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Abstract

We derive expressions for the time resolution of silicon detectors, using the Landau theory as a
minimum model for describing the charge deposit of high energy particles. First we use the center of
gravity time of the induced signal and derive analytic expressions for the three components contributing
to the time resolution, namely charge deposit fluctuations, noise and fluctuations of the signal shape
due to weighting field variations. Then we derive expressions for the time resolution using leading edge
discrimination of the signal for various shaping times. Some aspects of time resolution for silicon detectors
with gain are discussed as well.
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1. Introduction

Silicon pixel sensors providing precise timing are currently being developed in view of future ”4D”
tracking applications. The NA62 Gigatracker, using sensors of 200µm thickness and 300µm⇥300µm
pixel size has achived time resolutions of  150 ps at rates of up to 1.5MHz/cm2 [1][2][3][4]. A time res-
olution of 100 ps has been reported with a sensor of 100µm thickness and 800µm⇥800µm pixel size [5].
With the introduction of internal amplification inside silicon detectors of 50µm thickness, the so called
Low Gain Avalanche Diode (LGAD) [6][7][8][9][10], time resolutions of 25 ps have been achieved [11]. The
Weightfield2 program [12] allows the detailed simulation of the induced signals in silicon sensors with
strip geometry. A long term goal of these developments are pixel sensors of 10µm position resolution and
10 ps time resolution [13][14]. Developments of silicon sensors for increased timing performance based on
3D sensors are also described in literature [15]. Studies of front-end electronics for silicon detectors with
emphasis on timing aspects can be found in [16] and [17]. Charged particle imaging is widely employed
in many areas of science beyond high energy physics, for example as part of material analysis techniques.
Therefore there is a broad interest in the developments of spatially resolved and time accurate particle
detectors [18][19].

In this report we derive analytic expressions for the time resolution of silicon sensors using the Landau
theory as a minimum model describing the charge deposit of high energy particles. We first investigate
the time resolution for the case where we take the ’center of gravity time’ of the signal as a measure of
time. It refers to the case where the amplifier peaking time is larger than the drift time of the electrons
and holes in the silicon sensor and allows us to discuss the achievable time resolution using moderate
electronics bandwidth together with optimum filter methods to extract the time information from the
known signal shape. We then derive formulas quantifying the e↵ect of signal fluctuations due to the
finite pixel size and related variations of the weighting field. Finally we derive expressions for the time
resolution using leading edge discrimination of the signals with di↵erent amplifier integration times.
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Figure 1: a) The silicon sensor is divided into slices of thickness �z. The electrons and holes produced in one slice are

assumed to move to the boundary of the sensor at constant velocity, which is correct in the limit of negligible depletion

voltage. b) Probability to find n electrons per primary interaction. The straight line refers to the 1/n

2
distribution that is

the basis for the Landau distribution, the other curve corresponds to a PAI model [21].

2. Energy deposit

A high energy particle passing a silicon sensor will experience a number of primary interactions with
the material, with � being the average distance between these primary interactions. For relativistic
particles we have � ⇡ 0.25µm in silicon [20]. The electrons created in these primary interactions will
typically lose their energy over very small distances and create a localised cluster of electron-hole pairs. We
call the probability pcl(n) for creating n e-h pairs in a primary interaction the ’cluster-size distribution’.
Throughout this report we treat n as a continuous variable. We now divide the silicon sensor of thickness
d into N slices if thickness �z = d/N as shown in Fig. 1a. In case �z ⌧ �, the probability of having zero
interactions in �z is 1��z/�, the probability to have one interaction in �z is �z/� and the probability
to have more than one interaction is negligible, so the probability density for finding n electrons in �z is

p(n,�z)dn =

✓
1� �z

�

◆
�(n)dn+

�z

�

pclu(n)dn (1)

The probability p(n, d) to have n electrons in the entire thickness d is then given by the N times self
convolution of this expression. Since convolution becomes multiplication if we perform the Laplace
transform, N times self convoluting the above expression results in raising it’s Laplace transform to the
power N . So using the Laplace transform Pclu(s) = L[pclu(n)] we have

P (s, d) = L[p(n, d)] = L[p(n,�z)]N =

✓
1 +

d

�N

(Pclu(s)� 1)

◆N

(2)

By taking the limit of N ! 1 we have

p(n, d) = L�1

h
e

d/�(P
clu

(s)�1)

i
(3)

The cluster size distribution pclu(n) is typically calculated using some form of the the PAI model [21]
and an example is shown in Fig. 1b [20]. For this report we use Landau’s approach to assume an 1/E2
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distribution for the energy transfer in accordance with Rutherford scattering on free electrons and a
lower cuto↵ energy ✏ chosen such that the average energy loss reproduces the Bethe-Bloch theory. The
resulting cluster size distribution for a MIP in silicon therefore becomes a 1/n2 distribution with a cuto↵
at n ⇡ 2.5 electrons, according to

pclu(n) ⇡
2.50

n

2

⇥(n� 2.50) (4)

with ⇥(x) being the Heaviside step function. Performing the Laplace transform of this expression and
evaluating Eq. 3 results in

p(n, d)dn =
�

2.50 d
L

✓
�

2.50 d
n+ C� � 1� log

d

�

◆
dn L(x) =

1

⇡

Z 1

0

e

�t log t�x t sin(⇡t)dt (5)

where L(x) is called the Landau distribution and C� = 0.5772... is the Euler-Mascheroni constant. The
most probable number of e-h pairs nMP and the full width of half maximum nFWHM of p(n, d) are

nMP ⇡ 2.50 d

�

✓
0.2 + log

d

�

◆
�nFWHM

nMP
⇡ 4.02

0.2 + log d/�
(6)

The most probable number of e-h pairs for a MIP in 50, 100, 200, 300µm of silicon evaluate to ⇡
2750, 6190, 13770, 21870, which is within 10% of the values given in [22]. The relative width�nFWHM/nMP

is 0.73, 0.65, 0.58, 0.55 for these values of thickness, which is 20-50% higher than the numbers from the
PAI model and the actual values. It is well known that the Landau distribution overestimates the charge
deposit fluctuations, so using this model we should have a slightly pessimistic estimate of the time reso-
lution.

3. Center of gravity time of a signal

First we assume the measured time to be defined by the center of gravity (c.o.g.) time of the induced
detector current signal i(t). Assuming the Laplace Transform of the signal I(s) = L[i(t)], the c.o.g. time
⌧cur of the signal is given by

⌧cur =

R1
0

t i(t)dt
R1
0

i(t)dt
=

R1
0

t i(t)dt

q

= �I

0(0)

I(0)
(7)

where q =
R1
0

i(t)dt is the total signal charge. We now consider the signal i(t) to be processed by an
amplifier having a delta response f(t) with Laplace Transform F (s), so the amplifier output signal v(t)
is given by

v(t) =

Z t

0

f(t� t

0)i(t0)dt0 V (s) = F (s)I(s) (8)

The c.o.g. time of the output signal is then given by

⌧v = � lim
s!0

V

0(s)

V (s)
= �F

0(0)I(0) + F (0)I 0(0)

F (0)I(0)
= �F

0(0)

F (0)
� I

0(0)

I(0)
= ⌧amp + ⌧cur (9)

The represents the sum of the c.o.g. time of the delta response and the one from the current signal, and
since the shape of the delta response does not vary in time, the c.o.g. time variation of the of the amplifier
output signal is equal to the c.o.g. time variation of the original input signal and has no dependence on
the amplifier characteristics.
To determine ⌧ by recording the signal shape and performing the integral of Eq. 7 is not very practical,
it is easier to simply process the signal with an amplifier that is ’slow’ compared to the signal duration,
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as shown in the following. In case the duration T of the signal i(t) is short compared to the ’peaking
time’ tp of the amplifier (i(t) = 0 for t > T ⌧ tp) we can approximate Eq. 8 for t > T according to

v(t) =

Z T

0

f(t� t

0)i(t0)dt0 ⇡
Z T

0

[f(t)� f

0(t)t0] i(t0)dt0

= q

"
f(t)� f

0(t)

R T

0

t

0
i(t0)dt0

q

#
= q [f(t)� f

0(t)⌧cur]

⇡ q f(t� ⌧cur) (10)

