @ ® ¢ can be
immediately verified. 7

Similarly, C' € Lo 0 H o L1(F) solving AC+CA=a®C.
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Now the assertion follows by applying Theorem 7.1.8 with respect to the quasi-Banach
operator ideal L., o H o Ly of operators factorizing through an Li-space, a Hilbert space,
and an L.,-space. O

Next we show that, even for the solutions of the Nonlinear Schrédinger equation which
only satisfy the weaker condition Re(a;) > 0 for all j, the counterpart of the universal
realization in Theorem 7.3.1 holds.

Theorem 7.4.3. Let o = (a;); € ls be a bounded sequence with Re(a;) > 0 for all j.
Then the operators defined by the infinite matrices

d; -
L(z,t) = ( I exp (04‘96—i042t))
Qj + Qg ! ! j'=1
and Lo(z,t) = (dj exp ((aju —ia’t) )Oo
5y'=1

belong to the nuclear component N'({y) for all sequences 0 # d = (d;); with (d;/Re(a;)); €
ly, and the same holds true for the complex conjugate operators.
Moreover ¢ = 1 — P/p, where

I -L I -L
P_det/\/(f I_I_ZO), p_det/\/(f I ),

is a solution of the Nonlinear Schrédinger equation (1.5) wherever the denominator p does
not vanish.
In addition, each solution of Theorem 7.4.2 can be expressed explicitly in this way.

In the above statement dety denotes the unique continuous determinant on the Banach
operator ideal A of nuclear operators restricted to the class of Banach spaces with approx-
imation property.

Proof First we show that ¢ solves the Nonlinear Schrodinger equation. Observe that the
operator C' : {1 — {1 generated by the infinite matrix

o (),
Oé]‘ —|— a]‘/ G=1

is nuclear. Indeed |a; +@;/| > Re(o;) implies

= — Y |< | =|| (d; ), :
lc1v )| §jjs;p\aj+aj, jjj\Re(%)\ | (d;/Re(ay), < oc

Obviously, AC + CA = eg @ d for eg = (1,1,...) € lo, d € {1 (here we have used that
(a;); € loo, (dj/Re(er)); € £y yields (d;); € £q).

Thus we can apply Theorem 7.1.8 with respect to the nuclear determinant dety on £
(see Lemma 7.1.2).

It remains to show that each solution of Theorem 7.4.2 can be expressed explicitly in
this form. For concreteness fix such a solution. We use the following factorization for the
operators L, Lg in Theorem 7.4.2:

L = LDC/«/Re(oz)CODa/q/Re(ozy
Ly = LDC/ /—Re(a)(\/Re(oe)®\/Re(oe))Da/ )
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where Da/\/m € L(E, ), Dc/\/m € L({, ), and Cy € Log o H 0 L1(ly, o) have

been introduced in the proof of Theorem 7.4.2, and the diagonal operator L(z,t) € £(F)
is generated by the sequence (exp(oejx — ioe?t))j. By the same calculation as in the proof
of Theorem 7.3.1 we check that the following operators are related,

(z %) (& )

with My = Da/\/MLDC/\/M(\/Re(a) @ v/Re(a)), M := DaNRe(a)LDCNRe(a)CO €
Loo oMo Ly(ly).

Hence, by the principle of related operators, we obtain

dem(u(% _ff)):dem(]‘l-(% _M]\f))

for the spectral determinant dety on L., o H o L1. In the latter expression det) can be
replaced by the nuclear determinant dety on the component N ({y), see Corollary 7.1.5.
Moreover, we observe the following matrix representations for M, Mg,

Re(om) d; .
M = d ? x —iatt
( Re(a;) a; + @y P (%x 1 ))

Re(ajs . 9 ~
My = ( Re(a;) djeXp(Oé]‘$—104jt))

for d; := a;c;. In particular, (dj/Re(oej))j €ly.
Let us assume for a moment that the sequence (Re(ai))j is bounded away from zero.
Then we can conclude the proof by

detN(I—l—(% _H]\f)) _

D 0 D 0

_ Be(ar) 0 -M 1/+/Re(a)

_detN(I+( 0 D )(M Mo)( 0 D ))
Re(oz) 1/ Re(oz)

= (14 (5 5, )

where N, Ny are just the operators defined in the assertion.

For arbitrary sequences (a;); € {o, we first note N, Ny € N ({y), which has been shown
in the first part of the proof. Thus we can use formula (7.1) for the calculation of the nuclear
determinant detx (I + T'), and the assertion follows by the same argument as before, but
now applied to the finite-dimensional principal minors.

o0

5y

5y'=1

Carrying out the same manipulations for the denominator p of the solution, we complete
the proof. O

Now we can achieve regularity also for the solutions of the Nonlinear Schrédinger equa-
tion constructed in this section. The proof is literally the same as for Theorem 7.3.2.

Theorem 7.4.4. The solutions in Theorem 7.4.3 (and hence in Theorem 7.4.2) are defined
and reqular all of R?.
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7.5 Countable superposition of negatons

Now we come to our main topic, the superposition of countably many negatons. Here we
will use so-called generalized diagonal operators A, i.e., an operator with Jordan blocks on
the diagonal. To this end, we shall first introduce some additional terminology.

7.5.1 Vector-valued sequence spaces

Let (n;); € {o with n; € N be a bounded sequence of natural numbers, and E one of the
classical sequence spaces £, (1 < p < 00) or cq.
For 1 < ¢ < oo, we define the vector-valued sequence space

E(ty(n;)) = {5 = (&)

& € Ly(n;) ¥j such that (|| & |I,) € E}

Here (,(n;) denotes C" equipped with the g-norm. E(ﬁq(nj)) becomes a Banach space
with respect to the norm

1€ g =11 (1€ 1), e -

We write elements £ in vector-valued sequence spaces E((,(n;)) as & = (§;); with vector
entries &; € {,(n;).

The following duality statement can be shown in the same manner as for ordinary
sequence spaces.

Proposition 7.5.1. For 1 < g < 0o, the pairing
(ra) =" (ejna)), 0= (a)); € B'(ty(n)), & = (2); € E(ly(ny)),

ytelds a metrical isomorphism between E(ﬁq(nj))/ and E’(Kq/(nj)) (% + % =1).

We say that an operator T € L(E({y(n;)), F((.(n;))) is generated by a generalized
infinite matrix (77;)7%_, if it is given by the rule

TE=(Y Tinke ), for &= (&) € E(ly(ny)),
k

with matrices T3; € Mm‘,nj (C). If not stated otherwise, 1}; is always viewed as an operator
from £,(n;) to {,(n;).

If, in particular, only the matrices T;; on the diagonal are non-zero, then we call T" a
generalized diagonal operator generated by the sequence (17;);.

It is not difficult to find conditions such that generalized infinite matrices define bounded
operators. Exemplarily, we state the following lemmata.

Lemma 7.5.2. Any generalized infinite matriz (T;;){%_, with sup; ; || T;; ||[< oo defines a
bounded operator T from {1 ({y(n;)) to Lo (€-(n;)) (where 1 < ¢, 1 < 00).

Note that || T;; || abbreviates || Tj; ||£(¢,(n;),e(n,))» @8 said before.

Proof We observe the elementary estimate

IS 76l < SN < sl Tl 316 1,
= =1 ! =
= (sup I T 1) 1€ Nes eyt -
J
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This yields

7€ Newies o = 50 | S 16 < (s 1755 1) € Mo

7=1

for & = (&) € (1({y(n;)). Thus T € L({1(Ly(ny)), loo(lr(n)))). O

Lemma 7.5.3. Any sequence (1;);, T; € My, (C), with sup; || T; ||< co defines an
operator T € L(E(ly(n;))) (where 1 < g < 00).

Proof Sett =sup, || 7} ||. Then from

I TE Ny =1 (1T e ), e < eI (& Mo ), o=t 11 ey

the assertion follows immediately. O

For operators T which are generated by generalized infinite matrices, again the notion of
the complex conjugate operator T of T' can be canonically defined as the operator generated

by( 2])2] 1

7.5.2 The main theorem for the C-reduction

Throughout this section we will assume that (n;); is a bounded sequence of natural numbers
and I one of the classical sequence spaces £, (1 < p < 00) or ¢.
Let o = () ; € Lo be a bounded sequence.

To these data we associate the sequence (A;);, where A; € M, , (C) is the Jordan block
of dimension n; corresponding to the eigenvalue «;. Then we can define the generalized
diagonal operator A € ﬁ(E(Kq(nj))), 1 < ¢ < oo, generated by the sequence (A4;);, i.e.,

A(&); = (Aj&y);  Tor (&) € E(ly(ny)),

see Lemma 7.5.3.
The following lemma determines spec(A). Here we will use that the size of the Jordan

blocks is bounded.
Lemma 7.5.4. For the operator A defined above we have spec(A) = {a; | j € N}.

Proof Obviously {«a;|j € N} C spec(A). Consider now XA ¢ {a;|j € N}. Then there
exists ¢ > 0 such that [a; — A| > ¢ for all j. Without loss of generality, ¢ < 1.

Define the generalized diagonal operator 1" generated by the sequence (7}); with T; =
(Aj—Al,,)~" Then T; =317 (v — /\)_’“N]k_1 with N; the nilpotent matrix of dimension
n; with the entries 1 on the off-diagonal and zero else.

Consequently,

T; | < < nse™ < pge 0
17511 < Z |k_ j <

for ng := sup; n;. By Lemma 7.5.3, this shows T € L(E({y(n;))), and it is clear that
= (A — AI)~L Thus \ ¢ spec(A). O
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Review of negatons

For convenience we recall some material on negatons.

To simplify the formulas, we will use the notation T';(§), I',(£) € My, ((C) for the upper
left and upper right band matrices given in terms of the vector £ = (E )5:1 € CF by the
following assignment

g(l) g(k) g(l) g(k)

We write egj) for the s-th standard basis vector of C.
For the construction of finite superpositions of negatons (see Proposition 4.3.1) we used
the following two types of matrices:

1. the exponential function Ez(x, t) :=exp (Aiw + fo(Ai)t),

2. the solution @7 1— (aj ®¢;) € My, 5, (C) of the matrix equation A; X + XA; =@ @ ¢;

17

for ¢; € C*, @; E(C”J7

where A; € M, ,,.(C) are the Jordan block of dimension n; corresponding to the eigenvalue
o;. Recall that these matrices have the concrete form given by

Li(e,t) =T, ({;(x,1)) (7.8)

1 81/—1
for the vector (;(z,t) :( WF exp (OWU + fo(Oéi)t) )
vV — . 042.

nq

v=1

and (I);lllz (E]‘ ® Ci) = FI(CZ')COJ']‘FT (E]‘) with

by Proposition 4.3.3.
Observe in particular Cy;; = @A I, (67%) ® 67(111.)).

Superpositions of negatons

Now we are in position to extend Theorem 7.2.1 from solitons to negatons. Recall that I
always denotes a classical sequence space.

Theorem 7.5.5. Let nj, j € N, be natural numbers with sup; n; < oo and a = (a;); € Lo
a bounded sequence with inf; Re(a;) > 0 and sup;, | fo(a;)| < oc.

