382

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 37, NO. 2, APRIL 19

LINEAR UNIPOLAR PULSE SHAPING NETWORKS
CURRENT TECHNOLOGY

E. Fairstein*

Abstract -

Current usagc of hnear pulse-shaping filters is reviewed.

It is shown that pulse amplifiers with different shaping . n

networks are-best compared for spectral ‘resolution -and
count-rate capability at a shaped-pulse width measured at a
specific fraction of peak helght preferably 50% (ty /2):
With this normalization, it is shown that the best tradeoff
between noise and resolving time is obtained with the
quasvtnangular waveform, the worst with the cusp.

Noise, resolving time, and ballistic deficit' are compared
throtigh graphs and tables for the cusp, true Gaussian, true
triangle, CR- (RC)" sine”, and quasi-triangular shapcs for
normalizations at {p, tj/;, and {g;. Rules are given for
estlmatmg the effect of pulse shape on noise performance.

A. List of § ymbols~

Specialized symbols used frequently in this report are
listed below; standard symbols for electrical and physwal
quantities are not. Unless othetwise specified, units are in
kelvins, ampéres, coulombs, farads, ohms, seconds, and
volts. Squared quantmes enclosed in carets, such as (§‘2>
refer to moise signals in mean-squared uhits (variance).
Unsquared. quantities, such as ({), denote root-meat-
squared values. Subscripts i, p, and f used in connection
with noise symbols denote impulse (delta), step, and flicker
(1/f) noise respectively.

a Parameter for changing the width of a pulse.
See x. ‘
b Parameter for translating a pulse along the

time axis. See x.

Ballistic deficit.

Noise-equivalent input capacitance of a pream-
plifier (‘cold’ input capacitance).

BD
(€

CR High-pass filter (differentiator).
€ Electronic charge, 1.602 x 10-19 C.
F(t) Function of time. Also, network transfer func-

tion in the time domain,

F(t,) Peak amplitude of a pulse, also F(x,).

F(x) Function of x. Also, time-normalized network
transfer function, See x.

F(x,) See F(t,). The quantities are numerically iden-
tical.

Gy Transconductance.

G(w) Network transfer function in the frequency do-
main,

LE Leading edge of a pulse.

LE, Point in time measured on the leading cdge of

a pulse at the fraction y of its peak height.

*c/o Tennelec, Box 2500, Oak Ridge. 'I'N 37831

nis Mean square.
Number of  low-pass scctlons in" a fﬂter ne
work, as in CR-(RC)".

NSR Noise to signal ratio.

ppk Parts per thousand. '
Rp . Noise-equivalent parallel (shunt) tesnstance
Ry Noise-equivalent series resistance. -

RC Low-pass filter section (mtegtator)

rms Root mean square.

SNR Signal to noise ratio.

T Duration of the rising portion of a ramp th
* terminates in a unit-height signal. Al
" charge collection time in a detector.

T Temperature.
TE Tralhng edge of a pulse.
TE, Point in time measured on the trallmg edge

‘a pulse at the fraction y of its peak height.
Peaking time (the tinie interval between LE
and the peak of a pulse. See LEy). v
lw : Width of a rectangular pulse equal in amplitu

and area to the one under consideration;

ty Width of a pulse measured at the fraction y
of its peak height.

T Time constant (in seconds unless otherwi
specified).

X at + b, pulse shape altered in width by the pa
ameter a and translated along the time &
by the parameter b.

y Fraction of peak height at which a time mark

established.
Numerical portion of mcan-squarcd 1ol
index (¢2). Values appear in Table 2
Mean-squared noise index as determmed t
the shaping network, less factor due to nol
" generator.

(€2)
(¢2)

B. Introduction

The purpose of this report is to explore the concept
pulse-width normalization and its application to the m¢
urement and computation of spectral resolution, amplif
noise, resolving time, and ballistic deficit. In the proc
the preceding items will be reviewed, showing how !
concept of normalization may lead to new perspectives.

C. Spectrometer Tests

Usually, it is assumed that amplifiers with dlllcrf
lincar pulse shaping networks exhibit easily- dlstmguxsha
performance differences. This seems to be borne out!
lhc information displayed in Fig. 1, which is a set of cur
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of spectral resolution vs the ‘Shaping Time’ indications on
the [ront panels of several commercially available ampli-
fiers. Three different shaping networks are represented.
The tests were made at 2 and 62 kilocounts per sec
(kCPS). The resolution is essentially the same for all of
the amplifiers, but the minima at each of the two counting
qates occur at different dial settings. Two conclusions may
pe drawn: if only one measurement were made
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true Gaussian is not realizable either, but represents the
asymptotic limit of quasi-Gaussian waveforms. The true
triangle is realizable, but not in a cost-effective way. Its
shape is the asymptotic limit of a quasi-triangular wave-
form. Of the realizable waveforms the quasi-triangular
and sine” are the current choices among manufacturers of
amplifiers.

T
q

o SINE*
o SINE®
& QUASI-TRIANGULAR

at, say, 3us or 6us, at least one of the units in the 8 [
group would suffer from a resolution compari- N
son, o, if the minima were sought for all of the i
amplifiers, the user still might conclude that one 3
with a minimum at a lower dial setting would 3 “f
yield superior count-rate performance. Neither :' [
conclusion would be justified. ' z M
In Fig. 2, the same curves arc shown, but this * [
time plotted against ¢, (width of the shaped 2|
pulse at 50% of its peak height*). Clearly, at the
minima of the 2 KCPS curves, all of the ampli- 855

fiers now show equivalent performance. The

same is true at the 62 kCPS minima, but at the

ends of the curves, the departures that do appear are
genuinely attributable to the differences of the various
shaping networks and to other aspects of amplifier design.

Fig. 2 illustrates what can be described as ‘pulse-width
normalization’, a process in which pulse shapes having
different mathematical descriptions are compared in width
at a fraction y of their peak heights. This normalization
simplifies the performance comparisons referred to earlier.
Several other normalizations are possible (Figs. 3 and 4).
Before they are investigated, shaping networks of current
interest will be examined.

In the descriptions to follow it is often awkward to dis-
tinguish the pulse shape from the network that produces it,
and no particular effort will be made to do so. The rcader
should understand that referring to one implies the other.

D. Shaping-Network Configurations, General Consider-
ations

Equivalent terms for a shaping network are noise filter,
pulse shaper, filter network, or just filter.

What counts for performance is the shape that is gener-
ated as viewed on an oscilloscope, not the filter configura-
tion or its mathematical description per se.

Six pulse shapes are studied here, and where appropriate,
the networks that generate them: the cusp, true Gaussian,
true triangle, quasi-triangle, CR-(RC)" and sine”.

The cusp is not physically realizable, but represents an
upper limit to the attainable SNR in linear filters [2]. The

*What prompted the study reported here is a remark made several
years ago by G. L. Miller (at a meeting of the IEEE Nuclear Instru-
ments and Detectors Committee) that the SNR obtained with various
shaping networks depended more on the width of the shaped puise than
on any other parameter. At that meeting. we were working on an update
of the standard for amplifier testing, IEEE Std 301. It was particularly
appropriate to pursue the suggestion. In the updated standard [1]. ty;
was adopted as the descriptor of shaped pulse width and was given the
hame *Shaping Index™ to which the term refers exclusively.

PANEL MARKING (usec)

Fig. 1. Energy resolution tests of three different shaping networks and
three different amplifiers. (Two of the amplifiers were so nearly alike
that the data from only one is displayed.) The 1.33 MeV -y-ray from
80Co and a high-purity germanium detector produced the signals. The
shaping times were those indicated by the dials on the front panels.
Results are shown for 2 and 62 kCPS.
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Fig. 2. Same as Fig. 1. but the Shaping Index t,,, is used instead of the
amplifiers’ dial markings for the shaping-time axis. The Shaping Index is
the measured pulse width at 50% of peak height.
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Fig. 3. Same as preceding figures. but with peaking time t; as the scaie
for the shaping-time axis. The peaking time is measured from 1% of
peak height on the leading edge of the pulse to the center of the peak.
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Fig. 4. Same as preceding figures, but with tor (width at 1% of peak
height) as the scale for the shaping-time axis. This figure includes a
scale for the duty factor, which is defined here as the ratio of shaped-
pulse width (at the 1% level) to the mean spacing between events in the
detector. The duty factor can exceed 1.0 because with randomly-arriving
events, shaped pulses can overlap. The clear regions between those
groups of overlapped pulses average to the reciprocal of the duty factor.

The symbol usually used in cquations that describe pulse
shapes is t/r, where t is a network time constant. For
simplicity in this section of the report, unit 7 is assumed.

The following three ‘ideal’ pulse shapes are characterized
by the equations accompanying them. In each case, the
peak amplitude is of unit height and occurs at ¢ = 0. The
parenthetical letter following the name of the waveform
identifies it in the graphical presentations,

Cusp (C) F(t) = ¢-lt] )

True Gaussian (G)  F(t) = exp(-2) (2)

True Triangle (&)  F(t.) = 1+, -1<t<0 3)
Ft) = (1 - 1), 0<t<1

The next three filters are the realizable ones,

CR-(RC)" (E) F(t) = [¢/nl)et 4

This filter contains one high-pass section followed by n
low-pass sections, all with the same fime constant. The
configuration is known as a quasi-Gaussian filter because
the response to a step input approximates that of the Gauss
error curve exp(-12/202), or exp(-12) if 202 = 1. The name
is not as fitting as it could be because Eq. 4 is that of a
Poisson distribution. (If the connection between the wave-
form and the distribution is other than accidental, the
reason is not obvious to this writer.)