The amplifier output is simply equal to the amplifier delta response shifted by the c.o.g. time of the
current signal and scaled by the total charge of the signal. Since the shape of the amplifier output signal
is always equal to the amplifier delta response, we can determine the signal c.o.g. time either by the
threshold crossing time at a given fraction of the signal or by sampling the signal and fitting the known
signal shape to the samples.
For later use we remark that for the sum of two current signals i(t) = i

1

(t) + i

2

(t) with c.o.g. times ⌧

1

and ⌧

2

we have

⌧ =

R
ti(t)dtR
i(t)dt

=
⌧

1

R
i

1

(t)dt+ ⌧

2

R
i

2

(t)dtR
i

1

(t)dt+
R
i

2

(t)dt
=

⌧

1

q

1

+ ⌧

2

q

2

q

1

+ q

2

(11)

The c.o.g. time for the sum of N signals in(t) is therefore given by

⌧ =
1

PN
k=1

qk

NX

k=1

qk ⌧k (12)

4. Variance of the center of gravity time of a silicon detector signal

We assume a silicon sensor operated at large over-depletion i.e. at a voltage that is large compared to
the depletion voltage and the electric field can therefore be assumed to be constant throughout the sensor.
Consequently the velocities of electrons and holes are constant and the signal from a single electron or
single hole has a rectangular shape. We assume a parallel plate geometry with one plate a z = 0 and one
at z = d, where a pair of charges +q,�q is produced at position z and �q moves with velocity v

1

to the
electrode at z = 0 while q moves with velocity v

2

to the electrode at z = d. The weighting field of the
electrode at z = 0 is Ew = 1/d and the induced current is therefore

i(t) = �qv

1

d

⇥(z/v
1

� t)� qv

2

d

⇥((d� z)/v
2

� t) (13)

with ⇥(t) being the Heaviside step function. We have
R
i(t)dt = �q and according to Eq. 7 the c.o.g.

time of this signal is then

⌧ =
1

2d


z

2

v

1

+
(d� z)2

v

2

�
(14)

If n
1

, n

2

, ..., nN charges are produced at positions z
1

, z

2

, ..., zN and are moving to the electrodes with v

1

and v

2

, the resulting c.o.g. time of the signal is

⌧(n
1

, n

2

, ..., nN ) =
1

2d (
PN

k=1

nk)

NX

k=1

nk


z

2

k

v

1

+
(d� zk)2

v

2

�
(15)

We now divide the sensor of thickness d into N slices of �z = d/N as shown in Figure 1. The probability
to have nk e/h pairs in slice k is given by the Landau distribution p(nk,�z) and if we assume that all
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these charges are moving from position zk to the electrodes, we have zk = k�z and we can proceed to
calculate the variance �2

⌧ of the c.o.g. time of the signal, i.e. the time resolution, according to

�2

⌧ = ⌧

2 � ⌧

2 (16)

with ⌧ and ⌧

2 being the average and the second moment of ⌧ . The average ⌧ is given by

⌧ =

Z 1

0

Z 1

0

...

Z 1

0

⌧(n
1

, n

2

, ..., nN )p(n
1

,�z)p(n
2

,�z)...p(nN ,�z) dn
1

dn

2

...dnN (17)

Since
Z 1

0

Z 1

0

...

Z 1

0

n

1

+ n

2

+ ...+ nN

n

1

+ n

2

+ ...+ nN
p(n

1

,�z)p(n
2

,�z)...p(nN ,�z) dn
1

dn

2

...dnN = 1 (18)

we have
Z 1

0

Z 1

0

...

Z 1

0

nk

n

1

+ n

2

+ ...+ nN
p(n

1

,�z)p(n
2

,�z)...p(nN ,�z) dn
1

dn

2

...dnN =
1

N

k = 1, 2, ..., N

(19)
and therefore

⌧ =
1

2d

NX

k=1

1

N


z

2

k

v

1

+
(d� zk)2

v

2

�
⇡ 1

2d2

Z d

0


z

2

v

1

+
(d� z)2

v

2

�
dz =

d

6

✓
1

v

1

+
1

v

2

◆
(20)

which is the expected center of gravity of the two triangular signals form the electrons and the holes.
The second moment of the c.o.g. time ⌧

2 is given by

⌧

2 =

Z 1

0

Z 1

0

...

Z 1

0

⌧

2(n
1

, n

2

, ..., nN )p(n
1

,�z)p(n
2

,�z)...p(nN ,�z) dn
1

dn

2

...dnN (21)

⌧

2(n
1

, n

2

, ..., nN ) =
1

4d2 (
PN

k=1

nk)2

NX

k=1

NX

r=1

nknr


z

2

k

v

1

+
(d� zk)2

v

2

� 
z

2

r

v

1

+
(d� zr)2

v

2

�
(22)

We define

aN =

Z 1

0

Z 1

0

...

Z 1

0

nk nr

(n
1

+ n

2

+ ...+ nN )2
p(n

1

,�z)p(n
2

,�z)...p(nN ,�z) dn
1

dn

2

...dnN k 6= r

bN =

Z 1

0

Z 1

0

...

Z 1

0

n

2

k

(n
1

+ n

2

+ ...+ nN )2
p(n

1

,�z)p(n
2

,�z)...p(nN ,�z) dn
1

dn

2

...dnN (23)

and since we have
Z 1

0

Z 1

0

...

Z 1

0

(n
1

+ n

2

+ ...+ nN )2

(n
1

+ n

2

+ ...+ nN )2
p(n

1

,�z)p(n
2

,�z)...p(nN ,�z) dn
1

dn

2

...dnN = 1 (24)

it holds that

N bN +N(N � 1)aN = 1 ! aN =
1�N bN

N(N � 1)
⇡ 1

N

2

� bN

N

(25)
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The second moment of ⌧ therefore becomes

⌧

2 =
bN

4d2

NX

k=1


z

2

k

v

1

+
(d� zk)2

v

2

�
2

+
aN

4d2

NX

k=1

NX

r 6=k=1


z

2

k

v

1

+
(d� zk)2

v

2

� 
z

2

r

v

1

+
(d� zr)2

v

2

�
(26)

=
bN � aN

4d2

NX

k=1


z

2

k

v

1

+
(d� zk)2

v

2

�
2

+
aN

4d2

NX

k=1

NX

r=1


z

2

k

v

1

+
(d� zk)2

v

2

� 
z

2

r

v

1

+
(d� zr)2

v

2

�
(27)

⇡ bN

4d2
1

�z

Z d

0


z

2

v

1

+
(d� z)2

v

2

�
2

dz +
aN

4d2
1

(�z)2

 Z d

0


z

2

v

1

+
(d� z)2

v

2

�
dz

!
2

(28)

=
bN

�z

d

3(3v2
1

+ v

1

v

2

+ v

2

2

)

60v2
1

v

2

2

+
aN

(�z)2
d

4(v
1

+ v

2

)2

36v2
1

v

2

2

(29)

=
bN

�z

d

3(4v2
1

� 7v
1

v

2

+ 4v2
2

)

180v2
1

v

2

2

+
d

2(v
1

+ v

2

)2

36v2
1

v

2

2

(30)

and we have for the variance

�2

⌧ = ⌧

2 � ⌧

2 =
bNd

�z

d

2(4v2
1

� 7v
1

v

2

+ 4v2
2

)

180v2
1

v

2

2

(31)

The expression for �⌧ is symmetric with respect to v

1

and v

2

, which reflects the fact that the induced
signal on the electrode at z = 0 is always equal (and opposite in sign) to the signal at the electrode at
z = d. To evaluate bN

bN =

Z 1

0

Z 1

0

...