For Ez(x, t), Co,i; as given in (7.8), (71.9), respectively, define operators generated by the
following generalized infinite matrices

Lit) = (Lot TiledCo T, @) )
Lo(e.t) = ((Lifw.t) Tule) (el @ e)Toa) ) -

Then L, Lo € Nz (E(ly(n;))) for all ¢ = (¢;); € E(ly(n;)), 0 # a = (a;); € E(ly(n;))’

(1< q< o), and the same holds true for the complex conjugate operators.
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Moreover, ¢ = 1 — P/p, where

1 L I -L
P_detA(f I_I_IO)7 p—det/\(f T )7
is a solution of the C-reduced AKNS system system (4.5) on strips R x (t1,t2) where the
denominator p does not vanish.

In the above statement det) denotes the unique, continuous, spectral determinant on the
%—Banach operator ideal N2 of %—nuclear operators. Again we will see later that the as-
3

sumption on strips is superfluous.

Proof Consider the generalized diagonal operator A € L(E((y(n;))) generated by the
sequence (A;); of Jordan blocks of dimension n; corresponding to the eigenvalue «;. It
follows immediately that exp (Ax + fO(A)t) is a generalized diagonal operator, too, which
is generated by the sequence (exp (ij + fo(Aj)t))j = (Ej(x, t))],.

We also have to verify that exp(Az) behaves sufficiently well for  — —oo. Since (n;);
is bounded, and inf; Re(«;) > 0, it sufficient to show this for a single Jordan block A;. The
latter follows from the fact that

(0) (ny=1)

P; P;
exp(Ajz) = exp(o;z) KN
(0)
0 P;
with polynomials pgo) =1,... ,p;nj_l) (compare (5.9) in the proof of Proposition 5.1.5).

Furthermore, the condition that |fy(c;)| be uniformly bounded implies that fy is holo-
morphic near spec(A).

By assumption, 0 ¢ spec( )+spec(A). Hence Proposition 2.3.4 guarantees the existence

of @ (a@c) € N2 (E(Ly(n;))). We show that this operator is generated by the generalized
mﬁnlte matrix (FZ(CZ)COM T(aj))jj‘:l'

To this end we define the generalized diagonal operators
Dy: E(ly(n;)) — {1({1(n;)) generated by (Fr(aj))j,
Dy lo(log(n;)) — E(Ly(n;)) generated by (F[(C]‘))j.
Both operators are bounded, which is verified as follows:

First note that for a; = (a;“))zjzl € Ly (n;) we have I'; (a;) = ZZJ N ; )N“ , where

Nj; is the nilpotent operator with 1 on the first off-diagonal as only non- Vanlshlng entries.
Thus || Tp(ay) 1< Sy [ =] a; 1< nj" || a; [l (2 + 2 =1), and we infer

1D My = SN Tr(a)é Il < zur ai) I111€ Ily
J
< (supn) "N ag |l H & lq
7 J
< (sup )" Nl a e o 1€ m o)

J

by Hélder’s inequality. Similarly, || I';(¢;) ||< n;/q/ Il ¢; ||q and

I Da€ Ni(eginyy = I (T llg ), e < (Supnj)l/q (e g 1€ Nlee ), Nl

J

< (supn) " (sup &1l ) I (sl ), lls
J

J
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= (sup )" |l e Nmgegtm | € Newttueny)) -
J

Next, define Cjy as the operator generated by the generalized infinite matrix (Co ;)i ;.
Then Cy € L(¢1((1(n;)), loc(leo(n;))) by Lemma 7.5.2.
Set

= DQCOEl € ﬁ(E(Kq(n])))

o0

Observe that ' is generated by the generalized infinite matrix ( Li(e)Co51 (@;) >ij:1'
Moreover, from I'j(¢;)Co ;1 (@;) = (I)f_lilﬂj (@, @ ¢;) it is straightforward to check that C'
solves AC'+ C'A = @ ® c. By uniqueness of this solution, C' = @2%(6@ c).
Finally, the one-dimensional operator a®@c is generated by the gfeneralized infinite matrix
(Fl(Cz’) (e @eld)) Fr(%))

1,5=1

because I';(c;) ( 67%) ® 67(111.) ) Dy(ay) = (Fr(a]‘)’e%)) ® (Fl(ci)eglli)) =a; @¢.
(1)

For later use we state that, in particular, a @ ¢ = Dy(eg @ eo) Dy, where eg := (€3, ) ;.

Now the assertion follows immediately by applying Theorem 7.1.7 with respect to the

2-Banach operator ideal V2 of 2-nuclear operators (see Lemma 7.1.2). O
3

Remark 7.5.6. Note that again Theorem 7.5.5 remains valid for any continuous determi-
nant § on a p-Banach operator ideal A, 0 < p < 1, with the property §(I +T) = §(I +T)
for all T € A(E) satisfying T € A(E).

7.5.3 Universal realization and regularity revisited

We round off the picture by providing also the universal realization of superposition of
negatons and giving regularity conditions.

Theorem 7.5.7. Let nj, j € N, be natural numbers with sup;n; < oo and a = (a;); € lo
be a bounded sequence with inf; Re(a;) > 0 and sup; | fo(a;)| < oo.

For Ez(x, t), Co,i; as given in (7.8), (71.9), respectively, define operators generated by the
following generalized infinite matrices

L(z,t) = (Ei(x,t) rl(di)co,ij)ml ,

1,5=1

Lofe,t) = (Lile.t) i) (el @) "

Then L, Lo € N (1(t1(n}))) for all 0 # d = (d;); € (1((1(ny)), and the same is true for
the complex conjugate operators.
Moreover, = 1 — P/p, where

1 —L I —-L
P:det_/\/(f I_I_ZO)7 p:det_/\/(f 7 )7

is a solution of the C-reduced AKNS system (4.5) on strips R x (t1,t3) where the denomi-
nator p does not vanish.
In addition, each solution of Theorem 7.5.5 can be expressed explicitly in this way.
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In the above statement dety denotes the unique continuous determinant on the Banach
operator ideal A of nuclear operators restricted to the class of Banach spaces with approx-
mation property.

Proof As for the proof that ¢ is a solution of the Greduced AKNS system, we refer to
Theorem 7.5.5 with the following modifications:
e The determinant detys on the nuclear component N (¢1((1(n;))) is used, see Remark
7.5.6 and Lemma 7.1.2.
e The particular choice d € (1({1(n;)), eo := (67(11]))]‘ € U (lso(n;)) for the sequences is
made.
Therefore, it only remains show that each solution of Theorem 7.5.5 can be expressed
explicitly in this way. For concreteness we fix such a solution.

We start from the factorization of the operators L, Lo € N (ly(n;)) in Theorem 7.5.5

as pr0V1ded in the proof. Indeed, we have L = LDQC'ODl7 o = LDy(eg @ eg) D1, where
L= dlag{L | 7} and all other ingredients are as defined in the proof of Theorem 7.5.5.
Note that

Co € Nz ((a(€1(n))), Lo (1))

as the unique solution of the equation AX + XA = ey @ e, where A € Ll (loo(nj))),

Ac L({1(1(n;))) are the generalized diagonal operators generated by the sequences (A;);,
(A;);, respectively (see Proposition 2.3.4). Consequently the following operators are related

(77) (ww)

with My = DliDg(eo ®eg), M = DiLD;Cy € N (ﬁl(ﬁl((nj))) (This is verified as in the
3
proof of Theorem 7.2.1). As a result,

dem(1+(2 _Lf)) = detA(I+(AO4 ;\%))

det) denoting the spectral determinant on Nz.

In the latter expression det) can be replasced by the nuclear determinant dety on the
component N ({1({;(n;))), see Corollary 7.1.5.

Finally we observe that M, My are of the form as required in the statement because

U'y(a;)li(e;) = TI(d;), where

nj—p+1

6= (Y

r=1

Since we have || d; [l < oy Lo 117 = (Smag1) (02 17 =1 el e
< nj || aj gl ¢ qu we infer d € {1({1(n;)), again by Holder’s inequality.

Carrying out the same manipulations for the denominator p of the solution, we complete
the proof. O

Finally, we prove global regularity also for countable superpositons of negatons.

Theorem 7.5.8. The solutions in Theorem 7.5.7 (and hence in Theorem 7.5.5) are defined
and regular on all of R

Proof The proof is virtually the same as that of Theorem 7.3.2. The only difference is
that we now approximate by finite superposition of negatons. O
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7.5.4 Again sharper results for the Nonlinear Schrodinger equation

In Section 7.4 we have seen that, for the Nonlinear Schrodinger equation, it is possible to
construct countable superpositions even in the case that 0 is contained in spec(A)+spec(A).
The main ingredient in the proof was an appropriate factorization of the formal solution C
of the equation AX + X A = @®c to the effect that C' belongs to the quasi-Banach operator
ideal Lo, 0o H o Ly.

To extend this result to negatons, we need the following counterpart of Lemma 7.4.1.

Lemma 7.5.9. Let n;, j € N, be natural numbers with sup; n; < oo and a = (a;); € lo
a bounded sequence with Re(a;) > 0 Vj.
Then the operator Cy : {1({1(n;)) — loo(lso(n;)) generated by the generalized infinite
malrix
Co = ( Re(ay)Re(a)™r~bCoyy )™

gg'=1’
with Cy ;50 as defined in (7.9), belongs to the quasi-Banach operator ideal Lo, o H o L.

The same statement holds for the complex conjugate operator 6’0 of 5’0.

Proof We have to show that 6’0 factors through the Hilbert space L3[0,00). To this end,
first observe the reformulation

S S S N S NN
ST\ =100 (w= Dol g+ ) L,

=1,...
pr=1, 7774J/

=1,...,n

From this reformulation we can more or less read off the factorization of 5’0.

Consider the operator S : {1 ({1(n;)) — L2[0, 00) which is defined on the standard basis
(el | w=1,...,nj;j € N} of {4({s(nj)) by

YIRY 1 1 o1
Sel) = ) gor FW(g) = Re(a;)i—s —— 2 — a;s).
en] f] or f] (S) e(a]) (H _ 1)| 804;_1 exp ( 04]8)
Then
(Sl ) = (5ell), Sel)

= Refag) > HRefagy ot [T s E L P (— (o 4 )ds
! ! o (v=1!1oai~" (u—D!oa ! T

1 ov—1 1 or=t 1

1 1
= Re(o;)" 2Re(av)™' ™2
() (ajr) (1/—1)!804;?_1 (,u—l)!@a;‘fl a; + @

= (Coel™, )y,

n],? Ty

Thus we have shown Cp = S'S. _
It remains to prove that S is a bounded operator. Using the definition of Cf together
with (7.9), we get

I f](u) "%2[0700) — <60€(u) e(u)>

n] Y n]

- o (4 )
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= (Re(q)) 2(nj—p) (2:_—12) (%) 2u-1

1
< 520 = 2)tmax(L, Jag )"

Because sup; n; < oo and («;); is a bounded sequence, there is a constant ¢ > 0 such that

I f](“) HL2[0,<><>)< ¢ for all j. Thus we observe

1 SE Ny = 113D €W rmm<§§]swfumm

i=1 p=1 j=1 p=1
< CZZEJ(‘M” = ¢ 1€ ey (2 (ny))
7=1 p=1

and 5 is bounded. _ N _
As for the complex conjugate operator Cy of Cpy, a factorization Cy = R’'R through

L5]0,00) is obtained via R : {1({1(n;)) — L3[0,00) given by Regfj) = f](“) with f](“)
above. O

The extension of Theorem 7.4.2 for negatons reads as follows.