The CR-(RO)™ filter is not used in modern amplifiers
because better perfomance can be obtained with the same
number of filter sections but with dissimilar time constants.
However, because of its mathematical simplicity, the more
primitive network is of interest for modelling. In a varia-
tion not addressed here but used in some amplifiers, the
integrators contain complex poles, all with the same time
constant. The performance is intermediate between that of

interval between the start of (he generator signal and thé,}

the CR-(RC)" and sine” networks.

Sinen (S) F(t) = K, -3 sinn¢

The sine” network [3] was so named because of
preceding descriptive equation. The constant K is a Iy
that depends on the circuit configuration. The wavefor
that of a highly damped sine wave raised to the nth poy
where 7 is the number of low-pass sections containeq
the network., The damping is so great that only the f;
half cycle is significant, with the next one down in anjp
tude by a factor of ~10 4, If 1 is even, all successive },
cycles (satellite pulses) have the same polarity as the fj,
Mathematically, the network exhibits a real pole at ¢ f
and 7 complex pole pairs at *2jt, *4jt, +6jt ... on aly
passing through ¢ = -3, ‘

B

Quasi-triangular (QT)

F(1) = ¢34(7.64 sin? + 2.53 sin% + 37.74 sinbr) N

i

The waveform [4], despite its rounded top, is so n@&ied
because of the association of its straight sides with those ¢
a triangle. The shape is obtained by summing fractions o
the outputs from the several integrators that comprise
basic network, which can be CR-(RC)N, sine”, or othe
With this summing, the signals from the earlier integraty
sections reduce the inherent delay in the start-up of th
output pulse without causing much change in the position,
of the peak or in the already nearly-linear trailing edg.
This filling-out of the lower part of the leading edg
produces the nearly straight-line rise and improves e
overall symmetry,

In this report the originating network for the QT filteris
the sine® network. The response to a step-function input s
given by Eq. 6. With the multipliers shown, ¢, (defined it
Fig. 5) = 1.014437 and F(1,) = 1.00010. Within rathe
narrow limits, the ratios of the constants are subject to the
discretion of the circuit designer. The constants choset
here were determined largely by trial and error to optimiz
the SNR and the linearity of the leading edge while simuk
tancously producing values for to and F(t,) near unity.

E. Waveform Terminology

The shape of the wavelorm as displayed on an oscillr
scope is shown in Fig, 5. The parameters defined in the
figure, and others that can be inferred from it—tq 1, foob
cte.—are used throughout this report. The symbol x mz'i)’
be substituted for ¢ if the waveform has been altered ¥
width or translated along the time axis. )

In the figure, the pulse occupies exactly five major div
isions vertically. To accurately measure ¢, the oscill” §
scope sensitivity should be increased x10. This causes fhe
skirts of the pulse to move upscale as shown by the lit?
segments so labelled, The corresponding scale is shown !
the left of the main one. The symbol t, refers to the tit¥ ;
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Fig. 5. Oscilloscope display of a typical shaped pulse that is vertically
centered on the the CRT graticule to aid in the measurement of key
parameters. The oscilloscope and amplifier must be dc coupled.

peak of the pulse under observation. Note that t,, the
mathematical peaking time, is different from ¢, which is
measured from the 1% level on the leading edge.

F. Time-Normalized Pulse Shapes

In the usual way of presenting pulse shapes, the abscissa
is in units of at, where @ = 1, while the ordinate is in units
of amplitude normalized to unit peak height. Such a pre-
sentation is shown in Fig, 6 for the CR-(RC)" and sine”
networks. The sine” family is contained between the S2
and S16 waveforms. They crowd together because of the
single real pole mentioned earlier. The multiple real poles
of the CR-(RC)" waveforms cause them to spread along
the time scale; ¢, (not 1p) is numerically equal to 7. In the
format shown here, noise performance, ballistic deficit, and
resolving time can be determined for any one of the wave-
forms, but it is not at all clear how to compare them for
peformance.

In Figs. 7, 8, and 9, the normalizations are to unit ¢y,
tija, or tgy, with the waveforms shifted along the time

axis so that all pass through the chosen normalization points.

E1 S16-SINE™ n
521—l [Ez E'2’CR-(RC) ~El8 E12
1.0 !

0.5

PULSE HEIGHT

8
TIME

Fig. 6. Sinem (S and quasi-Gaussian (E) waveforms normalized to unit
amplitude, but not o units of time. The numerals refer to the number
Of integrating sections 1n the networks giving rise to the waveforms.
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Presented this way it is relatively easy to compare chosen
characteristics:

In the ¢, normalization resolving times and asymmetry at
the 1% level are accentuated (asymmetry is detrimental to
impulse-noise performance).

In the ¢ g; normalization the resolving time is fixed, caus-
ing the indication of asymmetry to appear as peak shift
along the time axis.

PULSE HEIGHT

-1 0 1 2 4 6

foetp— TIME
Fig. 7. Pulse shapes normalized to t, = 1 and with F(t;) centered on
t = 0. Symbol G refers to true Gaussian.

Fig. 8. Same as Fig. 7. but normalized to t;, = 1. The triangle (A) was
added to the ensemble.

E4
a, G, CUSP
I

I/:'-‘
|

Fig. 9. Same as Fig, 7. but normal-
ized to ;. The 1% point on the
leading edge is taken as t = 0.

PULSE HEIGHT
[
«

[¢] 0.5 1
]
toy=1—

In the 1,2 normalization, differences between curves are
minimized, resulting in nearly constant step noise for the
different curves, as will be shown later. Also, the curva-
tures at the tops of the waveforms are minimized, resulting
in nearly constant ballistic deficit (BD).

In Fig. 10 all of the waveforms are combined in a semi-

L——-—-—-—
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Fig. 10. Pulse shapes normalized to t,,, and plotted to a semilog scale.

log plot normalized to t/;, giving both a panoramic view
of resolving time (down to 0.01% of peak height) and of
the degree of symmetry for the various pulse shapes. In
this plot, the second-order artifacts of the sine” waveforms
appear in the lower right-hand corner, illustrating the
earlier statement about the amplitude and polarity of the
satellites. Also, the poor resolving time of the cusp—which
has straight lines for leading and trailing edges in a semi-
log plot—is made clearly visible.

To determine the scale factor ¢ and the translation para-
meter b for each of the normalized waveforms, the times
of the leading- and trailing-edges (LE and TE) at the
normalization level y must be determined for each of the
originating waveforms: those for which ¢ = 1 and b = 0.
Except for the cusp, true triangle, and true Gaussian, there
are no explicit formulas for doing this; they must be found
by solving the equation [F(¢)/F(t,)] - y = 0 by a numerical
root-finding process, where F(t)/F(t,) is the waveform
normalized to unit amplitude and y is the desired fractional
amplitude level: 0.5, 0.01, etc. Then:

a=TE-LE 0

If the waveforms are to be centered at t = 0, as they are
in Fig. 10, then:

b'=05(TE + LE)

The terms TE, LE, and a are given in Table 2 along W
other information. Parameter b can be computed
needed using Eq. 8. :

The study now moves on to the possible normalizatiQ
factors and how they affect other parameters of interest

G. Choice of Normalization Factor based on Wavefor!
Measurement :

Although different normalizations may be desirable {0
cmphasize particular features of a filter network, a singl
standard is preferred, both for simplicity and for the practt
cal need of labelling the shaping-time dial on an amplifi¢
—the units should be recognizable by all users of th
equipment. In choosing a standard, four criteria come t
mind: (1) ease and accuracy of measurement, (2) how ty,
relates to. noise filtering, (3) to resolving time, and (4) to.
ballistic deficit. Among the possible choices for a standard,“
are ty, tp, t1j2, tog, to1, and Loy . :

o
. eq

for
th

it
- he

H. Choice of ty Based on Ease of Measurement ?

Width at . To obtain this parameter [5], the arca of the




.

»’ith
as

ton

i

he

"'ulse must be determined, either by computing it from the
iquation that describes it or by ‘measuring it from an oscil-
loscope display. Both methods are cumbersome. As for

3'3‘

tfhe usefulness of ¢, it can be shown that it does not bear a’ .

\glmple relationship fo noise or to- ‘ballistic deficit, nor is it
(helpful for its historical purpose of computing baseline shift
s counting rate in an amplifier containing a baseline re-
ﬂgtorcr (BLR), a subsystem [6], [7] that is part of all modern
épectrometer-grade amplifiers. In short, ty, is neither easily
“measured nor useful, and will rccerve no further attentmn
éhcre. ‘

V" Peaking Time (tp). This parameter has two drawbacks
xregardmg measurcmentfaccuracy ‘the’instant of the peak'is
gpoorly defined- because it occurs where the slope of the
“waveform 1is zero, and ‘to determme the 1% point on the
Jeading edge, the extra’ stcp of i mcrcasmg the osc1lloscopc
sensitivity is necessary (see’ Fxg 5)."