Z 1

0

n

2

1

p(n
1

,�z)

(n
1

+ n

2

+ ...+ nN )2
dn

1

�
p(n

2

,�z)...p(nN ,�z) dn
2

...dnN (32)

we change variables according to n = n

2

+ n

3

+ ...+ nN , i.e. n
2

= n� n

3

� n

4

� ...� nN and dn

2

= dn

and see that the expression outside the brackets becomes equal to the the N � 1 times self convoluted
probability p(n,�z) which is simply p(n, d � �z) ⇡ p(n, d). Using Eq. 1 for small values of �z the
expression therefore becomes

bN =

Z 1

0

Z 1

0

n

2

1

p(n
1

,�z)

(n
1

+ n)2
dn

1

�
p(n, d)dn =

Z 1

0


�z

�

Z 1

0

n

2

1

pclu(n1

)

(n
1

+ n)2
dn

1

�
p(n, d)dn (33)

Up to this point the expression for bN is still completely general for any kind of cluster size distributions
pclu(n) and resulting p(n, d). Using the Landau theory we use pclu(n) from Eq. 4 and have

Z 1

0

n

2

1

pclu(n1

)

(n
1

+ n)2
dn

1

=

Z 1

2.50

2.50

(n
1

+ n)2
dn

1

=
2.50

n+ 2.50
⇡ 2.50

n

(34)

(for n � 1) and with Eq. 5 we get

bN ⇡ 2.50
�z

�

Z 1

0

p(n, d)

n

dn =
�z

d

Z 1

0

L(z + � � 1� log d/�)

z

dz ⇡ �z

d

1

(1 + 1.155 log d/�)
(35)

The last expression is an approximation of better than 1% in the interval 4 < log d/� < 10, which
corresponds to a range of the silicon sensor thickness of 15 < d < 5000µm for a value of � = 0.25µm.
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For the standard deviation we therefore finally have

�⌧ ⇡ dp
1 + 1.155 log d/�

s
4

180v2
1

� 7

180v
1

v

2

+
4

180v2
2

(36)

This is the time resolution of a silicon sensor when measuring the c.o.g. time. Neglecting the weak
dependence on log d/�, at constant electric field i.e. at constant drift velocity v

1

and v

2

, the time
resolution scales with d, which represents the trivial fact that the duration of the signal and therefore
also �⌧ scales with d. For a given voltage V , the electric fields in the thinner sensors, and therefore the
velocities of electrons and holes are of course larger, so the time resolution improves significantly beyond
the 1/d scaling for thin sensors.
If we associate v

1

and v

2

with the electron and hole velocity, T
1

= d/v

1

and T

2

= d/v

2

are the total drift
times of electrons and holes, and T

12

= d/

p
v

1

v

2

is the total drift time assuming the geometric mean of

the electron and hole velocity. The expression 1/
p

1 + 1.155 log d/� varies only from 0.37 to 0.33 for d

from 50µm to 300µm for � = 0.25µm, which means that the e↵ect of the Landau fluctuations does not
vary significantly in this range of sensor thickness. So by approximating it with the value of 0.35 we have

�⌧ ⇡ 1

20

q
T

2

1

� 1.75T
12

+ T

2

2

50µm < d < 300µm (37)

To get realistic estimates we use an approximation for the velocity of the electrons and holes from [26]

ve(E) =
µe E


1 +

⇣
µ
e

E
ve

sat

⌘�
e

�
1/�

e

vh(E) =
µh E


1 +

⇣
µ
h

E
vh

sat

⌘�
h

�
1/�

h

(38)

where we chose µe = 1417 cm2/Vs, µh = 471 cm2/Vs, �e = 1.109, �h = 1.213 and v

e
sat = 1.07⇥ 107 cm/s

and v

h
sat = 0.837 ⇥ 107 cm/s at 300K in accordance with the default models in Sentaurus Device [23].

The resulting drift velocity together with the time that the electrons and holes need to traverse the sensor
(assuming Vdep = 0) are given in Fig. 2. For a 50µm sensor at 200V the electrons take 0.6 ns and the
holes take 0.8 ns to traverse the sensor, so the total signal duration is < 0.8 ns.
The values for the time resolution according to Eq. 36 are given in Fig. 3. For an applied voltage of 200V
the values are 370, 180, 59, 23 ps for 300, 200, 100, 50µm sensors. It should be noted that the Landau
theory overestimates the charge deposit fluctuations by 20-30% and the resulting c.o.g. time distribution
has significant tails, so this standard deviation should be a conservative estimate of the time resolution.
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Figure 4: a) Amplifer response for n = 2, 3, 4 from Eq. 39. b) Contribution to the time resolution from the noise.

5. Noise contribution to the c.o.g. time

As shown in Eq. 10 the c.o.g. time of a signal can be measured by using an amplifier with a peaking
time tp that is larger than the total signal time T . For a 50µm sensor at 250V this signal time is
T ⇡ 0.8 ns, so an amplifier with peaking time tp > 1.5 ns can realise such a measurement. The problem
to solve is therefore to measure the time of a pulse with know shape (the delta response) that has noise of
a known frequency spectrum superimposed. This can be accomplished by various techniques of constant
fraction discrimination or continuous sampling with optimum filtering methods, both of which will be
discussed in this section. For the remainder of the report we assume an unipolar amplifier with a delta
response of

f(t) =

✓
t

tp

◆n

e

n(1�t/t
p

)⇥(t) (39)

where tp is the peaking time and ⇥(t) is the Heaviside step function. The delta response for n = 2, 3, 4 is
shown in Fig. 4a. Such an amplifier can be realized by n integration integration stages with ⌧ = RC =
tp/n and for large values of n it approaches Gaussian shape (semi-gaussian shaping). In general we can
use it to parametrize a measured delta response shape by adjusting n and tp to fit a specific amplifier
delta response. The normalized transfer function and related 3 dB bandwidth frequency fbw of the above
delta response are given by

|W (i2⇡f)| = 1q
[1 + (2⇡f)2t2p/n

2]n+1

fbw =
1

2⇡ tp
n

p
21/(n+1) � 1 (40)

For constant fraction discrimination we set the threshold to a value where f(t) has the maximum slope
of f 0(ts) at time ts which evaluates to

ts = tp (1� 1/
p
n) f

0(ts) =
1

tp
e

p
n
n

(3/2�n)(n�
p
n)n�1 (41)

Assuming a pulse-height A and a noise of �noise, the timing error when applying the threshold at the
maximum slope is then

�t =
�noise

A

1

f

0(ts)
=

�noise

A

tp

e

p
n
n

(3/2�n)(n�
p
n)n�1

=
�noise

A

1

2⇡fbw

p
21/(n+1) � 1

e

p
n
n

(1/2�n)(n�
p
n)n�1

(42)
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as illustrated in Fig. 4b. This evaluates to

=
�noise

A

tp ⇥ (0.59, 0.57, 0.54, 0.51) for n = 2, 3, 4, 5 (43)

=
�noise

A

1

fbw
⇥ (0.10, 0.12, 0.13, 0.14) for n = 2, 3, 4, 5

So for an amplifier with a peaking time of tp=1ns and n = 2, the time resolution is 60 ps for a signal to
noise ratio of 10 and 20 ps for a signal to noise ratio of 30.
The pulse-height of the sensor signal is given by the total number n of deposited e-h pairs, so if we write
the noise �noise in units of electrons the signal to noise ratio is �noise/n. Since n is varying according
to the Landau distribution p(n, d) from Eq. 5, using Eq. 35 we can calculate the average signal to noise
ratio and the average time resolution to

�t =
�noise

f

0(ts)

Z 1

0

p(n, d)

n

dn ⇡ �noise

f

0(ts)

0.4�

d

1

1 + 1.155 log d/�
(44)

= �noise
0.4�

d

1

1 + 1.155 log d/�
tp ⇥ (0.59, 0.57, 0.54, 0.51) for n = 2, 3, 4, 5 (45)

= �noise
0.4�

d

1

1 + 1.155 log d/�

1

fbw
⇥ (0.10, 0.12, 0.13, 0.14) for n = 2, 3, 4, 5 (46)

For an average cluster distance of � = 0.25µm an amplifier with n = 2, this expression becomes

�t = �noise[electrons] ⇥ 1.6⇥ 10�4

tp d = 50µm (47)

= �noise[electrons] ⇥ 3.3⇥ 10�5

tp d = 200µm (48)

Assuming a 50µm sensor and a peaking time of 2 ns and an Equivalent Noise Charge (ENC) of 50
electrons, the noise contribution to the time resolution is 16.6 ps. Assuming a 200µm sensor and tp = 10ns
and and ENC of 200 electrons, the contribution to the time resolution is 66 ps. The series noise of an
amplifier for a given white series noise spectral density e

2

n and detector capacitance C is given by

�

2

noise =
1

2
e

2

nC
2

Z 1

�1
f

0(t)2dt =
1

2
e

2

n C
2

n

2 (2n� 2)!

tp

⇣
e

2n

⌘
2n

(49)

For constant e

2

n the noise decreases with 1/
p
tp while the time resolution is proportional to tp, so one

favours short peaking times for minimizing the impact of noise, as long as other noise sources do not
become dominant.