Theorem 7.5.10. Let n;, j € N, be natural numbers withsup; n; < co and a = (a;); € log
be a bounded sequence with Re(a;) > 0 Vj.

For Ej(x,t), Co iy as given in (7.8) with fo(z) = —iz?, (7.9), respectively, define oper-
ators generated by the following generalized infinite matrices

Lty = ( Lile,t) Tu(ej)Copl (@) )”/21,
Lofw,t) = ( Lylw.) Tuleg)(efl) © el)Tofap) ) -

. 2ny—1
Then L, Ly € Lo o?—lo,Cl(2 o(nj))) foralle = (¢;);, 0 # a = (a;); with (¢;j/+/Re(a;)”” )j €
E(ly(n;)), (a;/+/Re(a;) T )j E(ly(n;))', and the same is true for the complex conju-

gate operators.
Moreover, ¢ = 1 — P/p, where

I -L I -L
P = det = - = det -
is a solution of the Nonlinear Schrédinger equation (1.5) wherever the denominator p does
not vanish.
In the above statement det) denotes the continuous and spectral determinant on the quasi-

Banach operator ideal £, o H o L.

Proof Let us introduce the generalized diagonal operators
Dy: E(l;(nj)) = (1({1(n;))  generated by ( L, (aj/\/ Re(o‘j)%]_l) ) )
J
Dyt oo(bocln)) = B(ty(nj)  generated by ( Ti(e;/y/Refe)™ ") )
J

Both operators are bounded which is shown preasely as in the proof of Theorem 7 5 5 with

regard to the fact that (aj/\/Re(oej)znj_ ) € E(ly(ny)), (¢;/+/Re(e;) znj ) (£q(nj))-

By Lemma 7.5.9, we observe that
C =Dy CoDy € LogoH oLy (E(ly(nj)).
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Moreover, because Fl(c]'/\/Re(oej)znj_l) = Re(aj)”ﬂ_%Fl(cj), we easily see that C' is gen-
erated by the generalized infinite matrix

C :( FZ(C]‘)COJ‘]'/FT(Q]‘/) )jd‘/:l .
This in turn shows that C' satisfies the equation AX + XA=a®e.
Similarly, C' € Lo 0 H o L1(E({y(n;))) solves the equation AX + XA=a®c.

For later use let us also remark the following factorization for the one-dimensional
operator a ® ¢. It holds

a@c= DQ(go (@fé/())Dl7

)2nj_1€( ))

nlj i This can be checked blockwise for the generating

2n.—1 2ny—1 2n.—1
v/ Re(a;) ’ enlj)/® Re(a; ’ egi))Fr(aj// Re(a;) ’ )

)
@ (Di(eg)el)) = ap @ ¢

with the vector €y = (y/Re(a;
infinite matrices by

Now the assertion follows by applying Theorem 7.1.8 with respect to the quasi-Banach
operator ideal L., o H o Ly of operators factorizing through an Li-space, a Hilbert space,
and an L..-space (see Lemma 7.1.2). O

Next we give the counterpart of the universal realization in Theorem 7.5.7 for superpo-
sitions of negatons with the the weaker growth condition.

Theorem 7.5.11. Letn;, j € N, be natural numbers withsup; n; < co and a = (a;); € log
be a bounded sequence with Re(a;) > 0 for all j.

For Ej(x,t), Co iy as given in (7.8) with fo(z) = —iz?, (7.9), respectively, define oper-
ators generated by the following generalized infinite matrices

L{z,t) = (’m'Lj(%t) [(dj)Co,j ) .
Jy'=1
1
~ o0 Re(a:)%' ™2
Lo(z,t) = (’m'Lj(%t) Lo(dj)(ef) ®€n1]))) s Y= Retay) 7 2 T
J,3'=1 Re(aj)nﬂ 3

Then L, Lo € N({1(1(n;))) for all 0 # d = (d;); with (d;/Re(a;)?"71); € {1(1(n;)), and
the same is true for the complex conjugate operators.
Moreover, ¢ = 1 — P/p, where

1 —L I —-L
P:det_/\/(f I_I_IO)7 p:det_/\/(f 7 )7

is a solution of the Nonlinear Schrédinger equation (1.5) wherever the denominator p does
not vanish.
In addition, each solution of Theorem 7.5.10 can be expressed explicitly in this way.

In the above statement dety denotes the unique continuous determinant on the Banach
operator ideal A of nuclear operators restricted to the class of Banach spaces with approx-
imation property.
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Remark 7.5.12. a) It should be stressed that the role of the factors ~;; is to ensure nu-
clearity of the operator

(7 7)

Once this is valid, they actually cancel in the evaluation of the nuclear determinant, because
this can be done by taking the limit of finite-dimensional determinants, see (7.1).

b) If we want to get rid of the factors v;; in the solution formula, we need a sharper
condition on the sequence d, confer Proposition 7.5.13.

Proof First we show that ¢ solves the Nonlinear Schrodinger equation. Application of

H n;—= 1 ni—L
Theorem 7.5.10 with (¢;); = (d;/Re(a;)™ 2)]‘ € l1(l1(ny)), (a;); = (67(1]) -Re(a;)™ 2>]‘ €
Lo (Lo (n;)) yields the solution property of ¢ expressed in terms of the determinant dety
on the component Lo, o H o L1(¢1(¢1(n;))). By Lemma 7.1.5, we can use the nuclear
determinant dety on the component N ({1 ({1 (n;)) instead.

Thus it remains to show that each solution of Theorem 7.5.10 can be expressed explicitly
in this way. For concreteness fix such a solution. We start from the factorization of the
operators L, Ly € Lo o H o L1(E({,(n;))) as provided in the proof. Indeed we have

L= EDgéoﬁl, Lo = EDl (50 ®€0)D1, where I = diag{ij | 7} and all other ingredients are
defined in the proof of Theorem 7.5.10. Recall in particular
Co € Lo oH o Ly (L1(01(n)), loo(loo(n))).-

Thus, the following operators are related

(77) (ww)

with MO = DlEDQ(gO & fé/o)7 M = DliDzéo € 'Coo oHo ,Cl (Kl(ﬁl(n]))) I‘IGHCG7 by the

principle of related operators

dem(u(% _ff)) - detA(H-(% _M]\f))

det) denoting the spectral determinant on L., o H o Ly.

In the latter expression det) can be replaced by the nuclear determinant dety on the
component N ({1({1(n;))), see Corollary 7.1.5.

Finally we observe that M, My are of the form as required in the statement because

[y (a;)Ti(ej) = Ti(d;), where

nj—p+1

= (5 gy

:1‘
r=1 "

To check (dj/Re(a;)?™ 1), € £1(L1(n;)n), we need the simple estimate

H d]‘/Re(aj)%J—l Hl S ( Z |agu)||cgﬁ)|)Re(0q)2n"_1

wyr=1
2n;—1 2n;—1
| a;/+/ Re(e;) I 1] ¢j/ 4/ Re(a;) I

2n;—1 2n;—1
nj || ai/ v/ Re(o) g7 I ci/ v/ Re(ev) g

and then apply Hoélder’s inequality again.
Carrying out the same manipulations for the denominator p of the solution, we complete
the proof. O

IA
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Proposition 7.5.13. Let nj, j € N, be natural numbers with ng := sup;n; < oo and
a = (a;); € ls be a bounded sequence with Re(a;) > 0 for all j.

For Ej(x,t), Cojjr as given in (7.8) with fo(z) = —iz?, (7.9), respectively, we define
operators generated by the following generalized infinite matrices

La,t) = (Lite,t) D)oy )
7,3'=1
Lofe.t) = (L@ Ti(d)(el) @el)) ~
7 Jig'=1

Then L, Lo € N'({1({1(ny))) for all 0 # d = (d;); with (dj/Re(a;)?™~1); € {1(€1(ny)), and
the same is true for the complex conjugate operators.
Moreover, ¢ = 1 — P/p, where

I -L I -L
P_det-/\/(f I_I_IO>7 p_det./\/(f I )7
is a solution of the Nonlinear Schrédinger equation (1.5) wherever the denominator p does

not vanish.

Proof To show that ¢ solves the Nonlinear Schrédinger equation, consider the operator
C 4y (l(n;)) — L1 ({1(n;)) generated by the generalized infinite matrix

C= (Fl(dj)CO,jj'):;/:l'

Our first aim is to show C € N(ﬁl(ﬁl(nj))).
Observe

n;—v+1

( CO]J' —( Z dﬁ—l—y K OHZ) ) v=1,. ;0

=1,...
pr=1, 7774J/

where ¢! ]]), abbreviates the (vu)-th entry of Cp ;;# as given in (7.9). Thus, by (7.9) and the
obvious estimate |a; +@;/| > Re(w;) V5 (recall Re(a;) > 0 Vj by assumptlon) we infer

Re(aj)2mo~t [0 < (V—I_H_ 2) Re(a)(mo= ¥ (ro=x)

0,44 v—1

< (nj+ny —2)! max (1, |04j|)2n0_2

< (2no—2)! max (1, a ||« )2n0_2 =:c
forallv=1,... ,n;,u=1,...,nj.
Therefore,

nj—v+1 nj—v+1
So oI < e 3 1Y) Re(ag) et
k=1 k=1

< clldj|l1 /Re(a;)?™ot

Therefore, abbreviating the (vu)-th entry of the (jj’)-th block of C' by c;;,“) as above, the
nuclear norm of €' can by calculated as

1CIN| = Zzsup sup b

JIUIJENMI gt
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nj n;—v+1

o0
+u—1
= 2 D s s | 3 4TI
j=1 i k=1

=1 JENp=1,...n

< e njlldy |l /Re(aj)?mo!

j=1
< eng || (dj/Re(a;)?™ 7 o) 0y (ny)) < 00

Thus €' is indeed nuclear.

It is straightforward to verify that ' solves the equation AX + XA = ey @ d for
€ = (67(11]))]‘ € loo(log(ny)), d = (d;); € (1(l1(n;)) (here we have used (a;); € (o,
(dj/Re(oaj)Q”J—l)j € (1(€1(n;)), and n; < ng for all j).

Thus the assertion follows by applying Theorem 7.1.8 with respect to the nuclear de-
terminant dety on £y ({1(n;)) (see Lemma 7.1.2). O

Again we have global regularity of the solutions constructed so far.

Theorem 7.5.14. The solutions in Theorem 7.5.11 (and hence in Theorem 7.5.10) and
Proposition 7.5.13 are defined and regular on all of R2.

7.6 Countable superpositions for the R-reduced AKNS
system, and the modified Korteweg-de Vries equation

In the last section we turn to the R-reduced AKNS system. First we prove the basic solution
formulas for the R-reduced AKNS system, as well as an ameliorated version for the modified
Korteweg-de Vries equation. Note that these formulas are considerably simpler than the
ones used for the C-reductions. Moreover, due to the fact that the relation r = —g can
already be realized on the abstract operator level, the concept of the complex conjugate
operator is superfluous for the R-reduced AKNS system.

Finally, we briefly outline the results on countable superpositions, including regularity
and reality conditions. It should be emphasized that these conditions are general enough
to include not only the usual solitons but also breathers into the countable superpositions.