" Shaping Tndex (fl/')) “'Of' the possible normalizations
consldered here, this one can be: measured with the fewést

‘number of steps and with the greatest accuracy: no change

»Hxh oscilloscope sensitivity is necessary after the original cal-

‘ibratlon (see Fig. 5), and the: ineasuring pomts fall where
'lhe slopé of the waveform i$ high. :
: Width at the 1% Level (tgy). This parameter has thc
‘merit of approximating the amplifier resolving time, but.if
that’s the critetion, why tg;? Why not tg 1, or too1? The
answer lies with the operating charactetistics of the BLR.

A BLR is a circuit that 1mmed1ate[y aftér a pulse restores

the baseline to where it was just prior to it. The effective
resolving time is fixed by the BLR: when it loses control at
high counting rates, the spectral resoltion rapidly worsens,
particularly at FW.1M. The BLR retains control as long as
it can reset in the gaps between pulses or between groups
of overlapping pulses. However, as the counting rate
increases, a point is reached where the gaps are no longer
frequent enough or long enough for resetting to occur.
This condition contributes to the loss in resolution at the
longer shaping times in the 62 kc/s curves of Figs. 2-4.

The BLR is most effective when its operating threshold is
just above the peak noise. If the threshold is set at three
times the rms noise level, only 0.1% of the noise pulses
will exceed it, but because of possible drift, it is safer to sct
it at ~six times. It is necessary to know what that level is,
expressed as a fraction of the peak pulse height:

Suppose that a spectrometer is set up to measure 1-Mev
Y-rays with a germanium detector, that the component of
FWHM due to noise is 1 keV (0.001 MeV), that the ampli-
fier has a dynamic range of 10V, and that the gain is set to
produce 7V pulses. It follows that the threshold will be at
[(7V/10V) x (0.001 MeV)/(1 MeV) x 6/2.35] = 0.18% of
Tated maximum output (the factors 6 and 2.35 refer to the
BLR threshold and the conversion constant of rms to
FWHM) Based on that, the choice of ¢ | is inappropriate,
but it is reasonable to choose either tooy or tg;. However,
Lop1 is subject to large measurement error, and even (g, is
Vulnerable, as shown by the varying recovery times of the
Waveforms in Fig. 11, which were obtained with several
Combinations of BLR and P/Z (pole/zero) adjustments in

and P/Z conttols.
“relative sensrtmty setting of xi. The vertically-expanded set is at x10
“sénsitivity.' The conditions are indicated by a combination of lettérs and
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a modern amplifier set at its longest shaping time. In the
figure, the BLR secttings are those which might normally be:
used, but the P/Z settings are misadjustments that- easily
could occur in practice. The point is that by deliberate or
accidental misadjustment of amplifier controls, the pulse
width at the 1% level is poorly defined, whereas thosc
same (rnis)adjustments do not noticeably affect the pulse
width at the 50% level.

N B
=+

i /x’f ! R 2B [1A | 2A
. I ) \/\/ //
I .X_, " \ - - -
[tous - 1Bor3A 3B

Flv 11. ; Pulse recovery to the 1% level-with several settings of the BLR
The waveform occupying 5 major divisions is at.a

numbers. : Letters: (A) BLR OUT: :(B) BLR IN; high count-rate setting.
Numbers:- (1) P/Z correctly set; (2) P/Z 0.5% overcompensated: (3)
P/Z 0.5% undercompensated.

Recapitulation. Of the likely pulse width normalizations,
only tp, t; /2, and tg; merit serious consideration. Of the
three, ty/3 is the easrest to measure and with least
ambiguity.

1. Ballistic Deficit

Ballistic deficit is the loss in pulse height that occurs at
the output of a shaping network when a step-function driv-
ing signal has greater than zero risetime. The loss is ac-
companied by a delay in the peaking time. The delay can
be used as a measure of the BD in the implementation of
compensating schemes.

The rising portion of the driving signal can have vatious
shapes, but in this report, it is assumed to be a linear ramp
of duration T, causing a delay in the shaped-pulse peaking
time t, of #T /2. The shifted peak will appear at time tp,.
If the pulse is normalized by the factor a, then f, becomes
X, = aty, and ty, becomes xp, = at,,.

In a spectrometer the detector constitutes the signal
source; T is the charge collection time. With shaping net-
works that have a continuous derivative at the peak, the
loss of pulse height that occurs is proportional to T2, which
varies randomly from pulse to pulse. The loss in amplitude
is not important, but the variation is, because it causes
spectral-line broadening. The effect in the CR-(RC)! net-
work was investigated by Gillespie [5], then by Baldinger
and Franzen [8]. The study was extended to the CR-(RC)"
network and to one with complex poles by Loo, Goulding,
and Gao [9]. A method of compensating the effect was
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described by Goulding and Landis [10].

J. Choice of Normalization based on Ballistic Deficit Con-
siderations

Loo, Goulding, and Gao (LGG) showed that if the width
of a shaped pulse is measured at the 90% level; the BD can
be determined for an nth-order quasi-Gaussian network
from a table published in their paper. If the pulse widths
are normalized instead to tgg, the determination can be
simplified. As can be seen from Row Y in Table 2, the BD
is virtually invariant with pulse shape for that condition,
confirming LGG?s finding, but also adding to the argument
in favor of normalization. However, to.9 is not.as easily
measured on an oscilloscope as 1 /2 . :

With ¢, 5 as the normalization, the dependence of BD on
network complexity is'shown in Fig. 11 and in Row DD of
Table 2. Examination of Rows V, DD, and II in Table 2

shows that among tp, t12, and t 1, ¢, is thie best choice.

With the CR-(RC)" network the BD diminishes mono-
“tonically as » increases, but with the sine? network, a

minimum occurs at n = 4. This configuration exhibits the
lowest BD (by 11%) of any of the networks, including the
true Gaussian and quasi-triangle. It appears that the
variation is. small enough to make BD a poor criterion for
choosing one linear network configuration over another.

In every instance the peak shift is very nearly 50% of the
ramp time 7 (Row EE in Table 2); for pulses with perfect
symmetry, the shift is exactly 50%. Not surprisingly the
cusp and true triangle, which have discontinuous deriva-
tives at their peaks, exhibit very high BD's, with the cusp
being the worst. Also, the BD for such pulses varies lin-
early as T/t'y rather than as the square.

The figures in Table 2 are based on a charge-collection
time of T = 0.1.time units (10% of ty) when the rate of
rise is constant. The rationale for the choice is as follows:

In the larger germanium detectors, collection times of
0.25us are not unusual [11], During a pulse, the rate of
rise can vary ~x2 from start to finish, depending upon
where in the detector the ionization occurs. Although T
may be as large as 0.25us, the variation is unlikely to be
much greater than 0.1us, hence the choice of 0.1,

K. Computations of Ballistic Deficit for 1= 1

In this section the carlier work [5], [8]- [10] is extended to
the networks covered in this report.

Straightforward circuit analysis using Laplace transforms
or convolution [9], [12] gives exact values for BD. For a
network of order n, both methods give rise Lo two series of
n terms each, one in F(t) and the other in F(t - T). The
BD is the difference between the two summations, Sepa-
rately, they do not vary much with n, but the difference
diminishes as the BD decreases, leading to large errors in
those differences.  Also, unless the precise value of the
peaking time of the delayed pulse is used in the computa-
tion, the error is compounded. With pocket calculators, the
method falls apart in the vicinity of BD = 0.1%. However,

below 1%, the BD is closely proportional to 72, pefmiggg
accurate extrapolation. Regardless of attainable precisig
lengthy computation is required. .

A much simpler method due (o Baldinger and Franzg
[8] has fewer terms, and small differences between larg
numbers do not occur. The method depends on a Taylor
series expansion about the peaking time of the pulse befor,
it is shifted by BD, which in itself is a major simplificatjoy
because it avoids the need fo determine accurately
location of the shifted peak. The series converges rapigly:
using only the first term, the resulting error is high by
~1% for a BD of 1%, or by =10% for a BD of 10% (109
becomes 11%). Adding a second term reduces the ergo}
by the square (1% becomes 0.01%), usually overshooting
on the low side. A BD of 10% probably cxceeds thc,g’?}}h
rection capability of any practical compensating schen;p,
making it unnecessary to consider greater BD’s or ,the
more difficult method of computation discussed earlier,
Nevertheless, both methods are covered here for compar.
1son. . ‘ ok
The Baldinger-Franzen approximation, with the origing|
second-term factor 1.1 changed to.0.9, is shown in Eq. (9),
(The factor 0.9, arrived at empirically, gives higher acqpf-,
racy than the original.) ‘ k

a

M2 (1 - 0.9M2) ‘ (9

BD = )
aT)? F(t i
where M2 = (@l o) ,
24 F(t,)
F"(t,) = second derivative of F(t) att = to, ‘
F(to) = F(t)att =1t,.
In Table 1, the following quantities arc listed: the cur-

vature F"(t,)/F(t,), the peak position of the undisturbc_ﬂ:
pulse, and the peak position shifted by BD. Also given aré
the values of a for which n = 6 and {1, = 1 in the
CR-(RC)" and Sine” functions, and a for t1/2 = 1forthe
remaining functions (2 does not apply). Additional for-’
mulas are given under the pertinent network headings, and -
numerical examples for a ramp time of T = 0.7t /, are giv-