Since we know the shape of the delta response, continuous sampling of the signal and fitting of the
known shape to the sample points provides an e↵ective way to determine the time as shown in Fig. 5a)
and investigated in the following. We have to fit the function Af(t� ⌧) to the measured signal with the
amplitude A and time ⌧ as free parameters. Linearizing this expression for small values of ⌧ we have

Af(t� ⌧) ⇡ Af(t)�Af

0(t)⌧ = ↵

1

f(t)� ↵

2

f

0(t) ↵

1

= A ↵

2

= A⌧ (50)

Finding the best estimate of ↵
1

,↵

2

for a signal signal S
1

, S

2

, ..., SN sampled at times t

1

, t

2

, ..., tN leads
to the familiar problem of linear regression. We proceed as outlined in [24] where the problem is stated
as a �

2 minimization according to

�

2 =
NX

i=1

NX

j=1

[Si � ↵

1

f(ti) + ↵

2

f

0(ti)]Vij [Sj � ↵

1

f(tj) + ↵

2

f

0(tj)] (51)
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Figure 5: a) Sampling the signal at constant frequency. b) Autocorrelation function of f

0
(t) for n = 2, 3, 4. For times

smaller than 0.5 t

p

the samples become highly correlated.

The matrix Vij is the inverse of the autocorrelation matrix Rij = R(ti � tj) with R(t) being the autocor-
relation function of the noise. The autocorrelation function of this series noise is

R(t) = �

2

noise

Z 1

�1
f

0(t+ u) f 0(u)du = �

2

noise n!

✓
2n|t|
tp

◆n 2tpKn�1/2(n|t|/tp)� tKn+1/2(n|t|/tp)
(2n� 2)!

p
2n|t| tp⇡

(52)

with K⌫(x) being the modified Bessel function of the second kind. For n = 2, 3 evaluates to

R(t) = �

2

noiseU(t) = �

2

noise e
�2|t|/t

p

"
1 + 2

|t|
tp

� 4

✓
|t|
tp

◆
2

#
n = 2 (53)

= �

2

noise e
�3|t|/t

p

"
1 + 3

|t|
tp

� 9

✓
|t|
tp

◆
3

#
n = 3 (54)

The autocorrelation function is shown in Fig. 5b), and we see that for time intervals smaller than tp/2
the samples become highly correlated. In the following we us ns samples within the peaking time tp, so
we have sampling time bins of �t = tp/ns. We sample the signal in the range of 0 < t < 5 tp, giving
ti = i�t with 0 < i < 5ns. Defining

Q

1

(ns) =
X

ij

f(ti)U
�1

ij f(tj) Q

2

(ns) =
X

ij

f

0(ti)U
�1

ij f

0(tj) Q

3

(ns) =
X

ij

f

0(ti)U
�1

ij f(tj) (55)

where U

�1

ij is the inverse of the matrix Uij = U(ti � tj), the covariance matrix elements "ij for ↵
1

,↵

2

are
then

"

11

= �

2

A =
�

2

noise Q2

Q

1

Q

2

�Q

2

3

"

22

= A

2

�

2

⌧

t

2

p

=
�

2

noise Q1

Q

1

Q

2

�Q

2

3

"

12

=
�

2

noise Q3

Q

1

Q

2

�Q

2

3

(56)

So for the time resolution we finally have

�⌧

tp
=

�noise

A

s
Q

1

(ns)

Q

1

(ns)Q2

(ns)�Q

3

(ns)2
=

�noise

A

c(ns) (57)

Using as before the average signal to noise ratio for a sensor of thickness d we find

�t = �noise[electrons]
0.4�

d

1

1 + 1.155 log d/�
tp c(ns) (58)
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Figure 6: The function c(n

s

) for an amplifier with n = 2 (top) and n = 3 (bottom). The horizontal line is the result for

constant fraction discrimination at the maximum slope from Eq. 45.

This expression represents the optimum time resolution that can be achieved for a given sampling fre-
quency. Fig. 6 shows the function c(ns) assuming an amplifier with n = 2, 3. The horizontal lines
correspond to the numbers of 0.59 and 0.57 from Eq. 45 when using constant fraction discrimination at
the maximum slope. The families of curves represent a scan of the sampling phase with respect to the
peak of the signal and the solid curve represents the average. The samples on the largest slope carry the
highest weight on time information, while samples around the signal peak carry very little time informa-
tion.
We see that sampling at an interval corresponding to half the peaking time (ns = 2) gives approximately
the same result as the constant fraction discrimination at maximum slope. By increasing the sampling
rate further the value cannot be improved much beyond a factor 2-3. This result is quite evident, since
the noise is highly correlated on a timescale of < tp/2 as seen from Fig. 5b, so further increase of the
sampling rate does not provide more information.
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Figure 7: a) A pixel of dimension w

x

, w

y

centred at x = y = z = 0 in a parallel plate geometry of plate distance d. b)

Uniform charge deposit of a particle passing the silicon sensor. v1 is the velocity of charges moving towards the pixel and

v2 is the velocity of charges moving away from the pixel.

6. Weighting field e↵ect on the c.o.g. time for uniform charge deposit

Up to now we have assumed the sensor readout electrode to be represented by an infinite parallel plate
capacitor, which in practice corresponds to readout pads or pixels that are much larger than then sensor
thickness d. In many practical applications, the granularity is however similar to the sensor thickness.
The shape of the induced signal therefore becomes dependent on the x, y position of the track and the
c.o.g. time will be a↵ected. In this section we investigate this e↵ect by using the weighting field of a
rectangular pixel as presented in [25], shown in Fig. 7a and detailed in the Appendix.
We assume again the sensor to be represented by a parallel plate geometry between z = 0 and z = d

and assume charges to move along the z-axis. We assume normal incidence of the particle and negligible
di↵usion. The plate at z = 0 is segmented into pixels such that we find a weighting field of Ew(x, y, z) =
�d�w(x, y, z)/dz along the z-axis. We first assume a single charge pair to be produced at position z with
�q moving towards the the pixel at z = 0 according to z

1

(t) = z � v

1

t and +q moving towards the plate
at z = d according z

2

(t) = z + v

2

t, so the induced current becomes

i(t)

q

= Ew[x, y, z1(t)]ż1(t)⇥(z/v1 � t) + Ew[x, y, z2(t)]ż2(t)⇥((d� z)/v
2

� t) (59)

= �v

1

Ew[x, y, z � v

1

t]⇥(z/v
1

� t)� v

2

Ew[x, y, z + v

2

t]⇥((d� z)/v
2

� t) (60)

The c.o.g. time of this signal is

⌧(x, y, z) =

R
t i(t)dtR
i(t)dt

=
d

v

1

 
1

(x, y, z) +
d

v

2

 
2

(x, y, z) (61)

 
1

(x, y, z) =
z

d

� 1

d

Z z

0

�w(x, y, z
0)dz0  

2

(x, y, z) =
1

d

Z d

z

�w(x, y, z
0)dz0 (62)
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a) b) c)

Figure 8: The functions a1(x, y) and a2(x, y) from Eq. 64 that determine the c.o.g. time for a signal from two line charges

�q

line

, q

line

at position x, y,. The top graph corresponds to a1 and the bottom one to a2. The three plots correspond to

pads of size w/d = 0.1, w/d = 1, w/d = 10.