7.6.1 Basic solution formulas

We start with the solution formula for the R-reduced AKNS system in general, which is
valid for generating operators A on sequence spaces. It is an immediate consequence of
Theorem 2.5.1 and reads as follows.

Theorem 7.6.1. Let I be a classical sequence space and A a p-Banach operator ideal
(0 < p < 1) with a continuous determinant §.

Let A € L(F) with 0 ¢ spec(A)+spec(A), let spec(A) be contained in the domain where
fo is holomorphic, and assume that exp(Axz) behaves sufficiently well for x — —oo. Then
the operator-function

L(z,t) =exp ( Az + fo(A)t) @Z}A(a ® ).
belongs to A for arbitrary 0 £a € E', c € F.
Moreover,
00 (I-iL)
= i—log —/———=
= e S (14D )
solves the R-reduced AKNS system (4.6) on every strip R X (t1,t2) on which both determi-
nants do not vanish.
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As for the modified Korteweg-de Vries equation, we will build on the following amelio-
rated solution formula which is an immediate consequence of Proposition 2.6.2.

Theorem 7.6.2. Let E be a classical sequence space and A a quasi-Banach operator ideal
with a continuous determinant §.

Let A€ L(F), and let 0 # a € L', ¢ € I be given. Assume that there exists C' € A(L)
such that AC'+ CA = a® c. Then the operator-function

L(z,t) =exp (Ax—ASt) C,
belongs to A, and
_ 0,0 (I-iL)
T e S (1 +iL)

solves the modified Korteweg-de Vries equation (1.6) wherever both determinants do not
vanish.

7.6.2 Review of the results

Let us start with the construction of countable superpositions of negatons for the R-reduced
AKNS system.

To this end we adapt the material on negatons according to the situation at hand. Here
the essential building blocks are

Li(z,t) :== T, ({2, 1)) (7.10)
1 ot
(I/ — 1)' 804;'_1

nq

for the vector (;(z,t) :( exp (o;z + fo(oy)t) )

v=1

as before, and

v4+u—1
e _1\vte vAp—2 1
o)),

v=1,..
n=1,... Ny

Note that in the latter expression complex conjugate terms are absent.

The following theorem sums up the result on countable superpositions of negatons for
the R-reduction as a whole. It also gives the corresponding universal realization.

Theorem 7.6.3. Let nj, j € N, be natural numbers with sup;n; < oo and a = (a;); € lo
be a bounded sequence with inf; Re(a;) > 0 and sup;, | fo(a;)| < oc.

a) Then, for Ez(x, t), Coj as given in (7.10), (7.11), respectively, the operator generated
by the generalized infinite matriz

L) =( Li(e, ) Ti(e)CouTrla) )~ (7.12)
27]:
belongs to the component N2 (E(Kq(n]))) of the %-Banach operator ideal N2 for all sequences
3 3
c=(c;); € E(Ly(nj)), a= (aj); € E(l,(n;)). Moreover

o, dety (I—iL)

= i log oA L) 7.13
= 92 B dety (1+iL) (7-13)

is a solution of the R-reduced AKNS system (4.6) on strips R x (t1,t3) where both determi-
nants dety (I £1iL) do not vanish.
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b) Fach of the solutions in a) can be expressed explicitly in the form

.0 dety (I —iM)
= 9 ety (T+iM )

where the operator M = M(z,t) € N({1(1(n;))) is generated by the special generalized
infinite matriz

Ma,t) = (Lifa, ) Ti(d)Coss)
t,0=
and we have 0 # d = (d;); € {1({1(n;)).
In the above statement det) denotes the spectral determinant on the %—Banach operator
ideal V2, and dety is the nuclear determinant on the component A (¢;(¢(n;))).
3

Countable superpositions of solitons are comprised in Theorem 7.6.3 in the particular
case n; = 1 for all j. In this case, the operator (7.12) becomes

L(z,t) = ( WE_exp (@iz + folei)t )) ;
7=1

o; + oy

1,]=

where a = (a;);, ¢ = (¢;); now are ordinary sequences.

We round off the picture by providing the sharpened result for the modified Korteweg-de
Vries equation, and give again its universal realization.

Theorem 7.6.4. Let nj, j € N, be natural numbers with sup;n; < oo and a = (a;); € lo

be a bounded sequence with Re(a;) > 0 Vj.

a) Then, for Ei(w,t), Coj as given in (7.10) with fo(z) = —2°, (7.11), respectively, the
operator generated by the generalized infinite matrix
Lia,t) =( Lifa,t) Lile)Colr(a) )
27]:
belongs to the component L., o H o Ly (E(Kq(n]))) of the quasi-Banach operator ideal L., o
H oLy for all sequences ¢ = (¢;);, 0% a = (a;); with

2n—1 2n—1
(c;/+/Re(a;) ’ EEK (nj)),  (aj/y/Re(a;) EE (Ly(nj))".

Moreover
0, dety (I—iL)
q = 1g—log ———————~
dx dety ( I +il )
is a solution of the modified Korteweg-de Vries equation (1.6) wherever both determinants
dety(/ £1L) do not vanish.
b) Fach of the solutions in a) can be expressed explicitly in the form
.0 det (I - iM)
q = iz—log —
dr " dety (I+iM)

where the operator M = M(z,t) € N({1(1(n;))) is generated by the special generalized
infinite matriz

M(z,t) = (%’j Li(x,t) Fl(di)co,ij). o

2,7=1
with a vector 0 # d = (d;); satisfying (d;/Re(a;)*™ 1) € (1((1(ny)), and we have v;; =
Re(a;)" 7% /Re(a)" =
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In the above statement det) denotes the spectral determinant on £, o H o £, and again
det, is the nuclear determinant on the component A (¢;(¢1(n;))).

The parts b) of Theorem 7.6.3 and Theorem 7.6.4 give us access to reality conditions
global and regularity for countable superpositions of negatons as well for the R-reduced
AKNS system as for the sharpener result in the context of the modified Korteweg-de Vries
equation.

Theorem 7.6.5. Let the o; be as assumed in Theorem 7.6.3 or Theorem 7.6.4, respectively,
with the following additional properties:

(i) If o; € R, then d; € {,(n;,R).

(ii) There is a permutation ® of J = {j € N|a; € R} such that for each j € J we have
Qr(j) = O and dw(]‘) =d;.

Then the solutions in Theorems 7.6.3 or Theorem 7.6.4, respectively, are defined on all of
R?, real-valued, and reqular.

Note that real eigenvalues, see (i), lead to solitons/antisolitons, whereas pairs of complex
conjugate eigenvalues as in (ii) give rise to breathers (see Section 4.4.3). Thus breathers
are indeed contained in our treatment of countable superpositions.

Recall finally that the factors +;; in Theorem 7.6.4 are necessary to ensure M € N, but
they cancel in the actual evaluation of the nuclear determinant. Note, however, that in the
soliton case these factors always equal 1. In the negaton case, a slightly stronger condition
ensures nuclearity of M even for v;; = 1.

Proposition 7.6.6. If the sequence d = (d;); in Theorem 7.6.4 b) even satisfies
(dj/Re(a;)*"07h); € L1l (ny)),

where ng = sup; n;, then the factors ~;; can be chosen equal to 1.
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Appendix A

Connection to Wronskian
representations

Up to now our treatment of solitons and negatons was exclusively based on our operator-
theoretical approach. Although our work was inspired by the method of Marchenko [55],
the structure of the resulting solution formulas is quite different. Even in the simplest case
of N-solitons, the coincidence of the corresponding formulas is not obvious at all.

In Marchenko’s work, N-solitons are represented in terms of Wronskian determinants.
The latter appear also in constructions based on Darboux transforms (confer [56]). For
our purposes the construction of positions by Matveev and ensuing developements are very
important ([57], [58], [59], [60], see also [11], [79], [95]). For related material the interested
reader may also consult [30], [31], [62], [63], [67].

The purpose of the present appendix is to establish the link between our solution for-
mulas and those constructed by Wronskian techniques.

A.1 The pure soliton case

For the C-reduced AKNS system, a representation of n-solitons in terms of Wronskian-type
determinants is given by

with
AT e A —/\711_2991 e = Apr —e1
A% N, 1 AP 2, e SN, —0n
Ay = det| < ~ o o v
Ao A LA T e M 1
and
AT L AT e e e —e
/\n‘—l /\n 1 /\n—l n _/\n n ‘ n
Ay = det| ~n-1 - T o v ,
Ay ML e e M U
—n‘—l — —n—i _ - ‘_ _

183



where the functions ¢; are defined by ¢;(z,t) = exp (2iAjz + fo(2iA;)t + c,o;o)) and the
constants A; are assumed to be pairwise different.
Note that the particular case n = 1 yields ¢ = —2i(A — \)/(¢ + 1/%), which coincides
with the one-soliton solution (4.10) of the C-reduced AKNS system if we set o := 2i\.
The representation (A.1) is taken from [62] combined with [63]. Similar formulas were
already derived by Matveev [56] in the context of Darboux transformations for the zero
curvature equations.

In the following lemma we show how to translate (A.1) into our framework.

Proposition A.1.1. Fuvery soliton solution as in (A.1) can be realized as one of the solu-
tions constructed in Proposition /.3.1 with A being a diagonal matriz.

Proof Step 1: To simplify arguments, rename a; = 2iA;, @; = —Qin. Then ¢ in (A.1)
is given by almost the same formula with A;, Xj replaced by «;, —@; and the factor 2i in
front of the whole formula cancelled.

Step 2: Next we take a closer look on the numerator Ay. Interchanging columns, we can
put the first into (n 4 1)-th column without changing the order of the other columns. Now
we can compare Ay with the denominator Ag, from which it only differs in the (n + 1)-th

column. Thus Ay = (=1)"(A; — A) with

o™t —ai 7l —af —af Tl e =

Odn‘_l e 1 —04”_19‘9 — a” —Oén‘_QQO . _S‘O

A = det _n n— — nf _n n_ n _nn_ n_ _n
(—a)" ™t e L (@) TS - (ma)t (@) ey e 1%

(@)™t e L (@) TR, - () (@) TS, e 1B,
(A.2)
Next we introduce A = diag{a; |j = 1,...,n}, L = diag{p; |j = 1,...,n} and the two

Vandermonde matrices V = (04?_])77,_ W= ((—@i)”_j)ﬁ,_ . Then, as a result of the
7,7=1 7,7=1

manipulations of this step, we get

q = 1—A/A2

V.  —-LV V.  —-LV - AV
with Ay = det —1 and A =det —1 — .
w L W W L "W+ AW

Note that we subtracted in (A.2) the j-th from the (n4j+1)-th column (forj =1,... ,n—1)
to obtain the expression of A.

Step 3: We proceed by the subsequent simultaneous manipulations for numerator A and
denominator As.