Table 1

Curvature and peak position for the CR-(RC)" (E). Sine™ (S). Quast
Triangular (Q-T). and True-Gaussian (G) networks, normalized 10
fyy2 = land n = 6. The curvature is proportional to Fr(t,)/F(t,). The
term xp, is the position of the time-normalized peak, shifted by BD from
its original position at X, Note that initial peak height F(x,) = F(t,)

Net-| F'(t;) a for ty,5 = 1,
work| F(tg) X, X n =6 (for E & 5)
E| 1i/n n/a T(1 - e"al/nm, 5. 8052
8 | tan 1(n/3) sinaT
Siot—-| ———— | tan'l —— | g gut?
n a (cosaT) - e dal/n
/‘
Q-T)-5.5023] 1.014437/a | No explicit expression 1.038°
.
G| -2 0 /2 1.6651

i
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en. This T ‘causes a-BD of =~10%. in- pulses having con-.

finuous derivativés at their peaks.

i'In Table 2, T = 0.1 causes BD’s of ~0.25%. Based ona

72 relationship, the BD for T = 0.7 should be 0:25% x(7)?
= 12.25%, but as can be seen, the actual BD is somewhat

jower. For the cusp, the BD at T = 0.1 is'~3, 4%: At T =

0.7, the: ‘BD should be34x7 =
relat!on hlp, the actual BD is zZO%

where 1/F(xo) n'e”/n" the mverse of the peak helght
# , D, The 0

-10.34%
1147% (Baldmger Franzen)
"210.28% (Baldmger Franzen)

Exact BD
1st-Order Approx
2nd-Order Approx. |

X = 10336
Xy = 14227
= 0.3891 = 0.5564T

xln = xo

Sine™ Network. The exact formula for the BD is given in
Eq. 11. As in the case of the CR-(RC)" network, the

_ generic form of Eq. 10 also applies here.

nlexp(-3xy) 1 [3sinkxp, - ksin(k - Dxy, cos xy) - € 33T F(xy, - aT)

24% based on a linear.

- must be:determined from F'(¢) =
. numerical’ root-fmdmg procedure. The exact equatlon for

X, = 13059
Xy = 1.6733
Ap-Xo = 03674 = 0.5254T

The sine® network exhibits a slightly lower BD than the
CR-(RC)(" filter.

Quasz Tnangular Network. The exact formula for the BD
of ithe quasi-triangular. network is more comphcated than
the precedmg ones because the waveform is the. sum of
three terms in sme'l - Furthermore, there are no closed-
form. equations: for the peak heights of the. pulses—they
0 or F'(x) =:0-by-a

the BD is given below.: Because of 1ts length it'is spht into -
groups of terms

aTK k=0, n
k even I (9 + w?)
w =
w even

The term F(x, - aT) is a repeat of the preceding

- bracketed term, but with (x,, - aT) substituted for xy

where it appears in the sine and cosine terms. The term
Xy is given in Table 2, and K is the the peak height of the
output pulse in the absence of BD. That signal is:

F(to) = exp(-3t,)sin t, (12)
where t, = tan"l(n/3)
Forn =6
T =07 (70% ol 1,5 = 1)
Exact BD = -10.067%

-11.005% (Baldinger Franzen)
-9.915% (Baldinger Franzen)

Ist-Order Approx.
2nd-Order Approx.

BD = [1- (‘“)1 (1)
e F(%) )
where - '
. ,a.m;,_) = exp(-3xo) [Xy? + Yy' + Zy0]
B n!exp(,3xm) ' o2
Fay = '.—G‘TE—{[3F1(Y) + yzZR2(y)) o
| = -3 F(yz-al)ly
y = smxm S
.z = cosip
Fi(y) = Zy6 + Yy* + Xy2 + 2X/9
F2(§) = 6Zy* + 4Yy2 + 2X
F(y,z-aT) = all preceding x,, terms in y and z replaced
by (xp - aT).
25A + 12B + 8C
X = = 1.6101
13x25
3B +2C
Y = = 1.1076
(11)
C
Z = — = 0.8387
45
A =764
B =253
C =3774
K = 1.0001

Constants A, B, and C are those appearing in front of the
sine2, sine4, and sine® terms, respectively, in Eq. 6.

The quasi-triangular network exhibits a slightly higher
BD than either the CR-(RC)® or sine® networks. This is
to be expected because for the same ¢y /3 the linear rise of
the leading edge of the quasi-triangular pulse, compared
with the S-shaped rise of the CR-(RC)® and sine® signals,
forces a sharper peak at the top.

Only the Baldinger-

True Gaussian, F(x) = exp(-x2).




Franzen approximation is given here.

For T = 0.7 (70% of tij2 ='1)
a =1

-11.32% (Baldinger Franzen)
-10.16% (Baldinger Franzen)

1st-Order Approx.
2nd-Order Approx.

X = 0
Xy, = 03500
Xm-Xo = 03500 = 0.54T

Gillespie’s [6] criterion for a maximum of 0.5% BD
called for the time-constant of the CR-(RC)! filter to be
greater than three times the charge collection time in the
~ detector. In the preceding examples, .the criterion should
be seven times because of the normalization to ¢, /2 Fur-
thermore, the criterion holds regardless of the network
complexity.

The criterion does not apply to the cusp and the true
triangle because of the discontinuous derivatives at their
peaks. Also, the Baldinger-Franzen meéthod does not ap-
ply, nor is it necessary because the exact formulations of
BD are simple,

Cusp, F(x) = e-Ixl. As formulated here, the cusp has
unit height, reducing F(xy,)/F(x,) to just F(xp,).

For T = 0.7(70% of t/, = 1),
¢ = 2(In2) = 13863
BD = 1-F(xy)
= 1-(2/aT)(1 - e2T/2) (14)
= -20.77%
Xo = 0
Xm -Xq = 035x = 0.500aT
True Triangle, F(t.)=(1 + ), -1 <t<0
Fit,)=(1 -¢t), 0<st=1
As with the cusp, F(x,) = 1.
ForT = 07(70% of t1/, = 1)
a=1
BD = 1-F(xy)
= 1-(1-aT/4) = aT/4 (15)
= 17.5%
X = 0
xm = 03500
Xm-Xo = 0.3500 = 0.500aT
Recapitulation. Normalization to ¢, /2 is an aid to eval-

uating the sensitivity to ballistic deficit in the networks
covered here. While ¢, is not the ideal normalization, it’s
better than ¢, or tg;. For pulse shapes exhibiting con-
tinuous derivatives at their peaks, BD is proportional to
(T/t12)% and there is little difference in performance
between the various networks. For the pulse shapes exhib-

‘the sum of the-squares,

iting discontinuous derivatives, the BD is linear with T/t{J
and is much worse than for pulse shapes with contmuoH

derivatives. The sine” and cusp filters are the best an
worst performers; the true triangle is second worse.

L. Amplifier Noise

- Noise has been extensxvely mvestlgated [51, [8], [13 1
It will be reviewed in this section, but to a large degr
the orientation will be towards pulse-width normalization

Symbols referring to noise quantities will be cnclosed
by carets. For example, (v,2) and (v,) refer to ms a i
rms step-noise voltages, respcchvcly The ms uncorrelat
noise signals add as'simple sums of their absolute. valu
but rms quantities add quadratically—as the square root
Most of the references here wi
be to ms rather than to rms values because that allo
simple addition to be used in computmg the total no
from the flgures given in Table 2.

It has become the custom to use the term ‘noise’ wh :
what is really meant is NSR, the ratio of rms noise to pcai(
signal (or, to be consistent with the practice stated in the
preceding paragraph, the square of that ratio). That cus:
tom will be continued here. A

It should be recogmzed that the term ‘noise flgure as’
used in the communications field (db above the minimum_
that can occur at the working temperature) is not used in’
the nuclear-clectronics field because it doesn’t lead to the
kind of information that’s useful, such as FWHM, rms
equivalent electrons, etc. =

Forms of Noise. The noise as it is affected by the width:
of the shaped pulse appears at the output of the amphfler"
in three forms: impulse or delta. noise (v;2), step noisc.
(vp2> and 1/f or flicker noise <sz> Resistors connected
in series between the detector and preamplifier give rise to
delta noise, as does the input FET. Resistors effectively in”
parallel with the signal source, such as the preamplifier
feedback resistor and the detector bias resistor (in ac-
coupled preamplifiers) give rise to step noise, as does
thermally-generated detector current and FET gate cur-
rent. Surface leakage currents and dielectric losses give
rise to 1/f noise [17].

For a filter network, (v2) is inversely proportional to
the width of the shaped pulse, (v,2) directly proportional
to it, and (v¢2) invariant with it. Bccause (vi2) and (vp
are inversely related, a noise minimum occurs at the
shaping index where the two components are equal, The
1/f component has no influence on where the minimun
occurs, but does increase its level.