In case there is not a single pair of charges q,�q but a pair of uniform line charges between z = 0 and
z = d, as shown in Fig. 7b), we have

I(x, y, t)

qline
= �v

1

Z d

0

Ew[x, y, z � v

1

t]⇥(z/v
1

� t)dz � v

2

Z d

0

Ew[x, y, z + v

2

t]⇥((d� z)/v
2

� t)dz

= �v

1

[1� �w(x, y, d� v

1

t)]⇥(d/v
1

� t)� v

2

�w(x, y, v2t)⇥(d/v2 � t) (63)

where qline is the charge per unit of length. The c.o.g. time of this signal then reads as

⌧(x, y) =
d

v

1

a

1

(x, y) +
d

v

2

a

2

(x, y) = T

1

a

1

(x, y) + T

2

a

2

(x, y) (64)

a

1

(x, y) =
1

d

Z d

0

 
1

(x, y, z)dz =
1

2
� 1

d

2

Z d

0

(d� z)�w(x, y, z)dz (65)

a

2

(x, y) =
1

d

Z d

0

 
2

(x, y, z)dz =
1

d

2

Z d

0

z�w(x, y, z)dz (66)

The two functions a

1

(x, y) and a

2

(x, y) are shown in Fig. 8. We can see that for large pads the values
for both functions approach the constant value of 1/6 in accordance with Eq. 20 with some deviations
at the border. For small pads the average of a

1

and a

2

is quite di↵erent, but the functions are also quite
uniform. For the pad size of w/d ⇡ 1 the two functions vary significantly across the pad, which we will
quantify next. In case the pixel is uniformly irradiated, the probability to hit an area dx dy is given by
dx dy/(wxwy) and the average c.o.g. time, the second moment and the standard deviation �⌧ are given
by

⌧ =
1

wx wy

Z w
x

/2

�w
x

/2

Z w
y

/2

�w
y

/2

⌧(x, y)dxdy ⌧

2 =
1

wx wy

Z w
x

/2

�w
x

/2

Z w
y

/2

�w
y

/2

⌧

2(x, y)dxdy (67)

�2

⌧ = ⌧

2 � ⌧

2 = d

2

✓
c

11

v

2

1

+
c

12

v

1

v

2

+
c

22

v

2

2

◆
= c

11

T

2

1

+ c

12

T

12

+ c

22

T

2

2

(68)

where we have defined

c

11

=
1

wx wy

ZZ
a

2

1

dxdy �
✓

1

wx wy

ZZ
a

1

dxdy

◆
2

(69)

c

12

=
2

wx wy

ZZ
a

1

a

2

dxdy � 2

(wx wy)2

ZZ
a

1

dxdy

ZZ
a

2

dxdy (70)

c

22

=
1

wx wy

ZZ
a

2

2

dxdy �
✓

1

wx wy

ZZ
a

2

dxdy

◆
2

(71)
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and
T

1

= d/v

1

T

2

= d/v

2

T

12

= d/

p
v

1

v

2

(72)

Before moving to the numerical evaluation we investigate the limiting cases for very large and very small
pads. For large pixels we have �w = 1� z/d and the expressions become

a

1

(x, y) =
1

6
a

2

(x, y) =
1

6
for w/d � 1 (73)

which results in ⌧ = d/6(1/v
1

+ 1/v
2

) in accordance with Eq. 20 for an infinite plane. Since there is no
dependence on x, y,, the coe�cients c

11

, c

12

, c

22

vanish, which is the expected result for an infinitely large
pad.

For very small pads the weighting potential falls to zero very quickly as a function of z, from it’s value
of unity on the pad surface at z = 0. The integrals of the weighting potential over z will therefore vanish
and we have

a

1

(x, y) =
1

2
a

2

(x, y) = 0 for w/d ⌧ 1 (74)

For this case only the charges moving towards the pad with v

1

contribute to the c.o.g. time and the av-
erage c.o.g. time becomes ⌧ = d/2v

1

. Since the weighting potential and weighting field are concentrated
around the pixel surface the charges that never enter this area, i.e. the charges moving with v

2

towards
z = d will not contribute to the signal. The coe�cients c

11

, c

12

, c

22

will again vanish because a

1

and a

2

have no dependence on x, y. Because the two limiting cases are zero, this means that there will be a pad
size where the e↵ect of the weighting field fluctuation is maximal, which we see in the following.

The numerical evaluation of Eqs. 69, 70, 71 for square pixels of width w for di↵erent rations of w/d
are given in Table 1 of the Appendix and the graphical representation of the coe�cients is shown in in
Fig. 9. The weighting potential of a pixel as given in Eq. 114 of the Appendix is used. The weighting field
e↵ect on the time resolution is worst for pad sizes corresponding to about 2-3 times the sensor thickness
d, where the c

11

and c

12

coe�cients assume a value around 2⇥ 10�3. The coe�cient c
11

is related to v

1

i.e. to the charges moving to the readout pad, c
22

is related to the charges moving in opposite direction.
Since c

11

> c

22

by a significant factor, the time resolution will be better if v
1

> v

2

i.e. if the electrons
are moving towards the pixels. The contribution to the time resolution from Eq. 68 is shown in the
Fig. 10. In case the holes move towards the pixel we find a maximum for values of w/d ⇡ 2, where the
contribution becomes similar to the value from Landau fluctuations. In case the electrons move towards
the pixel, the contribution is significantly smaller with maxima around w/d ⇡ 1.
The final resolution is however not given by the square sum of the Landau fluctuations from Eq. 36 and
the weighting field fluctuations from Eq. 68, since there is a very strong correlation between the two.
This will be discussed in the next section.
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Figure 9: The coe�cients c11, c12, c22 for di↵erent values of w/d, where w is the width of the square pad and d is the silicon

sensor thickness.
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Figure 10: Standard deviation for the c.o.g. time for sensor thickness of a) d = 200µm and b) d = 50µm and V = 200V,

assuming uniform charge deposit and a square readout pad. The horizontal line represents c.o.g. time resolution from Eq.

36 due to Landau fluctuations only. The two curves in the plots represent the e↵ect of weighting field fluctuations where

either the electrons or the holes move towards the readout pad.
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Figure 11: Silicon sensor with a readout pad centered at x = y = z = 0. v1 is the velocity of charges moving towards the

pixel and v2 is the velocity of charges moving away from the pixel.

7. C.o.g. time resolution for combined charge fluctuations and weighting field fluctuations

In this section we consider the Landau fluctuations together with the variation of the x, y position of
the particle trajectory and the related fluctuation of the weighting field. The center of gravity time for a
particle that passes the sensor at position x, y and deposits nk charges in the N detector slices is given
by

⌧(n
1

, n

2

, ..., nN , x, y) =
1

PN
k=1

nk

NX

k=1

nk⌧(x, y, k�z) (75)

where ⌧(x, y, z) is from Eq. 61. Proceeding as before we have to calculate ⌧ and ⌧

2, where in addition
to the integrals over dn

1

, dn

2

, ..., dnN we have to perform the integral 1/(wxwy)
R R

⌧dxdy for uniform
illumination of a pad, and the final result for the variance is

⌧

2 � ⌧

2 =
bN d

�z
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41
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d

Z d

0
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!
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5
dxdy (76)
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!
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#
2

The second line of the expression is equivalent to the one considering the weighting field e↵ect without
charge fluctuations from the previous section, so the result can be expressed in the following terms
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with bN d/�z = 1/(1 + 1.155 log d/�) for the Landau fluctuations. The coe�cients c

11

, c

12

, c

22

are the
ones from the previous chapter and the coe�cients k

11

, k

12

, k

22

are given by
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ZZ
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11
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2
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)dxdy k
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2

)dxdy k
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(78)
with

b

11

(x, y) =
1

d

Z d

0

 
1

(x, y, z)2dz =
1

d

Z d

0


z

d

� 1

d

Z z

0

�w(x, y, z
0)dz0

�
2

dz (79)

b

12

(x, y) =
1

d

Z d

0

 
1

(x, y, z) 
2

(x, y, z)dz =
1

d

Z d

0


z

d

� 1

d

Z z

0

�w(x, y, z
0)dz0

� "
1

d

Z d

z

�w(x, y, z
0)dz0

#
dz

b

22

(x, y) =
1

d

Z d

0

 
2

(x, y, z)2dz =
1

d

Z d

0

"
1

d

Z d

z

�w(x, y, z
0)dz0

#
2

dz

First we verify that the limiting cases for very large pads and very small pads. For large pads we substitute
for the weighting potential the expression �w(x, y, z) = 1� z/d and find
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which gives k
11

= k

22

= 4/180, k
12

= �7/180 and c
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= c

12

= c

22

= 0, so we recuperate Eq. 31. For very
small pads the integrals of the weighting potential over z will again vanish as discussed before, and we
have
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which gives k
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For small pads the weighting potential decays very quickly fas a function of z, from its value of 1 on the
pad surface to zero. The weighting field, which defines the induced current, is therefore very large close
to the pad and zero for larger values of z. Only when the charges arrive at this position they will induce
a signal. In the limiting case this is equivalent to a delta current signal for each charge that arrives at
z = 0, and we have
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so we indeed recuperate the above expression for �⌧ ! We’ll see the same formula later in Eq. 100 for
silicon sensors with gain.
The coe�cients k