I 0 I LYW N[V 0
A2_det((o Z‘l)(fwv—l I )(0 W))
I —vw )

—-1
= det(L VW) det ( Twy-1 I

and
I 0 I VW —AVWL\ (V0
A= det((o I‘l)(fwv—l I+TA )(0 W))
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_ -1 _ -1
_ det(@ V) det( [~k Aviv )

Twy—1 I+LA
— Vw1 )

-1 1
= det(L qu)d%(:fWW”l [+IWV- (VW A+ Aviv!)

where we have used Lemma A.1.2 for the latter reformulation.
Set C'= VWL, Then, by definition of V', W it is clear that W = V'3 for ¢ = (—=1)77!
and ¥ = diag{(—=1)?"'|j =1,...,n}, and the following calculation shows WV ~! =,

WVl = VsVl = 7 (SVT) = V(es—1VT) = VIV-L

To sum up,
1 —-LC
det | — _— _
LC I—I—LC(AC—I—CA)
I -LC '
det ( c I} )
Step 4: Let us define Cp = e C' = VSV ', Then we have Co_l = (. Moreover, by

Proposition A.3.3 a) there exist b, d € C*, both non-zero, such that Cy = @2%(5@ d). In

other words,

q=1-

ACo+CoA = bad, (A.3)
and, by conjugation,
ACy+CoA = bad. (A.4)
In particular, Cy = (I)i,lA(b @ d).
Now, multiplying (A.3) with C from the left and (A.4) with Cp from the right yields
b@ (Cod) =Co(b@d) = A+ CoACH = (b@d)Co = (CLb) @ d.

Since the range of b @ (Cod) is (Cod) and the range of (Chb) @ d is (d), there exists A € C
such that Cod = Ad, and, because the operators are the same, Cib = Ab. Next, from
d = CoCod = AXCod = X\ Cod = |\|?d we infer |A|? = 1.

Step 5: As a last preparation, we use €2 = 1, [A\|* = 1, and C' = ¢Cj to rewrite
I 0 1 —-LC I 0

det ( A - )
0 €A LC 1+ LC(AC + C'A) 0 €A

(5 x)(ze 77) (0 a))

det 1 —eALC
“\ALC 1+ IC(AC + CA)

1 —eALC
dmj(eALC? I )

det [ 1L —~ALCy
ALCy I+ LCo(AC, + CoA)

= 1- . (A.5)

I ALCy
d“(Au% I )

¢ = 1-

= 1-
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Step 6: In the last step we show that there are vectors a, ¢ € C* such that (A.5) coin-
cides with a solution as given in Proposition 4.3.1. Namely, using the vectors b, d € C*
constructed in the fourth step, we define

a=>b, c¢=M\Id,

where I/ = diag{exp(cpgo)) ‘ j=1,... ,n} is the diagonal matrix containing the initial
position shifts. R R
It is straightforward to observe L = LF with L(x,t) = exp (Az + fo(A)t), and thus

ALCy =1L ( AF@;}Z(E@@ d) )= L@ZX (bo (\Fd) )= L@ZZ(EQ@ c).

It remains to show LC) (ACO + CoA) = f(ﬁ@ ¢). To this end, we apply the results of the
fourth step. Consequently,

= IT(ho(d) = L0
= L@®v).

As a result we have proved that the solution (A.1) can be realized in the form of Proposition
4.3.1 by a particular choice of a, ¢ € C*, and the generating matrix A being diagonal. This
is shows the assertion. O

Lemma A.1.2. Let R, S, T, and Ry € M,, ,,(C) be arbitrary square matrices. Then the
following identity holds:

I R+Ry\ _ 1 R
det(s T )_det(S T—SRO)'

Proof Since the block in the upper left corner is the identity matrix I € M, ,(C) and
the dimensions of the blocks are equal, we can eliminate Ry by ordinary operations with
columns. It is elementary to check the effect of these operations on the block in the lower
right corner. O

A.2 The case of a single negaton

Literature on positons and negatons of the AKNS-system is very limited. Discussions of
low-dimensional cases can be found for example in [11], [79] for the modified Korteweg-
de Vries and in [95] for the sine-Gordon equation. Their techniques rely on the Darboux
transformation techniques initiated by Matveev and do not yield solution formulas in closed
form.

Another approach is to explicitly solve the Gelfand-Levitan-Marchenko equations for
scattering data with multiple poles in the reflection coefficient. (Single poles correspond
to solitons). This ansatz has been pursued in [98] for the sine-Gordon and in [71] for the
Nonlinear Schrédinger equation, where also asymptotics are discussed.

In the sequel we shall focus on unpublished work of Steudel [96], where the single negaton
of order n of the AKNS-system is given in terms of Wronskians. After a slight adaption to
the formula (A.1), the solution formula of Steudel reads

q=2i(-1)"A1/A, (A.6)

with
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3
TN
@
=<

I =

L

—~

>

3

J
RS

o~~~

>

S—

A —
SN

Al = det

and

AQ = det

n

(L & sem) )

,7=1

(s 09 )iy (s e ),
1,5=1

(5 ).

~t

where () = exp (2iAz + fo(2iN)t + ©(@(2i))) and ¢(©) shares the property of fo for the
Creduced AKNS system, i.e., ¢(0(t) = —¢(©)(=7). In particular,

P(N) =1/(N).

Note the formal analogy to the determinants appearing in the Wronskian formula (A.1)
for the n-solitons. In fact, the first and the n-th rows of Ay in (A.1) and of the actual Ay
coincide exactly. Whereas in the previous case the matrix is filled by independent rows of
the same type, in the case at hand we obtain the remaining rows by successive differentiation
with respect to A, A.

In the following lemma we translate (A.6) into our framework.

Proposition A.2.1. Fuvery single negaton as in (A.6) can be realized as one of the solutions
constructed in Proposition /.3.1 with A being to a single Jordan block.

Proof We closely follow the proof of Proposition A.1.1. Therefore, we only indicate the
necessary modifications in each step.

Step 1: Again we set o = 2i\, @ = —2iX. Consequently, the derivatives are replaced by
the rule 9/0a = i@/@A, d/0a = ——8/8/\ Carrying out this replacement carefully, we
end up with the same formulas as in %A 6) with

e )\, ) replaced by a, —@,
88/\, 88_ replaced by 88 , 88_,

. c,/o\(/\)7 ©(N) replaced by (o), 1/@(@) with ¥ (a) = exp (oew + fola)t + 990)(04)),

(@) ==exp (- az + fo(~a@)t + ¢ (~@)) (note that the latter equals 1/¢(a)),

and the factor 2i in front of the whole formula cancelled.

Step 2: By precisely the same argument as in the proof of Proposition A.1.1, we obtain
the reformulation ¢ = 1 — A/A, with

(e @) (g (@ +) )

27]_ 27]:1

A = det 5 3 )
(=) | (e (2 d@ ) )

©J= D
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As for a more convenient representation of the inner matrices, define

n

)

7,75=1

i

7,75=1

In addition, we use the following factorization, valid for an arbitrary function f, which can
be easily verified by the product rule,

82’—1 n 0 0!
( Jai—1 (an_]f(&)) )Z - = FDfF_l Vo forI' := - '
T (n—1)! 0
I X o
and lA)f with the entries (Bf)ij = (j— i)!mf(a)’ J 2,
0, j7<u.

In particular, lA)id = A, where A is the Jordan block corresponding to the eigenvalue o with

dimension n. Moreover, we define L := lA)¢.
With these ingredients, we check

Vo -T(L4+AT 'V, I='vI'  —(L+ A)T-1,I
A = det —1 T —1 = det _1 —1 — _1
Wo T(L7 + AT Wy ='Wl (L7 +A) T~ Wl

= det( v :(_Ll—l_é)v )7
w (L + AW

where we have set V = "'V, W = I'"'WyI'. Of course, A, can be rewritten analogously.
To sum up,

g = 1—A/A; with

Vo —-LV V. —(L+AV
Ay = det —1 and A =det _(_1 + _) .
w LW w (L +AW
Step 3: This step can be carried over literally. For C':= VW ™!, the result is
1 —-LC
det | — — —
. LC I—I—LC(AC—I—CA)
qg=1- :
det ( 1 - )

LC 1

To perform the reformulation in this step we have used WV~! = C, which can be seen
by the following argument. By definition of Vy, Wy, we have Wy = VX with ¥ =
diag{(~1)7' |j =1,...,n} and e = (—1)*~1. Therefore,

C=VW =l 'YXV, ' T
and, analogously, WV =1 = ¢! VOEVO_I I' = C. In particular, C~' = C.

Step 4: Now we apply the factorization result for matrices X such that AX 4+ XA is
one-dimensional. Recall the definition of Vy,

)

Va :( (n— i)l dar—i

. ?
7,7=1
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and define Cy = VAEVil. Then, by Proposition A.3.6 a), there exist b, d € C*, both non-
zero, such that Cp = @2%(5@ d), and, by conjugation, Ciy = @ilA(b ® d). Moreover, the
same argument as in the7pr00f of Proposition A.1.1 shows that there is a complex number

A, [A = 1, with Cod = Ad and CLb = \b.
To finish the step, we establish the relation between Cy and C'. Observe
0 1
Va=T""J  with J= o
1 0
_ ——1 _ _
Thus C'= € (T7'Wp)X(Vy ) = Va(e JEI)VLH = Vanvst = Co.

Step 5: Using |[A\| = 1, C' = Cpy, and following precisely the argument in the proof of
Proposition A.1.1, we obtain

i (1 ~ALC,
_ CA\NICy T+ TICo(ACH + CoA) ~
1= i T G '
S\ XC, I

Step 6: Finally we construct vectors a, ¢ € C"* such that (A.7) coincides with a solution
as given in Proposition 4.3.1. Starting with the vectors b, d € C* of the fourth step, we set

a=>5b, c¢=M\Id.

where the matrix F = ﬁexp(w(o)) contains the initial position shifts and their derivatives.
Then I = LF with E(x,t) = exp (Ax + fO(A)t), which is simply the product rule, and

/\F@ZZ@@ d) = @;LIZ(EQ@ (AFd)) because A and F commute. This immediately shows

that ALCy = L AF(I)_;%(Z@ d) = E‘I’Zx,lz@@@ ¢), A\LCy = Ecbi} ' (a.@7). The identity
LCo(ACy + CoA) = L(@ @ €) can be verified as in the proof of Proposition A.1.1. There-

fore, (A.6) can be realized in the form of Proposition 4.3.1 by a particular choice of a,
c € C*, and the generating matrix A being a Jordan block. The proof is complete. O

A.3 Factorization of solutions X of the operator equation
AX +XB

In the preceding sections we have established the link to solutions of the C-reduced AKNS
system which are constructed using Wronskian techniques. The aim of this section is to
supplement the factorization results Proposition A.3.3 and Proposition A.3.6 needed in the
proofs of Proposition A.1.1 and Proposition A.2.1.

A.3.1 Vandermonde-type factorization for A, B diagonal

To the diagonal matrix A = diag{e;|j=1,...,n} € M, ,(C), we assign the Vandermonde
matrix

o 0/11_1 RS R |
va=(ai™) =] | e M@
T ! o, 1



and

1 e 1
Z]‘;ﬂ ay e Zj;én aj
— — i<t Qg .. Z i<yl Qo
wa=( Y eneen ) = | 2 25
M <A1 ? . .

JE{ AN} : :

As the next lemma shows, the latter matrix is the main part of VA_I.

Lemma A.3.1. The inverse of the Vandermonde matriz Vs = (a?_j)?jzl € M, .(O),

with «; pairwise different, is
Vil=YWaDs  with Dy = diag { 1/H(aj—ou) |j=1,...,n}
A=1
A#]

(de:diag{(—1)]4_1 ‘j:l,...,n}.