The effectiveness of a noise filter is characterized by ifs
figure of merit [(v;2)(vp2)]1/4. The cusp has the best
possible one with a value of unity [2]; the CR-(RC)! net-:
work has the worst with a value of 1.359. ‘

If amplifier noise limits the attainable energy resolution
and best possible resolution is the primary requirement,
the system must be operated at a low counting rate and al
a shaping index that minimizes the electronic noise. N

When high-rate performance is required, the index must’
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be reduced to optimize the energy resolution (see Fig. 2),

but at that optimum the resolution is never as good as the
one at a lower rate. Since the.product of impulse and step
noise components is constant for a given network, reducing
the shaping index causes impulse noise to dominate.,

If ballistic deficit is a contributing factor, the resolution
minimum will be shifted to a larger shaping index.” Ord-
inarily, that does not occur with germanium . detectors
because {1 /2 at the noise minimum is much greater than the
collection time in the detector,

Impulse and step noise are referred to sometimes as ser-

.ies and parallel noise respectively, but this terminology is

misleading it refers to the location in the circuit where the
noise is generated rather than to its form. As a practlcal
matter, the misleading terminology does not result in incor-
rect numbers: (v2) and (v,2) begin as impulses having
durations equal to the- tlme it takes for an electronic

imbalance—either in the detector or in one of the resis-

tors—to appear at the input of the preamplifier, The
frequency spectrum associated with the impulses is ‘white’,
—the power density is invariant with frequency.
impulses are integrated by a time constant large compared
with ¢y, they become approximations to steps, which is
what happens at the input of low-noise preamplifiers
where the resistors in parallel with that input are always
large enough to meet the preceding condition. The resis-
tors in series with the detector and prcamplifier are always
too small for that, and impulse noise remains as such,
Disregarding the equivalent noise generators and focus-
ing on the effects of the filter-network transfer functions,
the three forms are expressed in the following formulas:

J02|G(w)|2dw (16)

1
— giZ
2t & - 2me[F(10)]25

($;2) =

o

m ole'(t)lZdt (17)
: (o]

]

m JIG(w)Pdw (18)
(o}

(6p2) = —(82)

TR fl F(1)|2dr (19)
(o]

@
2y = 4(&2) = w|G(w)]2dw 20
(62 = 4er?) = o Jul G (20)
Symbols in Egs. 16-20. The symbols (¢}, ({p2), and
(¢¢2) represent the influence of the shaping networks on
the delta, step, and flicker noise components, respectively.
In Eq. 18 (step-noise), |G(w)|® represents the absolute
value squared of the system transfer function in the freq-
uency domain, including that portion due to the impedance
at the interface between the detector and preamplifier.
The term resulting from that impedance cancels the w?
term that appears in the delta-noise Eq. 16.
Eq. 19 is the same as Eq. 18, except for being in the time
domain, Both domains require evaluation of integrals.

If the -
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With some wavelorms the work is about the same which-
ever domain is chosen; with others, it may be easier to
work in one than in the other.

Eqgs. 16 and 17 for delta noise are the same as Eqs. 18
and 19, except that w? in Eq. 16 manifests itself in Eq. 17
as F'(1).

The time-domain equwalent of the flicker-noise Eq. 20 is
not given because in this instance there is a clearcut
advantage to working in the frequency domain.

[F(1,)]2 s the peak amplitude squared of the signal in the
time domain and appears in each of the equations. It cor-
responds to the S in NSR.

In each of the equations, t represents the network time
constant (unity in Table 2). It is missing in the flicker-
noise formulation, signifying that 1/f is invariant with
shaping time. Note also that [{£;2) (£,2)]1/4, the figure of
merit, is invariant with 7; as the step-noise component
increases with increasing shaping index, the delta-noise
component decreases.

Fig. 12 and Table 2. The figure and the table contain
nearly all of the quantitative data used in this report.

The organization of Fig. 12 is described in its caption.

. The bar lengths were obtained from Table 2.

The meanings of the rows and columns of Table 2 are
given in its legend and caption.

The noise figures in_ the table were obtained by solving
Eqgs. 16 - 20, then multiplying by a constant to give unit
values for the cusp in Rows C, D, and E. Those numerical
constants (x0.5 or x4) are the multipliers on the (£2)
terms in Eqs. 16 - 20; it is the. (£€2) terms that actually
appear in Table 2. The remaining noise figures are then
relative to those of the cusp. To compute the NSR for a
particular filter network, the values listed in the table for
the applicable shaper are used in conjunction with the
equations. The total ms noise is the simple sum of the
step, delta, and 1/f components. An example is given in
App. A,

To be consistent with other parts of this report, the
symbol x, should have been used in the Ist column of
Rows S, X, AA, and FF to indicate a normalization; the ty
signature is used instead because of the more familiar
association of ¢ with time.

The leading- and trailing-edge values in the table can be
computed explicity only for the ideal waveforms; for the
others, a root-finding routine must be used to solve the
equation [F(t)/F(t,) - y] = 0, where y is the fraction of
peak pulse height for which the LEy and TEy values are
desired.

Computations for the ballistic-deficit figures in the
table were described earlier.

Normalization and the NSR. In support of the earlier
work, {{/ proves Lo be the best choice for normalization.

In Fig. 12, the (/> bars are the only oncs to show a
constant-amplitude step-noise index—approximately 0.75—
for the Gaussian, quasi-Gaussian, and quasi-triangular
waveforms, with only a small variation for the true-triangle
and cusp. Also with |/, the impulse noise shows an
orderly progression downwards for the Gaussian and
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Fig. 12. (A) Step noise, impulse noise, and (B) ballistic deficit normal-
ized tot; = 1, ty5 = 1, and tg, = 1 for the networks listed in the
legend at the upper right-hand corner of B.

In A, the bars extend to the right for ms step noise and to the left
for ms impulse noise. Because of the logarithmic scale, the sum of the
lengths for a given network is independent of the normalization.

In B, a 'step’-function driving signal having a linear rise is assumed,
with the rise having a duration of 10% of thc normalization time.

The bar lengths were obtained from Table 2. For example, the
lengths of the bottom-most bars in A are 9.2103 for the impulse noise
(Col. 2, Row GG in Table 2) and 0.1086 for the step noise (Col. 2,
Row HH). In B, the length of the topmost bar is 0.7703 (Col. 7, Row V).

“Row A. Pulse-shaping family
“Row B. Pulse shape (Cols, 2

LEGEND for TABLE 2

Colunms

Col: 1. Pulse- -shaping parameters. These are defined in the lines wh
they first appear.
Cols. 2 - 4. "Ideal"pulse shapes ‘
Cusp F(x) = el
True Gaussian F(x) = exp(-x?)
- True Triangle : F(x) =1 +x), -1 sx
. e ¢ X

Col. 5. Quasi-triangular:

F(x) = e3X (7.64 sinz. +.2:53 sm“x + 37. 74 smﬁx)
Cols. 6-11. CR-(RC)"; F(x):= (x"/n!) e*. n 1-16.
Cols. 12:16.  Sine™: F(x) = e'3"sm“x n=2-16.

_~." Rows

- 4) and the number of low-pass sectlo
. ,in, the network (Cols. 6 - 16). ..
Row C. ’\Iumerlcal value, 1mpulsc-n01se 1nte,ral with a = 1

m%_ammnaﬁFanhn See text, Sec. L.
Row D. \'umerlcal value, step-noxse mtegral thh a= 1

o = (/o) [F(t.,n@f [Fo)2 e,
K ’_i‘séi integral divided by four (blafiks

- See text, Sec L.w

Row E. ‘\Iumencal valuc ﬂ1c1§er-
were not evaluated) e

ey = 025 [F(t,)] -2f|G(cq)/w|2 dw.  See text, Sec. L,

- In evaluating the '\ISR the numbers in Rows C and D must be halv

those in Row E multiplied by 4. The valués in Row E apply also,
the rows below S because the 1/f-noise mte%ral is invariant with a.

Row F. Figure of merit (for noise) = [(¢2)s, I EANEE

Row G. Peak pulsc helght resulting from a umt-helght step input.
the same¢ non-inverting gain-of-1 amplifier stage is used to generat
the sine® and CR-(RC)? filters (except for required differences in th
ratios of the time constants), the F(t,)'s in this row will also be th
network transmission factors. For the sine™ filter, F(t,) increases wlth,,
n while for the CR-(RC)? network it decreases. For n 2 4, the sinef.
network exhibits substantially greater transmission efficiency than the
CR-(RC) filter.

Rows H - L. Instant of time LE, at which the Leading Edge of a pulse
crosses the fraction y of the pedk height.

Row M. Instant of time t, at which a pulse peaks.

Rows N - R. Instant of time TE, at which the Trailing Edge of a pulse
crosses the fraction y of the peak height.

Rows H - R. Parameters before normalization, ie..a = 1/r = 1, '

Row S. Valuesof a for t, = 1. Numerxcally. = (t5 - LEg;). whcre!
is obtained from Row I, and LE , is obtained {rom Row \I :

Row T. Numbers in Row C divided by the a’s from Row S,

Row U. Numbers in Row B multiplied by the a’s of Row S. The flgurc
of merit is not affected by the normalizations in Rows T - HH.

Row V. Ballistic Deficit (parts per thousand), unit-height ‘step’ wlth
linear risetime T (0-100%) of 0.1 time units (10% of t.).

Row W. Peak shift—due to ballistic deficit—from the original at;, = Xo
to the time at; = x;. Shift is exactly 0.5T for the ideal pulscs aﬂd
close to that for the actual ones.

Rows X - JJ. Repeats of Rows S - W for t yo. t;,,, and ty,: a for tos
= TEgg - LEyg from Rows Nand L. a for t), = TEgs~ LEgs from
Rows O and K, etc.