11

, k

12

, k

22

for square pads are listed in Table 2 of the Appendix and are shown in Fig.
12. The factor k

11

, related to the charges moving with v

1

towards the pixel, is again larger than k

22

, so
as stated before the resolution is better if the electrons move towards the pixel. This fact is illustrated
in Fig. 13 and Fig. 14 for a 200µm and 50µm sensor. It shows a significant di↵erence for these two
scenarios. In case the electrons move to the pixel the weighting field e↵ect seems not to add significantly
to the time resolution for values of w/d & 1.
For pads with w/d > 20 one approaches the scenario of an infinitely extended electrode, as expected. For
smaller pixels the resolution is significantly worse than expected from the quadratic sum of the weighting
field e↵ect for uniform charge deposit and the Landau fluctuation e↵ects assuming an infinitely large
electrode.
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Figure 12: The coe�cients k11, k12, k22 for di↵erent values of w/d, where w is the width of the square pad and d is the

silicon thickness. The dotted lines represent the for very small pads and very large pads as discussed in the text.
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Figure 13: C.o.g. time resolution for values of d = 200µm and V = 200V as a function of the pixel size w. The ’c only’

curve refers to the e↵ect from a uniform line charge. In a) the electrons move towards the pixel while in b) the holes move

towards the pixel.
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Figure 14: Time resolution for values of d = 50µm and V = 200V as a function of the pixel size w. The ’c only’ curve refers

to the e↵ect from a uniform line charge. In a) the electrons move towards the pixel while in b) the holes move towards the

pixel.
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8. Leading edge discrimination

Up to this point we have just discussed the center of gravity time of the detector signals. In this
section we consider the measured time to be determined by leading edge discrimination of the normalized
detector signal. We process the detector signal by an amplifier of a given peaking time, and perform the
so called ’slewing correction’ for eliminating the timewalk e↵ect from pulseheight fluctuations by dividing
the amplifier output signal by the total signal charge and set the threshold to a given fraction of this
signal. The current signal due to a single charge pair �q, qat position x, y, z is

i

0

(x, y, z, t) = �q [v
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1
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2
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The current signal for having n

1

e/h pairs at z = �z, n
2

e/h pairs at z = 2�z etc. is given by
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, ..., nN , x, y, t) =
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nki0(x, y, k�z, t) (85)

We now process this signal by an amplifier with delta response cf(t/tp) where tp is the peaking time,
f(1) = 1, c is the amplifier sensitivity in units of [V/C] and f(x) is defined by

f(x) = x

n
e

n(1�x) (86)

The amplifier output signal becomes
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where g(x, y, z, t) is given by
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The weighting field E

z
w(x, y, z, wx, wy, d) for a pixel is given in Eq. 119 of the Appendix. To perform

slewing corrections we divide the signal by the total charge q

P
nk and we get the normalized amplifier

output signal
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The averaged normalized signal and the variance of the signal evaluate to
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The time resolution is then defined by (Fig. 15b)
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�h(t)

h

0
(t)

(93)

Here we just discuss the example of an infinitely extended pixel i.e. we use E

z
w(x, y, z, wx, wy, d) = 1/d,

which evaluates g(x, y, z, t) to

n

n+1

e

n

d

tp
g(x, y, z, t) = v

1

⇥(z � v

1

t) [n!� �(n+ 1, t/tp)]

� v

1

⇥(v
1

t� z) [�(n+ 1, t/tp)� �(n+ 1,�(z � v

1

t)/(tpv1)]

+ v

2

⇥((d� z)� v

2

t) [n!� �(n+ 1, t/tp]

� v

2

⇥(v
2

t� (d� z)) [�(n+ 1, t/tp)� �(n+ 1,�(d� z � v

2

t)/(tpv2)]

where n and tp are the parameters defining the amplifier. As an example the average signal h(t) for a
50µm sensor at 200V for di↵erent peaking times is shown in Fig. 15a). The signal duration is around
0.8 ns, so for small peaking times of 0.25 and 0.5 ns there is significant ’ballistic deficit’ while for peaking
times > 1 ns the amplifier ’integrates’ the full signal and the normalized amplitude becomes unity. In
Fig. 15b) the average normalized signal for a peaking time of 0.25 ns is shown, together with ±1 standard
deviations.
The resulting time resolution is the shown in Fig. 16a) and Fig. 17a) for a 50µm and a 200µm sensor.
We find that for large peaking times, the time resolution indeed approaches the c.o.g. time value, while
for smaller peaking times the time resolution can be significantly better when setting the threshold at less
than 30-40% of the normalized signal. E.g. for the 50µm sensor at 200V, a peaking time of 0.25 ns and
a threshold set to 40% of the total signal charge one should even arrive at 12 ps time resolution. For a
200µm sensor one expects a time resolution of < 100 ps for tp = 5ns and a threshold at 30% of the signal.

To study the impact of the noise we assume �noise to be given in units of electrons. This noise is
superimposed to the signal s(t) from E.q 87, so when normalizing the signal to arrive at h(t) we also have
to normalize the noise by the total amount of charge deposited in the sensor. The average normalized
noise the becomes

�norm =

Z 1

0

�noise

n

p(n, d) dn = �noise
�

2.50 d

1

1 + 1.155 log d/�
(94)

The contribution of the noise to the time resolution is then

�t =
�norm

h

0
(t)

(95)

We can therefore express the required noise level when using a threshold of h(t), that matches the
resolution from Landau fluctuations from Eq. 93, as

�noise[electrons] = �h(t)
2.50 d

�

(1 + 1.155 log d/�) (96)

The numbers are shown in Fig. 16b) and Fig. 17b). For the 50µm sensor and tp = 0.25 ns the required
noise level is 100 electrons and for the 200µm sensor at tp = 5ns the required noise is 400 electrons.
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Figure 15: a) Average normalized signal h(t) for amplifier peaking times t
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= 0.25, 0.5, 1, 2, 6 ns for a 50µm sensor and

V=200V. b) The normalized average signal h(t) for t
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(t) and h(t)��
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Figure 16: a) Time resolution for a sensor of 50µm thickness at 200V bias voltage. The slewing correction is performed by

dividing the signal by the total charge and applying the threshold as a fraction of this charge. b) ENC needed to match

the noise e↵ect on the time resolution to the e↵ect from the Landau fluctuations.
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Figure 17: a) Time resolution for a sensor of 200µm thickness at 200V bias voltage. The slewing correction is performed

by dividing the signal by the total charge and applying the threshold as a fraction of this charge. b) ENC needed to match

the noise e↵ect on the time resolution to the e↵ect from the Landau fluctuations.

22



z=0              

v1 v2 

d 

v1 v2 

v2 

T=0 

T=z/v1 

T>z/v1 

Gain 

z 
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part of the current signal.