Proof The proof can be done by direct verification. Namely, denoting the 7j-th entry of
a matrix 7" as usual by T};, matrix calculation shows

( VaXWy )Z,], = 04?—1 _ 04?_2 ZOQ + Oz?_?’ Z ey 4.+ (_1)n—1 H ay
AZ] ANAFES A#£]
= H(O‘i —ay)
AZ]

{ H/\;éj(aj_a/\)v =]
0 i+
Therefore, VX W4 = DZI, which completes the proof. O

Corollary A.3.2. Let A = diag{a;|j=1,...,n}, B=diag{s;|j=1,...,n} e M, ,.(C).
Then

a) VaWg = ( ﬁ(az ‘|‘ﬁ/\) )

n

A=1 i7j:1.
A#]
b) A(VaWg) + (VaWp)B = ( H(O‘i + 5y) )n = @ ¢, where eg € C* is the vector
t,0=

A=1
with all entries equal to 1 and ¢ :( IT5_, (i + 5y) )?:1.

Proof As for a), the proof can be almost literally copied from the proof of Lemma A.3.1,
and b) can be immediately checked by matrix multiplication. O

In summary, we have shown the following factorization result.

Proposition A.3.3. Let A = diag{e; |j = 1,...,n}, B = diag{p; |j = 1,...,n} €
M, (C) satisfy (i) B; pairwise different and (ii) o; +3; # 0 for all i, j. Then the following

factorization holds:

a) There exist vectors a,c € C* such that
Vasvp!l = @35 (a® o),
namely a =( Il a(85 = Byt )?:1; e =(ITh= (@i + 5y) )?:1'

190



b) For any b,d € C",
®3'%(b @ d) = D.DF  VaxVy! DDy,

where Dy € M, ,(C), for [ = (f;)7=, € C", denotes the diagonal matriz with the
entries f; on the diagonal, and a,c € C" are as defined in a).

Proof Part a) is just a reformulation of Lemma A.3.1, Corollary A.3.2 b). For part b) we
use that the matrices Dy = Dch_l7 Dy = DbDa_l are diagonal. Hence, from tkle fact that
C = VAEVB_1 solves AC+CB = a®c with a, ¢ as defined in a), it follows that C' = D1C' D,

solves AC' + C'B = D{(AC + CB)Dy = Dy(a @ ¢)Dy = (Dha) @ (Dyc) = b @ d. O

A.3.2 Factorization for Jordan blocks A, B

To the Jordan block A € M,, ,,(C) with eigenvalue «, we assign

1 an—i ) n
_ L i1
o= ( (n— i)l dan— " )i,jzl M;.n(C),
J-1 (J-1)—(n—1) . -
in other words (VA)iJ — (n B i)Oé n<i+j—1,
0 n>i4j— 1.

for the ij-th entry (Vy4);; of Vy.
By the subsequent lemma, the main part of VA_1 is an upper left triangle matrix of a
quite similar structure, namely

i1 n
1 0 n—j )

Wa = ((_1)n_j(i—1)!aai—10‘

=1
Lemma A.3.4. The inverse of the matriz V4 € M,, ,(C) is
Vil =S, with ¥ = diag { (-1)"' [j=1,...,n}.

Proof Since (V4);x =0if K < n+1—4,and (Wy),; =0if k > n+1-7, ( VX -Wy )Z,]: 0
for ¢ < j. For ¢ > j, we directly calculate

n+l—j
( VaXi-Wy )ij: Z (VA)M(_l)H_I(WA)HJ‘
r=n+1—1
i—j '
= Z(VA)i(u-l-n-l-l—i) (=D (W) (gt
©u=0
1—J . .
_ Z (n -t + ,u) ot (_1)n—i+u . (_1)n—j( n B J )ai—j—u
s n—21 n—1+u
i 1—J i
- (i) Be(()
C A, H
= 52]
Thus V4 3XW4 = 1, yielding the assertion. O
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Corollary A.3.5. Let A, B € M, ,(C) be Jordan blocks with eigenvalues o, 3, respectively.
Then )
1 an—l

VaWg = (-1)" : n=d
Vi = (0 D et )
b) A(VaWg) 4+ (VaWg)B = eV @ ¢, where eV € C is the first standard basis vector

and

n

1,5=1

n—1 1 8n—i n\"
e=( -1 (n—mam+ﬁw4m+ﬁ)xﬂeea

Proof The proof of part a) is the same as the one of Lemma A.3.4. As for b), we start
with the calculation of A(V4Wg). Matrix multiplication yields that, for ¢ < n,

1 an :
=+ g O

1 or—!

(n—i—1)!19(a+ g)r—i-1
It is clear that the first summand does not vanish if and only if 7 — j > 0, the second if and
only if ¢ — 7+ 1 > 0. Thus the following cases are relevant:

(A(VaWs) ), = a(-1)"

y

(=1 (a+ )"

a) i —j < —1. Then ( A(V4aW5) ) ;= 0 since both summands are zero.

7

b) i—j = —1. Here only the second summand is non-zero, and ( A(V4Wg) >ij: (—1)".
c1) ¢ —j > 0. Now the both summands are non-trivial and we calculate
( A(VAWB) )ij
i (n= iy i M i+
— -1 J J -1 J J+
a (o (1" Nk oy (T Yk

(e () e

dy) In the case ¢ = n, which has to be treated separately, we get ( A(VaWg) )n],:
o (=)™ (a + B,

Next we calculate (V4Wg)B. In an analogous manner as above, for j > 1,

1 gt ,

n—j
=iy g T
, 1 gt ,

+(-1 n—j+1 : o+ n—]—l—l‘
(=1) (n—z)!@(a—l—ﬁ)”_l( 9
Again the first summand does not vanish if and only if ¢ — j > 0, the second if and only if
t— 7+ 1> 0, and we have to distinguish the cases:

((VaWg)B),. = B(-1)"7

y

a) i —j < —1. Again ( (V4Wg)B )Z,]: 0 because both summands vanish.

b) i — j = —1. Here only the second summand is non-zero, yielding ( (VaWpg)B >ij:
(_1)n—j+1_

cz) i — 7 > 0. Then both summands are non-zero, and we check

((VaWg)B) .

)

= sy (Z :‘7:)< +8) 7+ (- (”

1

—jt1

n—1

)<a+ﬂ>i‘f“
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[ (- (e e

(=) Hafa 4 5)", i=n.

dz) The case j = 1 has to be treated separately. Here we get

n—1

((VaWe)B), = ﬁ(—l)“—l( .)(wﬂ)i—l.

n—1

It is obvious® that in the cases a) and b) the entries ( A(VaWg)+ (VaWg)B )Z,], always
vanish. Therefore, A(VaWg) + (V4Wpg)B is a lower left triangular matrix. To check the
remaining entries ¢ — j < 0, we proceed along the different cases discussed above.

c1) Acz) ¢ <n,j>1. Then we obviously have ( A(VaWg) + (VaWg)B )Z,],: 0.
di) Aez) i=mn,j> 1. Also in this case we directly see ( A(VaWg) + (VaWg)B )n],: 0.

c1)Adz) i <n,j=1. Then

( A(VAWB) + (VAWB)B )

= o () () e

di)Adz) i=n, j=1. Then

(A(VaWg) + (VaWs)B)

nl

= et () e o
= ) e B

In summary, we have shown that the matrix A(V4Wg)+ (V4Wpg)B has only non-vanishing
entries in the first column, namely

(A« B ), = (" Yoy
— _qyn—1 1 8n_i n
= = (n—i)!a(a+ﬁ)n—i(0‘+ﬁ) ‘
which is equivalent to the assertion. 0

lustration of the cases which had to be treated separately in the proof of Lemma A.3.5. The first
matrix is a scheme for the calculation of A ( ViWpg ), the second for ( ViWpg ) B.

X a) ox a)
] . ) < b) o:d)
Cl) X o X OZdQ)
X o ¢2) X
oo ...0 0 o
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To state the factorization result, we recall the notation I',(§) € M,, ,,(C) for the upper
right band matrix given in terms of a vector § = (£;)7_, € C* by

51 gn
I (€)= .
0 &
Note that [',(£) is invertible if and only if & # 0. In this case also T'(¢)~! is an upper right
band matrix. Furthermore, for £ € C* we set E: (&1—it1)i—y. Then we have I', (5)651”) =¢
and I', (E)’e%l) =&, where 67(11)7 e%”) are the first and the n-th standard basis vectors.

Proposition A.3.6. For single Jordan blocks A, B € M,, ,,(C) with eigenvalues o, 3, re-
spectively, which satisfy o+ 3 # 0, the following factorization holds:

a) There exist vectors a,c € C* such that
VAEVB_1 = (I)Z,IB(“ ® ¢),

1 o
(n =)t d(a+ )r

namely a = el ¢ :( (-1t (a+8)" )

b) For any b,d € C",
®Llp(b @ d) =T (d)T,(@) 7" - VaXVg" - T,(b),
where ¢ is defined as in a).

Proof Part a) is just a reformulation of Lemma A.3.4, Corollary A.3.5 b). As for part
b), we use that upper band matrices commute. By a) we infer that C' = VAEVB_1 solves

AC+CB =P ge=eM o (T,@e) = T,@) (e @el). Thus € = T(d)T,(&)1CT, (b)
solves AC'+ CB = F,,(J)(eg) ® eé”))rr(b) = (F,,(b)’eg)) ® (F,,(J)e%n)) = b ® d. Note that
the invertibility of I',(¢) is guaranteed by the assumption that a 4+ 3 # 0. O

194



Appendix B

A brief survey on traces and
determinants on quasi-Banach
operator ideals

In this appendix we give a concise and selfcontained introduction to the theory of traces
and determinants on quasi-Banach operator ideals including all the material needed in this
text. We shall also encompass several recent results. As a general reference, we cite the
monographs of Kénig [52], Pietsch [73], Reed/Simon [80], and Simon [94].

On the following aspect we lay particular emphasis.

Basing on the well-known fact that there exists a unique trace on the smallest
operator ideal F of finite rank operators which is, indeed, spectral, two natural
procedures are considered how to extend the trace to (larger) quasi-Banach
operator ideals.

In this context the following operator ideals, which, from the modern point of
view, play a crucial role for developing a trace theory, come up, namely the ideal
N, of r-nuclear operators (0 < r < 1) in the sense of Grothendieck on the one
hand and ideals A C 87" of so-called eigenvalue type 1 on the other hand.

Both of those possibilities to extend the trace are discussed in detail leading
to some background information as well as a motivation for the construction of
countable superpositions of solitons.

The outline presented here is essentially taken from [18]. If not stated otherwise, the
cited results can be found in [73].

B.1 Basic notions

For the general notion of a quasi-Banach operator ideal we refer to the monographs of
Defant/Floret [23] and Pietsch [72].

Definition B.1.1. (Operator ideal) The class A := Uy p A(E, F) with given subsets
A(E,F) C L(E,F) for each pair of Banach spaces F and F' is called an operator ideal if
the following conditions are satisfied:

(1) a@y € AEF) foranya € E' and y € F,
(i) I[S,T e AE,F), then S +T € A(E, F),
(iii)  IfX € L(Eo,E), T € A(E,F), and Y € L(F, Fy), then YTX € A(Fo, Fy).
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Remark B.1.2. An operator T' € L(F, F) is a finite rank operator if there exists a finite
representation T = 3" a; @ y; with a; € E', y; € F, and the collection of all finite rank
operators from E into F is denoted by F(F, F).