Row KK. Pulse-symmetry factors. Symmetry factor is exactly 1.0 for
the ideal pulses, greater for all others.

Row LL. Pulse widths at 1% of peak height normalized to the width 8'
50%. This is a measure of resolving time.

Row MM, Same as Row LL, but for the width at 0.1%.
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.Table 2

.

This table contams the noxse, balllstlc def:cxt and pulse-shaping para-
meters assocnated with’the networks fisted in Cols. 2-16. The waveforms
correspond to F(x), whére x=at. " The parameter ‘a' is a normalizing
factor. that forces the condition ty—l where t, is the width of the pulse
measured at the fraction 'y’ of peak hclght :

All pulses in. Rows S - MM have: unit helght except as affected by bal-
fistic déficit)It follows 'that F(t;)=F(x;); where the subscript ‘o’ stands
for the time at which the'peak of the pulse occurs.

- The; l/f-nmse components for the; normalized pulses below Row S are
‘the same as in Row E;’ 1/f noise is invariant with ‘a"

A complete legend for'the columns and rows appears at the left. -

A comparison of: the: pulse: shapes of: prmcnpal interest abstracted from
the complete table and no;mahzed to:4 n=1lis shown in the mini-table
‘at the right. Enmes in each ‘column have been further normalized to a
jowest value-of 1.0." Col.’2 shows th noxse figure of merit- (from Row F
in the main table)/ Col:3 1he relatnv solvmg time:at tgg,. Col. 4 the

relatlve BD and Col. 5 a figure of merit that indicates a tradeoff be-
tween nonse and resolving time when the BD can be ignored, as is usually

1 2 3 4 5
Pulse Noise  Resolving Ballistic Normalized
Shape F.of M. Time Deficit' Cols. 2x3
Cusp - 1.000 4.988 15.11 4.642
N Ttlangle 1075 1.000 11.15 1.000 .
P Quasx-A 1.132 1.258 1.100 1.325
" sineS 1,135 1.387 1.000 1.466
- Gaussian : - 1.120 1.580 1.029 1.646
CR-(RC)6 1.148 1.672 1.042 1.786

the case Whén t, j2 is at or to the r1ght of the noise minimum (see Fig. 7)
It can be seen that with this criterion the best waveform is the true tri-

angle, followed by the qua51-A and sine$; the cusp is the worst.

*BD in parts per thousand, T = 0.1

1 6 7 8 9 100 11 12 13 14 15 16
Al : CR-(RCI™ ., | SINER A
B|PARAMETERS| CUSP . GAUSS'N = TRL.  |m=1 T2 - 5§ 8 n=1n=2 4 6 8 n=16B
c a(q ) 1.0000 .1.2533 2.0000|2.1294[1.8473 0.8531 0.5117 0.3974,0.3360.0.2293)|2.8977 2.4912 2.6075 2.8185 3.6954|C
;D (1/a)(e ,1.0000. .1.2533 0.6667]0.7716|1,8473 2.5593 3. 58207A .3719 '5.0395 7,1083|0.6918 0.6975 0.6374 0.5792 0.4323|D
E| - “ ) 1.0000° 1.5708'1.3863| ~_ '[1.8473 1,7062 1.6375 1.6150 1.6039' 1.5873|1.7081 1,6394 ' E
F|Fig. Merit| 1.0000 1.1185 1.0746|1.1322|1.3591 1.2156 '1.1636 1.1481 1.1405 1.1299{1.2000 1.1481 1.1354 1.1303 1.1242(F
o] F(t )| :1:0000 1:0000. 1:0000|1.0001-36788::27067 .19537.. IGQSZ' 13959 .09922|.34271 .34346 37545 41229 .54928(G
t Lo . . ) " L s ‘.'gn" 1ot fé'
:{ . LE ,001 —6.9q7ev—z.ezaa 0.0010].01164|.00037 02354 .28070 79719’ 1 4963 5.3350|.00734 .07515 .17876 .28236 .58105|H
I| ° LE pj|-4.6052 -2.1460 .0100|.03832(.00369 07644 .53146 1. 2650'.2./1709.6.7163.02380 .14071 .27780 .39858 .70615|I
3| LE L ;|-2.3026 <1.5174 ..1000|.14130|.03822 .265731.0855 2,1529 3.3581 8.8775|.08224 .28066 45551 .58952 .88702|J
K LE 5|-.69315 -.83256 .5000|.48008|.23196 .76124 2.0828 3.5583 5.1149 11,741|.23204 .51751 .71348 .84563 1.1033K
L LE g|-.10536 - 32459 .9000|.81661].60834 1,4191 3.1508 4.9447 6.7709 14.233|.42422 .75250 .94456 1.0632 1.2736|L
M tol O 0 1 |1.0144] 1 2 6 8 16 |.58800 .92795 1.1071 1.2120 1.3854[M
N TE g]0.10536 0.32459 1. 1000|1.2099|1.5318 2.7212 4.9896 7.1957 9.3695 17.907|.78408 1.1189 1.2701 1.3666 1.4989N
0 TE | .69315 .83256 1.5000(1.5183|2.6783 4.1559 6.8379 9.3635 11.807 21.826(1.1515 1.4454 1.5613 1.6156 1.6780/0
P| TE TE';| 2.3026 1.5174 1.9000|1.9381)4.8897 6.7202 9.9462 12.891 15.693 26.129/1.7389 1.8128 1.9502 1.9541 1.9177
Q TE o7| 4.6052 2.1460 1.9900|2.3214|7.6384 9.7794 13.458 16.773 19.892 31.385/2.3127 2.3308 2.2922 2.2511 2.1303/Q
R TE goy| 6.9078 2.6283 1.9990|2.6218[10.233 12.587 16.600 20.188 23.543 35.788|2.7069 2.6135 2.5282 2.4596 2.2851[R
Pulse parameters above this line are not time-normalized (LE: Leading Edge, TE: Trailing Edge, a = 1).
Slt, = 1, a|4.60517 2.14587 0.9900|.97612|.99631 1.9236 3.4685 4.7350 5.8921 9.2837|.56420 .78659 .82936 .81345 .67930)S
T ate,2)|4.60517 2.68956 1.9800(2.0785(1.8404 1.6401 1.7750 1.8819 1.9795 2.1288/1.6913 1.9596 2.1626 2.2027 2.5103|T
U| (1/a) (¢;%]0.21715 0.58403 .67340.79045|1.8541 1.3305 1.0327 92330 .85529 .76567|1.2261 88679 76854 .71196 .63637|U
v BD*|-106.79 -3.8259 -24.75|-2.179|-.4134 -.7703 -1,252 -1.555 -1.805 -2.240|-.8615 -1.609 -2.146 -2,511 ~3.176|V
W| (xg - x,)]0.05000 0.05000 0.0500]|0.0499]0.0508 0.0508 0.0507 0.0507 0.0506 0.0505/0.0507 0.0505 0.0503 0.0503 0.0501W
X|ty ¢ = 1,a]0.21072 0.64919 0.2000|.39331|.92347 1.3022 1.8389 2.2510 2.5986 3.6737|.35986 .36640 .33452 .30337 .22536(X
Y BD*|-5.2496 -0.3511 5.0000{-.3545{-.3352 -.3531 -.3521 -.3518 -.3516 -.3513|-.3506 -.3495 -.3486 -.3498 ~.35041Y
2| (xg - %5)]0.05000 0.05000 0.0500|0.0500|0.0508 0.0505 0.0504 0.0503 0.0503 0.0502|0.0505 0.0502 0.0502 0.0501 0.0500]Z
8|ty = 1,a]1.38629 1.66511 1.0000|1.0383 2.4464 3.3947 4.7551 5.8052 6.6925 9.4420).81951 .02784 84777 .77017 .57464(AA
BB a(g2)|1.38629 2.08690 2.0000{2.2108(4.5191 2.8960 2.4333 2.3072 2.2484 2.1650|2,7564 2.3115 2.2106 2.1708 2.1235|BE
cC| (1/a) (¢,){0.72135 0.75269 .66667|.74311|.75510 .75391 75330 .75310 .75299 .75284.75232 .75179 .75183 .75197 .75227|CC
DD BD*|-33.870 -2.3066 -25.00|-2.465|-2.487 -2.395 -2.350 -2.335 -2.328 -2,317|-2.285 -2.240 -2.242 -2.251 ~2.274|DD
EE| (x, - x,){0.05000 0.05000 0.0500|0.0499]0.0520 0.0514 0.0510 0.0508 0.0507 0.0505[0.0511 0.0506 0.0504 0.0302 0.0501|EE
FF|t o; = 1,a]9.20134 4.29102 1.9800|2.2831|7.6347 9.7030 12.627 15.508 17.721 24.668|2.2889 2.1901 2.0145 1.8525 1.4242|FF
66 aig|9.21034 5.37912 3.9600(4.8615(14.103 8.2776 6.6150 6.1637 5.9537 5.6566/6.8613 5.4560 5.2528 5.2213 3.2628G6
HB| (1/a) (¢,%)|0.10857 0.29202 .33670|.33705|.24196 .26376 .27710 .28190 .28437 .28815].30223 .31850 31641 .31253 .30354 |HH
It BD*|-198.63 -15.146 -48.50|-11.80[-23.65 -19.24 -17.12 -16.45 -16,11 ~15.62|-14.01 -12.36 -12.55 -12.91 ~13.83}11
33| (xy - %)|0.05000 0.05000 0.0500|0.04990.0563 0.0540 0.0527 0.0522 0.0519 0.0513|0.0529 0.0514 0.0508 0.0506 0.0502}JJ
K| t o)/2t, |1.00000 1.00000 1.00001.16953.8315 2.5222 1.8635 1.6376 1.5201 1.3286)2.0284 1.3922 1.2145 1.1387 1,0483KK
LL| & (1/t152|6.64386 2.57757 1.9800|2.1989|3.1208 2,8583 2.7185 2.6715 2.6480 2.6127|2.4892 2.3604 2.3762 2.4053 2.4783 LL
MM[t 001/t1/2|9.96579 3.15686 1.9980|2.5138(4.1829 3.7009 3.4320 3.3402 3.2042 3.2253|2.9359 2.7358 2.7714 2.8269 2.9654 [MM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16



quasi-Gaussian waveforms as the filter complexity in-
creases, and is the only normalization for which the lengths
of the bars give an accurate measure of the networks’ fig-
ures of merit. (The proportionality is as the 1/4th root of
those figures. Regarding delta-noise invariance, there is no
pulse-width normalization that yields one.)