9. Silicon sensors with internal gain

In the Low Gain Avalanche Diode (LGAD), a high field region is implemented in the sensor in order to
multiply electrons at some moderate gain and as a result improve the signal to noise ratio. We assume the
geometry from Fig. 1 with the amplification structure located at z = 0. The electrons will therefore move
from their point of creation to this structure, get multiplied and the holes created in the multiplication
process are moving back from z = 0 to z = d through the entire sensor thickness d. If we assume 1)
the gain G to be su�ciently large such that the signal from the primary electron and hole movement is
negligible, 2) the amplification structure to be infinitely thin, 3) a sensor with negligible depletion voltage,
the signal from a single e-h pair created at position z is of rectangular shape with duration T = d/v
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The average and standard deviation of the c.o.g. time is then

⌧ =
d

2

✓
1

v

1

+
1

v

2

◆
�⌧ =

s
bN d

�z

d

2

12v2
1

=
1p

1 + 1.155 log d/�

T

1p
12

(100)

23



100 1000500200 300150 700
Voltage HVL

100

50

20

200

30

300

15

150

70

Time Resolution HpsL

d=100um

d=100um gain

d=50um

d=50um gain

Figure 19: Standard deviation of the c.o.g. time from Eq. 36 for 50µm and 100µm thickness for standard sensors (solid)

and from Eq. 100 for and LGAD sensor with internal gain of electrons assuming a signal only from gain holes (dashed).

with T

1

= d/v

1

being the total electron drift time. This expression is the same as the one from Eq. 82
and Eq. 83, so this sensor is simply measuring the arrival time distribution of the electrons at z = 0. The
variance is significantly larger than the one for the sensor without gain, as shown in Fig. 19 for a sensor
thickness of 50 and 100µm. E.g. for a 50µm sensor the c.o.g. time resolution without gain is 23 ps while
for a sensor with gain it is around 60 ps.
The e↵ects defining the time resolution for a sensor with gain therefore di↵er significantly from one
without gain. The electrons first have to arrive at z = 0 before being amplified an producing the gain
signal, so the signal timing is defined by the arrival time distribution of the electron clusters at z = 0.
This is also illustrated by the fact that the second factor in Eq. 100 is simply the total transit time
Te = d/v

1

of the electrons through the full silicon thickness divided by
p
12. For the LGAD the c.o.g.

time is therefore not a good way to exploit the timing and it is essential to use fast electronics in order
to catch the signal from the very first arriving electron clusters.

10. Weighting field e↵ect on the c.o.g. time for silicon sensors with gain

For completion we discuss the e↵ect of the finite pixel size on the c.o.g. time resolution for sensors
with gain. Assuming the readout electrode at z = 0 to be segmented into pixels with an associated
weighting potential �w(x, y, z), the induced signal due to a single charge pair created at position z at
t = 0 becomes

i(t) = �Gq v
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and the c.o.g. time for this signal is given by
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Assuming a uniform charge deposit along the track, the c.o.g. time becomes
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for a gain sensor of 50µm thickness at 200V. The horizontal line shows the contribution from Landau fluctuations only,

while the other lines show the contribution from weighting field fluctuations as well as the combined e↵ect.
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which is the pendant to Eq. 68 for sensors without gain. The coe�cient s

22

for di↵erent pixel sizes is
shown in Fig. 20 a). The e↵ect on the time resolution for a 50µm sensor is shown in Fig. 20 b). The
e↵ect is again largest for pixel sizes of w/d ⇡ 3. In case we also take into account the Landau fluctuations
we have to use Eq. 102 in Eq. 76 and find
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which is the pendant to Eq. 77 for sensors without gain. So we find the interesting result that in this
case there is no correlation between the Landau fluctuations and the weighting field fluctuations and the
two components just add in squares. We also note that the result will be the same whether we segment
the electrode at z = 0 where the multiplication takes place or whether we segment the electrode at z = d.

11. Leading edge discrimination for silicon sensors with gain

We finally discuss the time resolution when considering leading edge discrimination of sensors with
gain. We proceed as before and convolute the signal from a single e-h pair at position z
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with the electronics delta response and find

g(x, y, z, t) = ⇥(t� z/v

1

)⇥(d/v
2

+ z/v

1

� t)

Z v2
d

(1� z

v1
)

0

f

✓
t� z/v

1

� ud/v

2

tp

◆
E

⇣
x

d

,

y

d

, u,

wx

d

,

wy

d

, 1
⌘
du

+ ⇥(t� d/v

2

� z/v

1

)

Z
1

0

f

✓
t� z/v

1

� ud/v

2

tp

◆
E

⇣
x

d

,

y

d

, u,

wx

d

,

wy

d

, 1
⌘
du (107)

25



a)

tp=0.25ns tp=0.5ns tp=1ns tp=2ns

0.0 0.2 0.4 0.6 0.8 1.0
Threshold0

20

40

60

80

100
Time resolution HpsL

b)

tp=0.25ns

tp=0.5ns

tp=1ns

tp=2ns

tp=6ns

0.0 0.2 0.4 0.6 0.8 1.0
Threshold0

50

100

150

200

250

300
ENC HelectronsL

Figure 21: a) Time resolution for a gain sensor of 50µm thickness at 200V bias voltage when applying a threshold to the

signal normalized by the total charge. The values do not improve beyond the c.o.g. time resolution number. b) ENC needed

to match the noise e↵ect of the time resolution to the e↵ect from the Landau fluctuations.

which for an infinitely extended electrode with Ew = 1/d evaluates to
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Evaluating Eq. 91, Eq. 92 and Eq. 93 we then find the results shown in Fig. 21a). We find that even for
leading edge discrimination of the normalized signal the time resolution for a sensor with gain does not
improve beyond the c.o.g. time resolution value. The reason is that in the outlined formulas the signal
is normalized by the total charge deposited in the sensor. The signal that makes up the leading edge has
however no correlation with the total deposited charge but is only related to the number of electrons that
have already arrived at the gain layer. This is very di↵erent from the standard silicon sensor without
gain, where the movement of all deposited charges makes up the leading edge signal.
For the sensors with gain, the slewing correction must therefore be related to the slope of the leading
edge and not to the total charge of the signal. Double threshold or classical constant fraction discrimi-
nators are therefore necessary to fully exploit the time resolution of these sensors. This goes beyond the
mathematical formalisms developed in this report and Monte Carlo simulations of this scenario might be
more e�cient.
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12. Conclusions

We have derived analytic expressions for the time resolution of silicon sensors.

• The standard deviation of the center of gravity (c.o.g.) time of a silicon detector signal is given by
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1p

1 + 1.155 log d/�
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assuming a large readout electrode, the Landau distribution for charge deposit and negligible de-
pletion voltage. d is the sensor thickness and � is the average distance between primary collisions,
which evaluates to ⇡ 0.25µm for relativistic particles. T

1

= d/v

1

, T

2

= d/v

2

, T

12

= d/

p
v

1

v

2

are the
drift times of the electrons and holes. This evaluates to �⌧ = 370, 180, 59, 23 ps for sensor thickness
values of 300, 200, 100, 50µm and assuming 200V applied with negligible depletion voltage. We
note that the Landau distribution tends to overestimate the charge fluctuations and that the time
distribution is quite non-gaussian, so these numbers might be slightly pessimistic.

• Measuring the sensor signal with an amplifier of peaking time tp larger than the drift time of
electrons and holes, the amplifier output is equal to the delta response, scaled by the total signal
charge and shifted by the c.o.g. time. To determine the time of this pulse of known shape one can
then use standard techniques of constant fraction discrimination and optimum filtering to extract
the time information. The average contribution of the noise to the time resolution is then

�t = �noise[electrons]
0.4�

d

1

1 + 1.55 log d/�
tp c(ns) (110)

where tp is the peaking time of the amplifier and c(ns) is a constant depending on the measurement
technique. Using constant fraction discrimination at the maximum slope of the signal we have
c(ns) ⇡ 0.55 � 0.6. Using continuous signal sampling and optimum filtering one arrives at similar
numbers when sampling at an interval of tp/2 and one can achieve c(ns) ⇡ 0.2� 0.3 for very high
frequency sampling. For tp = 2ns, d = 50µm and an Equivalent Noise Charge of 50 electrons we
have a contribution from the noise of �t ⇡ 17 ps, that has to be added in squares with the above
number of 23 ps from Landau fluctuations.

• Assuming a square readout pixel of dimension w, the variation the track position and therefore the
variation of the weighting field and related signal shape will have an impact on the time resolution
and the standard deviation of the c.o.g. time becomes
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Neglecting charge fluctuations and assuming a uniform charge deposit, the coe�cients k
11

, k

12

, k

22

vanish. Assuming very large readout pixels, the coe�cients c

11

, c

12

, c

22

vanish and k

11

, k

12

, k

22

become 4/180,�7/180, 4/180 in accordance with the above. For very small pixels, we have k

11

=
1/12 and all other coe�cients vanish, which is in accordance with an arrival time distribution of
charges at the pad. Landau fluctuations and weighting field fluctuations are strongly correlated,
so they cannot be decoupled or ’added in squares’. Since k

11

> k

22

, the e↵ect of weighting field
fluctuations is smallest if T

1

is small i.e. if the electrons move towards the readout pixel. In this case
it seems possible that for values of w/d & 1 the weighting field e↵ect does not add significantly to
the c.o.g. time resolution. We note that this calculation assumes perpendicular tracks and neglects
di↵usion.
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• The expressions for leading edge discrimination of the normalized silicon sensor signal (i.e. the
signal divided by the total charge) show that the c.o.g. time resolution is indeed recovered for large
peaking times, and that for faster electronics the time resolution is significantly improved when
placing the threshold at < 40% of the total signal charge. As an example, for a 50µm sensor at
200V, a peaking time of 1 ns and a threshold at 30% of the normalized signal, the time resolution is
15 ps and the noise must be less than 70 electrons in order to not significantly add to this value. For
a given series noise resistance en of an amplifier, the equivalent noise charge decreases with 1/

p
tp,

the e↵ect of the noise on time resolution does however increase linearly with tp. It is therefore
advantageous to use faster electronics if power consumption allows and other noise sources do not
start to become dominant.