The class L of all (bounded linear) operators is the largest and the class F of finite rank
operators the smallest operator ideal.

Definition B.1.3. a) A function || - | A || assigning a non-negative number || T | A || to
every operator T € A is called a quasi-norm on the operator ideal A if it has the following
properties:

(i) NaoylAll=lall-llylforac yer,
i) IS+TIANS ca( IS TAI+ITIAN) for 5,T € AE, F),

(iii) [ YTX|A|S|Y |- [|T|A|-||X] for X € L(Ey,E), T € A(E,F), and
Y € L(F, Fy).

In the case c4 = 1 we simply speak of a norm.

b) An operator ideal A is called a quasi-Banach operator ideal if all components A(E, I)
are complete with respect to the quasi-norm || - | A || given on A. If || - | A || is an r-norm
(0 <r < 1), A is called an r-Banach operator ideal, and if || - | A || is even a norm, then
we call A a Banach operator ideal.

Remark B.1.4. ||T ||<|| T | A|| for all T € A.

The concept of an operator ideal A = |J;  A(F, F) also makes sense if I/, I’ range only
over a subclass of Banach spaces. Of particular interest is the subclass of Hilbert spaces.

Definition B.1.5. Let A, B be quasi-Banach operator ideals.

a) The product B o A consisting of operators T' € L(E, I') which can be written in the
formT =Y X with X € A(F,G),Y € B(G, F) becomes a quasi-Banach operator ideal with
respect to || T | Bo A ||=inf{|| Y | B |||| X | A ||}, where the infimum is taken over all
possible factorizations.

b) The sum A+ B consisting of operators T' € L(E, F) which can be written in the form
T=X+Y with X € A(E,F),Y € B(E,F) becomes a quasi-Banach operator ideal with
respect to || T | A+ B ||=inf{|| X | A||+ || Y | B||}, where the infimum is taken over all

possible decompositions.

The following axiomatic approach to abstract traces on arbitrary operator ideals is due
to Pietsch [73].

Definition B.1.6. (Trace)
a) Let A be an operator ideal. A complex valued function 7 : |, A(E) — C is called
a trace on A if the following properties are satisfied:

(i) T is linear on each component A(FE),
(ii) Tla®@y) = (y,a) foralla € F', y € F,
(iii)  T(XT)=7(TX) foranyT € A(E,F), X € L(F,FE).

b) A trace T defined on a quasi-Banach operator ideal A is said to be continuous if the
function T — 7(T') is continuous on every component A(L).

c) A trace T is called spectral if it is given as the sum of the eigenvalues, i.e., T7(T) =
Yo, A1) for all T. Obviously an operator ideal admits at most one spectral trace, which
we will always denote by try.
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Lemma B.1.7. A trace 7 defined on a quasi-Banach operator ideal A is continuous if and
only if there exists a universal constant ¢ > 1 such that | 7(T) |< ¢ || T | A || for all
T € A(E) (and all Banach spaces E ).

In analogy to the concept of traces, determinants on operator ideals can be defined.

Definition B.1.8. (Determinant)
a) Let A be an operator ideal. A complex valued function § : | Jp A(E) — C is called
a determinant on A if the following properties are satisfied:

(i) S(IT+S)YT+T)=6T+S)5(I+T) for all S,T € A(E),
(ii) S(I+a®y)=1+(y,a) forallac E', y € F,
(i) §(Ip+ XT) = 8(Ip +TX) for any T € A(E,F), X € L(F, E),

(iv) For every T € A(E) (and every arbitrary Banach space I), 6(I + =2T') is an
entire function in z,

where I (or Iy to emphasize the underlying Banach space E) always denotes the identity
operator on F.

b) A determinant § defined on a quasi-Banach operator ideal A is said to be continuous
if the function T — 6(I +1T') is continuous on every component A(E).

¢) A determinant § is called spectral if it is given by §(I +T) = [I, (1 + Xi(T)) Jor
all T. Obviously an operator ideal admits at most one spectral determinant, which we will
always denote by dety.

Lemma B.1.9. The operator I + T is invertible if and only if §(I +T) # 0.

Lemma B.1.10. Let A be an operator ideal, T a trace, and § a determinant on A. Then,

for allT € A with rank(T) =1,
S1+T)=1+ 7(T).

Remark B.1.11. The concept of a trace/determinant is also used for operator ideals de-
fined on a subclass of Banach spaces.

B.2 Outline of results

The first aim of this section is to explain how, basing on the trace formula for finite rank
operators, the trace can be extended to (larger) quasi-Banach operator ideals. Afterwards,
the link between traces and determinants is discussed.

As the starting point, we consider the operator ideal F of finite rank operators. It is a
well-known fact that there is a unique trace tr on F which is given by

(1) tr(T) = Z<yz, a;) for an arbitrary (finite) representation 71" = Z a; @ yi,

and moreover, since the trace tr on the finite rank operators F is spectral,

N
(2) tr(T) = Z Ai(T)  (A(T) the eigenvalues of T').
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Each of those two possibilities to express the trace tr on the finite rank operators F leads
in a natural manner to an ansatz for the extension of the trace to (larger) quasi-Banach
operator ideals, namely, for operators

o0
(1) T with an infinite representation T = Z a; @ y;
=1

o0 o0
where Z | {yi, a;) |< Z | @; ||]] yi ||[< oo is assumend,

(2) T possessing absolutely summing eigenvalues, i.e. Z | A(T) |< o0

Unfortunately, neither of them goes through automatically and we therefore have to take
a closer look to both of them.

First we turn to the extension-procedure indicated by (2).

Let T € L(L) be a Riesz operator. Because all non-zero elements A # 0 of the spectrum
spec(T') of a Riesz operator are isolated eigenvalues with finite algebraic multiplicity, we may
assign an eigenvalue sequence (A;(7)); to every Riesz operator 1" € L(FE) by the following
rule:

Counting every eigenvalue according to its algebraic multiplicity, the eigenvalues
are arranged in order of non-increasing absolute values. In order to deal always
with an infinite sequence of eigenvalues, in the case that T possesses exactly N
eigenvalues, we define \;(T) =0 fori> N.

Definition B.2.1. Let 0 < p < co. By S;ig we denote the class S;ig = UE7FS;Z'Q(E,F)
consisting of the sets

S;Z'Q(E7 F)= {T € L(E,F)| ST is Riesz with p-summing eigenvalues VS € L(F, F) }

Remark B.2.2. '

a) The operator ideal F of finite rank operators is contained in the class Sp".

b) The class 8,0 satisfies the multiplicativity property L o8, o L C 8, (that is ideal
property (iii) in the Definition of an operator ideal).

The latter property is an immediate consequence of the principle of related operators

(cf. Pietsch [73]).

Proposition B.2.3. (Principle of related operators) The operators S € L(FE) and
T € L(F) are called related if there exist A € L(F,E), B € L(I, F) such that S = AB and
T = BA. Then S is a Riesz operator if and only if T is Riesz, and both operators have the
same non-zero eigenvalues with the same multiplicities.

Nevertheless, it is not true that S;ig is an operator ideal considered over the class of
all Banach spaces. More precisely, it can be shown that for all 0 < p < oo there exists a
Banach space E such that S;"(E, ) is no vector space.

In contrast, we mention that S," (H) is an operator ideal over the class of the separable
infinite-dimensional Hilbert spaces H. Indeed, for 0 < p < oo the class S, (H) coincides
with the Schatten ideal S,(H) of type [, (confer Pietsch [72] for those statements).

Considering quasi-Banach operator ideals A contained in S;ig, the p-norm of the eigen-

value sequence can be estimated.
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Proposition B.2.4. (Principle of boundedness) Let A be a quasi-Banach operator
ideal with A C 8p"?. Then there exists a universal constant ¢ > 1 such that

i 1
(Z | \i(T) |P )p <c||TVA|  foralT e A(E) and all Banach spaces E.
=1

If, in addition, we confine ourselves to the class Sfig, the following deep result was

obtained by White [100].

Proposition B.2.5. (Spectral trace) '
Let A be a quasi-Banach operator ideal such that A C 8. For arbitrary Banach spaces
E and every T € A(E) we define

tI’/\(T) = io: /\Z(T)

Then the function try is a continuous spectral trace on A.

In general the spectral trace try is not unique as an observation of Kalton [51] shows.
He has proved the existence of a quasi-Banach operator ideal A C 8" admitting different
continuous traces.

To guarantee the uniqueness of the trace try, we use the above result of White combined
with the trace extension theorem (cf. Pietsch [73]).

Proposition B.2.6. (Trace extension theorem)

Let A be a quasi-Banach operator ideal such that for all Banach spaces F and F the
components F (L, F) of finite rank operators are || - | A ||-dense in A(E, F). If there exists
a constant ¢ > 1 with

[tr(T) [<c||T|A]  forall T € F(E) and all Banach spaces I,

then A admits a unique continuous trace denoted by tr4.
The unique trace try : A(E) — C can be defined for all T € A(FE) by the || - | A ||-
continuous extension of tr : F (L) — C.

Remark B.2.7. Let us further mention (confer Pietsch [13]) that there exist quasi-Banach
operator ideals A, B C 8" such that A+ B ¢ 8;". Thus, if try denotes the spectral trace
on A and B, respectively, then by

T(A+4 B) =try(A) + try(B)  for all A € A(F) and B € B(FE)

we obtain a continuous trace on A + B which is not spectral.
In particular, the class 8; does not contain a quasi-Banach operator ideal containing
all other ideals in S;".

Next we turn to the approach to extensions of the trace motivated by (1).

To this end, we introduce the quasi-Banach operator ideal N, of r-nuclear operators in
the sense of Grothendieck.

Definition B.2.8. Let 0 < r < 1. An operator T' € L(F, F) is called r-nuclear if it admits
a so-called r-nuclear representation

o0 o0
T=Y a0y  withY el -lyl'<oc (u€EyeF).
=1 =1
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By N, we denote the class of all r-nuclear operators. N, becomes an r-Banach operator
ideal with respect to the quasi-norm

1IN =it { (S el w7 )} for T e N2, )
=1

where the infimum is taken over all possible representations.
If r =1, N, = Ny =: N is a Banach operator ideal and we simply speak of nuclear
operators in this situation.

Remark B.2.9. N, is the smallest r-Banach operator ideal.

Now, given T € N (F), F a Banach space, the natural idea to extend the trace tr on F
as indicated by (1) would be to define

o0

trar(T) = Z(yi,m} for T = Zai @y, (a; € E'y €F).

Unfortunately this expression depends on the underlying representation of the operator 7.
This was a long outstanding problem finally solved by Enflo [27] who constructed a Banach
space without approximation property.

A Banach space E has the approximation property (a.p.) if, given any precom-
pact subset M of E/ and any € > 0, there exists a finite rank operator L € F(F)
such that || z — Lz ||< € for all z € M.