The variation in step noise for the quasi-Gaussian family
(including the true Gaussian) is less than 0.5% for the ¢y,
normalization. If the normalization is made to ¢47;5, the
variation is reduced to 0.02% for the complete family (or
to 0.001% if the sine” group is excluded). However, the
inconvenience of using that normalization does not com-
pensate for the tighter invariance.

It would seem that the fraction 0.4715 should be simply
related to a constant such as x or e, but no such rela-
tionship has been found.

Recapitulation. When the noise performance of the
various shaping networks is compared, it is found that
normalization to ¢1 /, gives a more orderly progression than
normalization to ¢, or tg.. With ¢y, step noise is
invariant . throughout the quasi-Gaussian series, and
impulse noise decreases monotonically as n increases for
the CR-(RC)" and sine” networks, with the latter giving
lower noise for a given n than the former. By a small
margin, the true-Gaussian waveform has the best figure of
merit within the subgroup (but its resolving time is worse).
That of the Q-T waveform is intermediate between the
sine 6 and sine 8 shapes.

Through use of Table 2, the evaluation of noise integrals
can be avoided. Waveforms not included in this report can
be compared with those in Fig. 10, then an interpolation
can be made from the figures in the table,

The difference in noise performance between waveforms
is small. The difference in resolvings time is greater and
can be obtained from Rows LL and MM in the table.

M. Normalization and Spectrometer Measurements.

The preceding information is used now to explain the dif-
ferences between the resolution curves in Figs 2-4, begin-
ning with Fig. 2 (normalization to t/;). Before analyzing
the data, the following comments are necessary:

The amplifiers available for the tests did not yield enough
data points for adequate curve fitting. Those that were
available were connected by smooth curves as shown, but
a later test on a single amplifier better suited to the
purpose revealed that at short shaping times, the trace is a
straight line that abruptly changes into the characteristic
parabolic shape. The straight region is dominated by bal-
listic deficit, the parabolic region by noise.

The preceding situation adversely affects the correlation
between theory and practice in the following descriptions,

Normalization 1o t1;. Resolution at the left-hand end
of the curves should be controlied mainly by BD. From
Row DD in Table 2, BD = 2.47 x 10-3 for the Q-T filter
vs 2.24 x 103 for the sine”. This is borne out by the
curves. The separation between the 2 kCPS and 62 kCPS
curves is greater than it should be for the reason given in

the opening paragraphs of this section. ;~,,

At the right hand end of the 2kCPS curves, resolution is
controlled mainly by step noise. Except for small differ-
ences in the performance of the main amplifiers, the curves
should have merged, and they nearly do. At 62 kCPS, res-
olution is controlled by pile-up and the performance of the
BLR’s. The curves should follow the resolving-time pro-
gression shown in Row LL of Table 2, ¢¢;/¢1/,. The Q-T
and sine curves do, but the sine4 curve does not. A
possible explanation is that the BLR in the sine” amplifier
is inferior to the ones used in the others.

Normalization to tp. From Row V, Table 2, the BD for
the sine# filter is 1.60 x 103, vs 2.18 x 10-3 for the Q-T -
filter. This difference is borne out by the curves at the
left-hand end of the figure.

At the right-hand end of the 62 kCPS curves, the resolu-
tion follows the resolving-time progression shown in Row!
KK of Table 2.

At the right-hand end of the 2 kCPS curves, the resolu-
tion of the sine4 amplifier is greater than that of the sinet .
or Q-T amplifiers, confirmed by the step-noise figures in
Row U of Table 2. -

Normalization to t g;. At the left-hand end of the curves,
the sine4 amplifier shows substantially worse resolution
than the others, much more than can be explained by the
numbers in Row II of Table 2. The most likely reason is
that this amplifier had additional filtering to reduce output
noise at the shorter shaping times, a practice not uncom-
mon among amplifier manufacturers. The effect on pulse
shape is to broaden it at the 1% level. When the pulse is
normalized at tg;, the width near the peak is narrower
than it should be for the expected transfer function, in-
creasing the apparent BD and worsening the resolution,
The skewing is not apparent for 1/, or t;,.

The 62 kCPS curves should have merged at the right-
hand end because all exhibit the same resolving time when
normalized to tg;. The fact of the resolution difference
between the sine4 and the other amplifiers implies that the
BLR in the sine? unit does not match the performance of
the others. K

From Row HH of Table 2, the step noise is worst for the
Q-T network, successively improving for the sine* and
sine® filters. At the right-hand end of the 2 kCPS curves,
the Q-T and sine® amplifiers follow the progression, but
the sine4 unit is better than it should be. This ties in with
the preceding comments about additional filtering: the
spreading at f g would compress the width at 1/, reducing
the apparent step noise.

Recapitulation. At ty;, (wo systems can be compared
for their resolution capabilities at high and low counting
rates and at short, intermediate, and long shaping times.
Al t g, the effect of ballistic deficit at the shorter shaping
times is emphasized. At ¢, performance differences at
high count rates and long shaping times are magnified.

It appears that by comparing resolution measurements
between two systems normalized at ¢y, {p, and fq,
information can be obtained about their relative
performance not readily accessible by other means. For




the user, this is an evaluation tool—for the designer, a
diagnostic tool. -

N. Generalizations: the Effect of Pulse Shape on Noise

It 'was stated earlier that the noise index of a filter does
not depend on the transfer function per se, but on the
shape 'of the wavefori as displayed on an oscilloscope, -

* Because’ of their geometric and mathematical simplicity,
the:imit-height triangle and unit-height trapezoid, (Figs. 13
and '14) are used to lay-thé groundwork for the rules to
follow. Begin with the triangle in Fig. 13.

Triangle. ‘With a baseline two units wide, t;/3 = 1.

For the leading edge: "Fj(f). = t/t,; for the trailing
edge: Fy(t) = (2 - 1)/(2°- t/t,). ' In what follows, the sub-
scripts 1 and 2 will be used toridentify operations on the
twa parts of the pulse. -Later, computations on the trape-
zoid will require’three subscripts. ‘ :

1.0

Fig. 13. Triangular pulse.

1.0
1.0- |~ '
K A4———=1 Fig. 14. Trapezoidal plll§e
|
g
kto=[_,| 'A+2to
to— lL.—A + to

Noise computations consist of evaluating Eqs. 17 and 19.
Consideration will be limited to (62)"50 that a direct
comparison may be made with the entries in Table 2.

In place of the original 0 and « for the limits on the
(£2) integral, the limits become 0 and , for (£2); for
(€2),, they become ¢, and (2 - t,). The changes reflect
the fact that unlike the exponential waveforms that have
trailing edges of infinite duration, those of the two parts of
the triangle are finite.

The ecvaluation of Eq. 19 (ms step noise) leads to
(€21 = (€22 = 1/3. The two components sum (0
2/3 as shown in Col. 4, Row D in Table 2. Evidently, the
ms step noise depends only on the width of the baseline
and is independent of the lateral position of t, above it.

The evaluation of Eq. 17 (ms delta noise) leads to
(¢2); = 1/t,, and (€2); = 1/(2 - t,). Their sum is
2/[to(2 - to)]. The two parts are different. If ¢, = 1,
(€2)1 = (€2),, making (£2); + (£2)2 = 2, in accord-
ance with Col. 4, Row C in Table 2. The pulse symmetry
resulting from setting t, = 1 also results in a minimum-
noise condition for a triangle. This does not prove that
symmetry always leads to minimum noise, but examination
of the quasi-Gaussian and true-Gaussian entries in Table 2
shows the same pattern. This should come as no surprise,
because s delta noise depends on the quadratic sum of
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the derivatives of the two halves of the waveforms: the
squaring action magnifies differences in slope, with the
larger portion disproportionately dominating the sum. The
sum is minimized when the slopes of the halves are equal,
and the equality is concomitant with symmetry between
the leading and trailing halves of the shaped pulse.