• The e↵ect of the finite pixel size on the leading edge discrimination of the normalized signal can be
calculated with the formulas given in this report, the numerical evaluation is however quite involved
and a Monte Carlo simulation might be more e�cient.

• For silicon sensors with gain (LGAD), the standard deviation of the c.o.g. time becomes

�⌧ =
1p

1 + 1.155 log d/�

T

1p
12

(112)

This formula assumes that only the gain holes contribute to the signal. This expression is the
same as the one for the very small pixels without gain and represents in essence an arrival time
distribution. This resolution is significantly worse than the time resolution for a sensor without gain
e.g. it evaluates to 60 ps for a 50µm sensor at 200V. The c.o.g. time is therefore not a good way to
extract the time information for sensors with gain. Leading edge discrimination of the normalized
signal is also not providing an improved time resolution, since the total charge of the sensor signal
has no correlation to the arrival time of the first electrons. Fast electronics with leading edge
discrimination as well as slewing corrections related to the slope of the leading edge, like double
threshold or constant fraction discrimination, are therefore key to extract the best possible time
information from this type of sensor.

• Including the e↵ect of the finite pixel size on the c.o.g. time resolution of a silicon sensor with gain
we find
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In contrast to sensors without gain there is no correlation between the Landau fluctuations and the
weighting field fluctuations. For uniform charge deposit, only the second term of the expression
remains. For very large and very small pads the coe�cient s

22

vanishes and the e↵ect is largest
for w/d ⇡ 3. In addition the expression is the same, whether the pixel is on the gain side or the
opposite side of the sensor.

The solutions shown in this report set the scale of the problem and provide insight into some principle
dependencies of the time resolution on charge fluctuations, noise and weighting field fluctuations. The
inclusion of realistic charge deposit models as well as the e↵ect of di↵usion, track angle, finite depletion
voltage and pixelization are best accomplished through Monte Carlo simulations and the formulas of this
report can be used as benchmarks for such studies.

28



13. Appendix

The expression for the weighting potential of a rectangular pad of dimension wx, wy centred at x =
y = 0 with a parallel plate separation of d is given in [25] as

�w(x, y, z, wx, wy, d) =
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2⇡
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We note that
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The weighting field is given by
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g(x, y, u, wx, wy) =
x

1

y

1

(x2

1

+ y

2

1

+ 2u2)

(x2

1

+ u

2)(y2
1

+ u

2)
p
x

2

1

+ y

2

1

+ u

2

+
x

2

y

2

(x2

2

+ y

2

2

+ 2u2)

(x2

2

+ u

2)(y2
2

+ u

2)
p
x

2

2

+ y

2

2

+ u

2

� x

1

y

2

(x2

1

+ y

2

2

+ 2u2)

(x2

1

+ u

2)(y2
2

+ u

2)
p
x

2

1

+ y

2

2

+ u

2

� x

2

y

1

(x2

2

+ y

2

1

+ 2u2)

(x2

2

+ u

2)(y2
1

+ u

2)
p
x

2

2

+ y

2

1

+ u

2

(120)

and it holds that
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w/d c

22

c

12

c

11

c

11

+ c

12

+ c

22

0 0 0 0 0
0.01 6.13⇥ 10�12 �2.88⇥ 10�9 3.44⇥ 10�7 3.41⇥ 10�7

0.1 6.05⇥ 10�8 �2.75⇥ 10�6 3.18⇥ 10�5 2.91⇥ 10�5

0.2 9.28⇥ 10�7 �2.06⇥ 10�5 1.17⇥ 10�4 9.68⇥ 10�5

0.25 2.2⇥ 10�6 �3.88⇥ 10�5 1.74⇥ 10�4 1.37⇥ 10�4

0.5 2.77⇥ 10�5 �2.44⇥ 10�4 5.5⇥ 10�4 3.33⇥ 10�4

1. 2.1⇥ 10�4 �1.04⇥ 10�3 1.33⇥ 10�3 4.99⇥ 10�4

1.5 4.5⇥ 10�4 �1.78⇥ 10�3 1.81⇥ 10�3 4.86⇥ 10�4

2. 6.13⇥ 10�4 �2.18⇥ 10�3 2.⇥ 10�3 4.34⇥ 10�4

3. 7.13⇥ 10�4 �2.31⇥ 10�3 1.94⇥ 10�3 3.41⇥ 10�4

4. 6.83⇥ 10�4 �2.14⇥ 10�3 1.74⇥ 10�3 2.77⇥ 10�4

5. 6.26⇥ 10�4 �1.93⇥ 10�3 1.54⇥ 10�3 2.32⇥ 10�4

10 4.⇥ 10�4 �1.2⇥ 10�3 9.27⇥ 10�4 1.27⇥ 10�4

20 2.24⇥ 10�4 �6.64⇥ 10�4 5.06⇥ 10�4 6.61⇥ 10�5

50 9.56⇥ 10�5 �2.82⇥ 10�4 2.13⇥ 10�4 2.71⇥ 10�5

1 0 0 0 0

Table 1: Coe�cients c11, c12, c22 from Eq. 68 for di↵erent vales of w/d, where w is the size of the square pixel and d is the

thickness of the sensor.

w/d k

22

k
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k

11

k

11

+ k

12

+ k

22

0 0 0 1

12

= 8.33⇥ 10�2

1

12

= 8.33⇥ 10�2

0.01 8.43⇥ 10�8 �6.43⇥ 10�5 8.33⇥ 10�2 8.32⇥ 10�2

0.1 5.37⇥ 10�5 �2.82⇥ 10�3 8.05⇥ 10�2 7.77⇥ 10�2

0.2 3.05⇥ 10�4 �7.32⇥ 10�3 7.57⇥ 10�2 6.87⇥ 10�2

0.25 5.13⇥ 10�4 �9.62⇥ 10�3 7.32⇥ 10�2 6.41⇥ 10�2

0.5 2.17⇥ 10�3 �1.94⇥ 10�2 6.18⇥ 10�2 4.46⇥ 10�2

1. 6.39⇥ 10�3 �2.96⇥ 10�2 4.73⇥ 10�2 2.41⇥ 10�2

1.5 9.82⇥ 10�3 �3.36⇥ 10�2 3.99⇥ 10�2 1.62⇥ 10�2

2. 1.22⇥ 10�2 �3.53⇥ 10�2 3.58⇥ 10�2 1.28⇥ 10�2

3. 1.51⇥ 10�2 �3.67⇥ 10�2 3.15⇥ 10�2 9.86⇥ 10�3

4. 1.68⇥ 10�2 �3.74⇥ 10�2 2.92⇥ 10�2 8.61⇥ 10�3

5. 1.78⇥ 10�2 �3.77⇥ 10�2 2.78⇥ 10�2 7.92⇥ 10�3

10 2.⇥ 10�2 �3.83⇥ 10�2 2.5⇥ 10�2 6.68⇥ 10�3

20 2.12⇥ 10�2 �3.86⇥ 10�2 2.35⇥ 10�2 6.19⇥ 10�3

50 2.29⇥ 10�2 �3.84⇥ 10�2 2.2⇥ 10�2 6.44⇥ 10�3

1 4

180

= 2.2⇥ 10�2 � 7

180

= �3.89⇥ 10�2

4

180

= 2.2⇥ 10�2

1

180

= 5.56⇥ 10�3

Table 2: Coe�cients k11, k12, k22 from Eq. 77 for di↵erent vales of w/d, where w is the size of the square pixel and d is the

thickness of the sensor.
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