Since the approximation property of a Banach space F is equivalent to the estimate
| trar(T) |[< || T | NV || for T € F(FE), by the trace extension theorem we observe

Proposition B.2.10. Considering the Banach operator ideal N restricted to the class of
Banach spaces with a.p., the expression try defines a unique continuous trace.

However, this trace may behave rather strangely. Since the ideal components A/ (1,,), 1 <
< o0, belong to 85" (1,) with the optimal eigenvalue type 1 = 1— | £ — zl? | (see Konig

p g
[52]), the following situations occur.

p = 2 (best eigenvalue type [1). By the spectral-trace theorem we obtain Lidskij’s well-
known spectral trace formula trp (T) = try(T) for T € N (l3) (see Reed/Simon [80]).
(As a remark, the Hilbert space components N (H), H a Hilbert space, are the well-
known trace classes of Schatten.)

p = 1 (worst eigenvalue type l3). By Enflo [27] there exists an operator S € N (ly) with
trar(S) = 1 and S% = 0. Because the nilpotent operator S does not possess any
eigenvalue Ao # 0, it is impossible to compute the trace trp(S) from the trivial
eigenvalue sequence (0,0,...). Thus, the trace try is not spectral.

We have noticed that even on the smallest Banach operator ideal A/ of nuclear operators
over the class of (all) Banach spaces a well defined trace try does not exist. From this point
of view, we now are interested in the smaller r-Banach operator ideals NV, (0 < r < 1).

1 1

Due to the fact that the r-Banach operator ideal N, belongs to Sqeig with % =<-9

we obtain N, C Sfig for 0 < r < %, and hence there exists the spectral trace try on N,.
Moreover, in this case it is known that

o0

tra, (T) = (i ai) for T=> a;i@y € N:(E)
=1

=1
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defines a trace on N, (E) over the class of (all) Banach spaces E. This trace turns out to
be unique, and, therefore it coincides with the spectral trace on N,.

Summarizing the previous discussion, we point out that the smallest Banach operator
ideal AV of nuclear operators considered over the class of all Banach spaces does not possess
a continuous trace. Even if we restrict the considerations to the class of Banach spaces
with approximation property, the obtained trace fails to be spectral. Therefore, searching
for spectral traces, we are necessarily led to the context of quasi-Banach operator ideals.

Let us now explain the connection of the concept of traces on quasi-Banach operator
ideals with that one of determinants. In general, the link between traces and determi-
nants is governed by the trace-determinant theorem (confer Grobler/Raubenheim/Eldik

[45], Pietsch [73]).

Proposition B.2.11. (Trace-determinant theorem). There exists a one-to-one corre-
spondence between continuous traces and continuous determinants on every quasi-Banach
operator ideal.

Furthermore, the following result concerning the differentiation of determinants holds.

Proposition B.2.12. Let A be a quasi-Banach operator ideal admitting a continuous de-
terminant §.

Suppose that the A(E)-valued function T'(z) is defined on a domain of the complex plane.
If T'(z) is complex-differentiable at a point zy with respect to the quasi-norm || - | A ||, then
the complex-valued function §(I + T (z)) is differentiable at zy as well.

In the particular case that I + T (zg) is invertible, the derivative is given by

O s+ 10o) = (0 + ) 20 0)) 6147 ()

y4

1
where T is the corresponding trace defined by T(9) := lim —(5([ +25) — 1) for S € A(E).

z—0 z

As counterparts to the trace formulae, at last we state some results about the extensions
of the determinant det on F.

On the Banach operator ideal A/ of nuclear operators restricted to the class of Banach
spaces with a.p. the unique determinant dets is described by

detar(I+T) = 14 an(T)
n=1

(Tigsai) o0 (T, a,)

with an(T):%i---idet

i1:1 inzl <$2n7 ai1> c <$2n7 a2n>

for T = Zaﬂ@xi e N(E).
=1
For the r-Banach operator ideal N, of r-nuclear operators over the class of all Banach
spaces (0 < r < 2) the above formula holds as well.

And again, on quasi-Banach operator ideals A C Sfig we obtain the spectral determinant

dety given by dety (I +T) =TT, (1 + X(T)).
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Appendix C

Supplement to the KP equation:
The case of commuting parameters

For the sake of comparability, in this appendix we provide the proof of Theorem 3.2.1 in
the particular case that the operator-valued parameters A, B commute. Proposition C.1.13
has already been stated in [18], Proposition 5.1, but without proof. We use the opportunity
to supplement this here.

However, note that in this simplified setting the proof can be obtained by an although
lengthy but completely straightforward calculation.

Proposition C.1.13. Let E be a Banach space and A, B € L(F) with [A, B] = 0.
Assume that L = L(z,y,t) € L(F) is an operator-valued function which solves the base
equations

Ly=(A+B)L, L,=—(A*-B)L, Li=-4A°+B%L.
Then, on Q = {(z,y,t) € R®| (I + L) is invertible}, a solution of the non-abelian KP (3.4),
(3.5) is given by

U = 2V,
W= 2V,

where the operator-valued function V.=V (x,y,t) € L(F) is defined by

V=(I+L)""(AL+ LB).

Note that in the case of commuting parameter operators A, B, we also lose the freedom to
choose the underlying Banach spaces independently.

Proof First recall that, by Lemma 3.2.2, it suffices to show that the operator-valued
function V = (I + L)7'(AL + LB) solves the integrated version (3.13) of the non-abelian
KP equation.

Next we introduce the abbreviations

G= A+ B, b=1(A2-BY), c=—4(A%+ BY).

[a%

Note that ¢ actually is a function of a, b,

c = —(a* + 3a%?) /a. (C.1)
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With these abbrviations, the base equations simply read
Ly =al, L,="bL, Ly=cL.

Setting M = (AL + LB), it is clear that M satisfies the same base equations as L.
Next we state two simple auxiliary identities, where we use Lemma 1.2.4 and the base
equations for the second, namely

I+L)'L = (I+L)"UI+L)-1)=I-(I+L)"" =LU+L)",
(T+0)7Y), = -(I+L) ' L(+1)"
= —(I+D) tar(+10)"
= —(I+LD)7a(I-(I+L)7").
With X = (I + L)1, these auxiliary identities read
XL = I-X = LX,
X, = —Xa+ XaX,
and analogously X, = —Xb+4+ X0X, X; = —Xc+ XcX.

After these preliminarities, we start with the calculation of the derivatives of V = X M.
By the usual product rule, the base equations for M, and (C.3), we get

Ve, = XoM+ XM,

(—Xa+ XaX)M+ XaM
XaXM

= XaV

—_—~
aQ O
W N
o~

and
Vee = XpaV 4+ XaV,
(-Xa+ XaX)aV + (Xa)*V
~Xa*V +2(Xa)?V.
Analogously V,, = XbV, V,, = —Xb?V 4 2(Xb)?V and V; = XcV. Finally we have to
differentiate V., once more with respect to x. Since
(Xa)?V)_ = X,aXaV + XaXpaV + (Xa)*V,
= (—Xa+ XaX)aXaV + Xa(—Xa+ XaX)aV + (Xa)’V
= —Xd*’XaV - XaXa*V +3(Xa)*V

and
(Xa®V), = X,a®V + Xa?V,
= (—Xa+ XaX)a*V + Xa*XaV
—Xa’V + XaXa®V + Xa’XaV,

we obtain
Vize = Xa®V = 3XaXa*V - 3Xa*XaV + 6(Xa)’V.

To keep calculations as clear as possible, from now on we use the parameters A, B and a, b,
¢ simultaneously. The following identity is the tool to control the nonlinear terms in (3.13).
By the definitions of V', M, and (C.2),
VX = X(AL+LB)X
= XALX)+ (XL)BX
= XA+ BX - XaX. (C.4)
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It immediately yields

V: = XaVXaV
= Xa(XA+ BX — XaX)aV
= XaXaAV + XaBXaV — (Xa)’V.

Therefore,

Vit 6(Va)® + Viww
= X(c+d*)V +3XaX(2¢A— a*)V +3X(2aB — a*)XaV
= X(c+a’)V +3(XaX(ab) — X (ab)Xa)V,

— —

where we have used

(24—a)a = (24— (A+B))(A+B) = A* - B? = ab,
(2B—-a)a = (2B—(A+B))(A+B) = —(A*> - B*) = —ab.

~—

As a consequence,

(Vi4+6(Ve)® + Vaua),
= X, (c+a®)V+ X(c+a)V,
+3(X,aX (ad)V + XaX, (ad)V + XaX (ab)V,)
—-3(Xz(ab)XaV + X (ab) X aV + X (ab) X aV,)
= (-Xa+ XaX)(c+d®)V + X(c+a*)XaV
+3(( ~ Xa+ XaX)aX (ab) + Xa( - Xa+ XaX)(ab) + XaX(ab)Xa)V

—3(( — Xa+ XaX)(ab)Xa+ X (ab)(— Xa+ XaX)a+ X(ab)XaXa)V

= —X(c+a®)aV + XaX(c+a®)V+ X(c+a®)XaV
—3Xa*’X (ab)V — 3XaXa(ab)V + 6XaXaX (ab)V +3XaX (ab) XaV
+3Xa(ab)XaV +3X (ab)Xa®V — 3XaX (ab)XaV — 6X (ab)XaXaV
= —X(c+d)aV
+XaX(c+ a® — 3a(ab))V 4+ X (c + a® + 3a(ab)) XaV
+3(X (ab) X a® — Xa*X (ab))V
+6((Xa)2(X(ab)) - (X(ab))(xa)2) V.

Using (C.1) and ™ (ab) + a = (A + B)~} (A% — B?) + (A + B) = 24 or, with the other
sign, a7 ! (ab) — a = (A+ B)"H(A% - B%) — (A + B) = —2B, we infer

(c+a*)a = —3(ab)?
c+a’+3a(ab) = —3(ab)(a"'(ab)—a) = 6(ab)B,
c+a’—3a(ab) = —3(ab)(a(ab)+a) = —6(ab)A

Inserting these yields
(Vi46(Ve)® + Vaue), = 3X(ab)?V
+6( X (ab) BXa — XaX (ab)A)V +3(X (ab) Xo® = X a2 X (ab))V

+6((Xa)2(X(ab)) - (X(ab))(xa)2)v.
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By (C.4) we get for the remaining nonlinear term

Vo, V,] = XaV XbV — XbV XaV
= Xa(XA+ BX - XaX)bV — Xb(X A+ BX — XaX)aV

= (XaXbA— X0BXa)V + (XaBXb— XbX Aa)V
+(Xb(Xa)? = (Xa)?X)V,
and thus
(Vi 4 6(Ve)® + Vaue) , + 6a[Ve, V] =
= 3X(ab)’V +3(X(ab)Xa® — Xa*X (ab))V
+6(XaBX (ab) — X (ab) X Aa)V
_ ( ~ 302V, + 6(X(ab))2V) +3(X (ab) X a2 — Xa2X (ab))V
+6(XaBX (ab) — X (ab) X Aa)V
= =30’V +6X (ab)X (ab)V
+3(X (ab) X (? — 204) = X (a? - 2aB) X (ab) )V
= —3042Vyy
+3 (X(ab)X(a2 —2aA + (ab)) — X (a* - 2aB — (ab))X(ab))V.

To see that the term in the brackets vanishes, we just have to use ab 4+ a* = 2aA,
ab — a? = —2aB once again. This completes the proof. O
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