© Trapezoid. - Having established that asymmetry worsens

* impulse noise, only the symmetrical trapezoid of Fig. 14
_ will be considered. '

The figure has three regions: the first from 0 to ¢, the
second from t, to (A + t,), and the last from (A t¢5) to
(A + 2t5).- Those regions fix the limits of integration in

‘Eqs. 17 and 19.

From the analysis of the triangle, the ms delta noise for
the first and last regions sams to (£;2) = 2/t,. In the
central region, F' (t,) = 0; that region contributes nothing
to the delta noise. .

The step noise associated with the first and last regions
is 2t,/3. In the central region, F5(f) = 1, (§,2)2 = A, and
the total step noise is (£,2) = A + 2t,/3.

Now consider what happens when the ramps pivot about

their point of intersection with level k.
Inthe case of ‘the quasi-Gaussian waveform, the step
noise was invariant with t,/,, hinting that a similar con-
dition applies to the trapezoid. To find out, set the pulse
width-at level k equal to unity: [A + 2t5(1 - k)] = 1. By
transposing, A = [1 + 2t,(k - 1)]. From the second para-
graph above, (£;2) = (A + 2to/3). Replacing A with
[1 + 2to(k - 1)], then setting d{£,,) /dk = 0, we find that
k = 2/3, or ty3 = 1 for the step noise to be invariant
with the width between the pivot points. ,

With the preceding condition, it follows that the step
noise of the trapezoid under consideration is 1.00, which is
1/3rd greater than for the triangle with ¢, = 1. Thisis in
accordance with the increase in the baseline, which went
from 2 to 8/3.

If the ramp slopes are unchanged from the triangle in
which ¢/, = 1, the impulse noise also will be unchanged.

It seems that there is no advantage to a trapezoid over a
triangle because noise and resolving time are worse. How-
ever, the BD is reduced: it can be shown that BD = 0 if
T < A.Inthe example just given, T = A = 1/3ilt;, = 1.
In Table 2, a duration of T = 0.1 was assumed. By reduc-
ing A from 1/3 to 0.1 without changing the slope of the
ramps, the bascline is shrunk, improving the resolving time,
keeping BD = 0, and reducing the step noise without af-
fecting the delta noise.

At this point, it should be appreciated that by thinking in
terms of a normalized pulse width, it becomes relatively
casy to examine the tradeoffs between noise, resolving
time, and BD.

Examination of the triangle and trapezoid is now com-
plete. Flicker noise is next.

Flicker Noise. 1t can be shown that evaluation of (£¢)
leads to ms noise which is proportional to the logarithm of
(fw/f) [5], where [y, and f; are the high- and low-frequency
cutoff points of the filter. The 1/f noise is invariant with ¢,
because the ratio f,/f; is fixed for a given network, regard-




less of ty. But fy/fj = |F'(t )I/ty = [(5.’>(5p7>] The
last term is the kernel of the flgure of merit, and it follows
that 1/f noise should be invariant with it. From the figures
in Table 2 and over the span of the quasi-Gaussian and
true-Gaussian family, the fractional change in ins flicker
noise compared with that of the figure of merit is <3.5%.
For a glven ty/2, the 1/f noise should follow the trend of
delta noise. It does, but the dependence is weak. For

example, the ratio of (£;2) of the CR-(RC)2 network- o,

that of the true Gaussian (Row BB) is 1.39, while the ratio
of {£¢2) for the same combination (Row E) is only 1.09.
Ratio of Pulse Height to Pulse Width. In Fig. 5, imagine
tangents to the sides of the waveform extended up to their
point of intersection. From the preceding discussions,
those tangents will produce a triangle with approximately
the same step and impulse noise as the original waveform,
but with a greater peak height. It follows that such a pulse
shape will have a better SNR than the orlgmal for no_other

reason than that the S is greater, as is borne out by the

figures of merit for the applicable waveforms in Table 2.

Recapztulatzon For a given t; /25 pulse symmetry mini-
mizes unpulse noise. Also, with a symmetrical pulse, the
ms noise varies directly with the slope of one of the edges,
therefore inversely as the width. of the pulse. For asym-
metrical pulses, the steeper of the leading- or trailing-edge
slopes will dominate the noise dependency.

The ms step noise varies directly with the width of the
shaped pulse. For the quasi-Gaussian and true-Gaussian
family, the step noise is nearly invariant with ¢; /5.

The ms flicker noise is a weak function of pulse shape,
being proportional to the log of the ratio of risetime to
width, and is invariant with ¢, /5.

For a symmetrical trapezoid, step noise is invariant with

ta3.
Appendix A, Use of Table 2 in Computing Noise

In this example of computing the ms input noise charge
in a preamplifier, only the delta and step noise components
are considered. Eqgs. 16 and 18 will be used. The approp-
riate noise sources and the noise indices from Table 2 must
be included. The example will be for a sine6 network, nor-
malized to ty/;, and with a shaping index of 2.5us. The
figures from the table are at Col. 14, Rows BB (2.211) and
CC (0.752). Those figures are for r = 1 sec. The modified
equations are as follows:

1
(g2) = 4kT RC2 — (£2) (21)
2T

akT
(gp2) = [ + 2e0l | — <€p’> (22)

P
The first noise generator (impulse noise, Eq. 21) is
represenled by 4kT Ry, where k is Boltzman’s constant,
T¢ is temperature, and Ry is the resistance that appears in
series with the detector and the input of the preamplifier.

In a scmiconductor detector the contacts and the undeplet-
ed material contribute to that resistance. Also included is
the equivalent noise resistance of the input transistor. In a

modern FET, this is ~0.9/Gy, with Gy in units of A/V).
The resistance from all sources is assumed to total 100Q.

A temperature of 289K (17 9C) is assumed making
4kT, = 1.60 x 10-2

The quantity C, represents the noise- equivalent input.
capacitance of the system (‘cold’ input  capacitance. in.
farads. See App. B), mcludmg that due to the detector,,

preamplificr, and connecting wires.

There are two step-noise generators (Eq. 21), The first is

associated with Ry, the parallel combination of all resistors

shunting the input of the preamplifier to ground. Those
were described in Sec. L. The second is associated with

thermally-generated current ‘seen’ by the preamplifier,
The quantity e, represents the electronic charge
The parameters assumed for this example are as follows:

k =138 x 10-23J/K
T = 289K (17 °C)
4kT¢ = 1,6 x 10-20
R, = 100Q
R, = 25x109Q
C, = 100 x 10-12F
I=1x109%A
e, = 1.6 x 10-19C
T =25x100s
(£2) = 2211
(€,2) = 0.752

When inserted into the equations, the following resuits
are obtained:

{g) = 70.5 x 10-34 s Coulombs
{g;) = 8.40 x 1017 rms Coulombs

(gp*) = (0.006 + 3.01) x 10-34 ;s Coulombs
(gp) =1.75x 1017 rms Coulombs

It can be seen that the noise due to R, (the 1st
component of {(g,%)) is negligible compared with that due
to the leakage current (2nd component). By equating the
two it can be shown that the crossover occurs when the
noise current flowing through the resistor produces a dc-
voltage drop of SOmV [5].

The agreement between measurement and computation
in determining (g;) is usually about 5%, but the agree-
ment for {gp) is not as good, particularly at large shaping
indexes, partly because of the indeterminacy of diclectric
losses secn by the input, and partly because distributed
capacitance to ground at the high-megohm feedback
resistor (if used) appears as 1/f noisc [17] not easily
distinguished from step noise.

To convert {(g,) to eV FWHM (Ge), {g,) first must be
divided by ¢, to obtain rms equivalent electrons, then
multiplied by ¢ = 2,95 ¢V per electron to obtain eV rins
for a germanium detector, and finally multiplied by 2.35 (0




convert from rms to FWHM.
App. B, Cold Input Capacitance

The norse-equrvalent input capacitance of a preamplifier

is that which is measured with the signal path broken, but,

with all dc. operatmg voltages applied to the transistors.
That condrtron 1s difficult to 1mpose, and an alternatlve
must-be used: - TR :
The: procedure* is to prepare a group of low -noise capaci-
tors” in-shielded containers: that. can:be . plugged into the

input of the. preamplrfrer then to plot a curve of shaping-

amplrfrer output noise vs external input capacrtance (values
from 0 to 100pF in a bmary series are approprlate) The
meter used: to measure output noise must be true-rms or
average-mdrcatmg with a bandwidth, of ‘at least 10. MHz,
the capacitance values must be known with an error of less
than 1%;,-losses in pulse’ herght that may result at the
higher capacrtances must be corrected for, and the meas-
urement’ must be made. at . the shortest possrble shaping
index:-s0 that delta noise controls The ‘curve’ will be a

straight litig. which, when extrapolatéd, will. intersect the’

abscissa.at 4 ‘'value of -C.. The absolute value of that C
represents the norse equrvalent input capacitance.

If the step noise is not'negligible, that fact will manifest
_itself as’ concave-upwards curvature of the lower part of
the line. If that occurs, only the stralght portion’ should be
used to make the extrapolation.. '

In prmcrple, only two (large) external capacrtors are
needed for the test, Cy and Cy, with C; ~ 2C;. When
plugged into the preamplifier, the total capacitance will be
(C + C;) and (C, + C,).. With two measurements, two
points on the line will be establrshed from which the slope
and zero mtercept can be determined, However, with just
two points, there is no assurance that the line is straight.
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