THE STITY OF THE

27th RD-50 Workshop

TCAD simulation for Low Gain Avalanche Detectors

Ranjeet Dalal*, Ashutosh Bhardwaj, Kirti Ranjan, Geetika Jain

Work done under RD-50 collaboration

Simulation structure

- Silvaco TCAD tool is used for simulation
- -Initially, p-well depth (d_p) of 7 μ m is kept (taken clues from earlier publications), p-well dose (N_p) varied (by varying peak doping density)
- n⁺ doping depth (d_n) of 4 μ m with peak doping density (N_n) equal to 1x10¹⁸ cm⁻³ is used. -Gaussian Doping profiles are used.
 - Infrared laser from top (1060 nm, 1µm wide)
 - External circuit elements, similar to DU TCT setup, are implemented

Methodology

- Multiplication factor (MF) or Gain is defined w.r.t. simple diode of same dimension.

MF = (Inte. Charge for given design)/ (Inte. Charge for Diode)

- Breakdown voltage is extracted from IV plots
 - Separate structures with/without any edge termination structures are used
 - Shown in backup slides

P-well dose variation effect

- Multiplication factor (MF) increases with p-well dose (or peak doping density) for a given depth (7 μm in present plot).
- Breakdown voltage deceases with higher p-well dose (or peak doping)
- The p-well doses (extracted from simulation approach) are similar to experimentally reported values¹

Peak doping density 8.75e16cm⁻³ equal to dose 1.61e13 cm⁻² peak doping density 9.75e16cm⁻³ equal to dose 1.78e14 cm⁻² Peak doping density 1.025e17cm⁻³ equal to dose 1.87e13 cm⁻²

¹G. Pellegrini, Hiroshima 2014, NIMA

Three different multiplication cases

Three different multiplication cases selected for detailed investigation

- Low multiplication with p-well peak doping density (N_p) equal to 8.75x10¹⁶cm⁻³ (or dose 1.61x10¹³ cm⁻²)
 - Multiplication factor about 2.5 at 200V
- Moderate multiplication with N_p equal to 9.75x10¹⁶cm⁻³ (or dose 1.78x10¹³ cm⁻²)
 - Multiplication factor about 5 at 200V
- High multiplication with N_p equal to 1.025×10^{17} cm⁻³ (or dose 1.87×10^{13} cm⁻²)
 - Multiplication factor of about 15 at 200V

P-well concentration and depth variation

MF increases with increasing p-well doping depth (for a given p-well peak doping density) -Increasing p-well doping depth (for a give peak doping density)

- Results in higher acceptor concentration around n^+/p -well junction
- It results in higher field and higher MF

Dose (& MF) Matrix for p-well

Total p-well dose (& MF @ 200V) table for different p-well doping depth and peak values (n⁺ profile kept constant, n⁺ doping density = 1×10^{18} cm⁻³, depth = 4µm)

Peak p-well	p-well	6 µm	6.5 μm	6.8 μm	6.9 μm	7 μm	7.1 μm	7.2 μm
doping (cm ⁻³)	depth=5.5µm							\frown
8.75 x10 ¹⁶	1.264e13	1.379e13	1.493e13	1.563e13	1.586e13	1.609e13	1.632e13	1.655e13
	(0.97)	(0.97)	(1.07)	(1.44)	(1.74)	(2.25)	(3.23)	(5.78)
9.75 x 10 ¹⁶	1.402e13	1.529e13	1.657e13	1.7 <u>33e13</u>	1.759e13	1.784e13	1.810e13	1.836e13
	(0.97)	(.98)	(1.20)	(2.10)	(3.02)	(5.35)	(19.49)	
1.025 x 10 ¹⁷	1.470e13	1.604e13	1.738e13	1.818e13	1.845e13	1.872e13	1.899e13	1.925e13
	(0.97)	(0.98)	(1.31)	(2.80)	(4.80)	(15.06)		

n⁺ concentration and depth variation

Multiplication factor is strongly affected by n⁺ doping profile too.

- Lower n⁺ doping depth (for a given n⁺ peak doping density) ---- Higher MF
- Lower n⁺ peak doping density (for a given n⁺ depth) ---- Higher MF

Dose (& MF) Matrix for n⁺ doping profile

Total n⁺ dose (& MF @ 200V) table for different n⁺ doping depth and peak values (p-well doping profile kept constant, p-well doping density = 9.75×10^{16} cm⁻³, depth = 7μ m)

Peak n ⁺ doping (cm ⁻³)	n⁺ depth=3.9µm	4 μm	4.2 μm	4.4 μm	4.6 μm
9 x10 ¹⁷	8.392e13	8.609e13 (8.70)	9.040e13 (1.95)	9.471e13 (1.19)	9.902e13 (1)
1 x 10 ¹⁸	9.290e13 (169.55)	9.529e13 (5.35)	1.001e14 (1.77)	1.048e14 (1.17)	1.096e14 (1)
1.1 x 10 ¹⁸	1.018e14 (14.28)	1.045e14 (3.76)	1.097e14 (1.55)	1.149e14 (1.09)	1.201e14 (0.97)

Irradiation effect

Radiation damage simulations are carried out using already published and tested two trap model (R. Dalal et al., Vertex-2014)

- It was developed during HPK campaign for proton irradiation
- It creates correct amount of leakage current, full depletion voltage (or CV), double peak electric field profile and CCE for fluence at least up to 2e15 n_{eq}cm⁻²

No acceptor removal term have been used in these simulations

- Simulations are carried out at 253K

No.	Trap	Energy	g _{int}	σ_{e} (cm ⁻²)	$\sigma_{\rm h}({\rm cm}^{-2})$
		Level	(cm^{-1})		
1.	Acceptor	E_c -0.51eV	4	$2x10^{-14}$	3.8x10 ⁻¹⁵
2.	Donor	E_{v} +0.48eV	3	2x10 ⁻¹⁵	2x10 ⁻¹⁵

Parameter table for two trap model used in present simulations

Irradiation effect on multiplication factor-1

Charge multiplication factor is strongly affected by irradiation

- Very little or no multiplication for fluence 1x10¹⁵ n_{eq}cm⁻² and above

Irradiation effect on multiplication factor-2

Sharper decrease of MF for high multiplication case

- MF is practically same for all the fluence $\geq 2.5 \times 10^{14} n_{eq} \text{ cm}^{-2}$
- Almost no multiplication for fluence $\geq 5 \times 10^{14} n_{eq} \text{ cm}^{-2}$

Some published measurements

Fig. 10. Measured absolute collected charge as a function of the applied bias for a LGAD sample irradiated to different fluences.

Good qualitative agreement with measurements ! (Remember : we don't know the LGAD doping profile) G. Pellegrini, Hiroshima 2014, NIMA

Irradiation effect on electric field inside LGAD

- Peak field inside p-well is lowered with increasing irradiation fluence
 - Width of multiplication region is also reduced
- Electric field just below p-well is strongly affected (lowered!) with irradiation
 - Would lead to inefficient charge collection
- Backside electric field peak grow with fluence
- Since additional donor traps are introduced for charged hadron*, MF lowering will be faster for charged hadron (as backside field will be higher)

Effective space charge variation with fluence

Effective space charge density = (n+ Conc. + Ionized Donor trap Conc.) – (Boron Conc. + Ionized Acceptor trap Conc.)

Space charge density inside bulk and multiplication regions are affected by irradiation traps

- Bulk is type-inverted by positive space charge of donor traps
- Even effective space charge inside multiplication region is significantly affected The width of Multiplication region is reduced with fluence
- Results in lower field, and hence, lower multiplication Traps Effect appears as Acceptor Removal !

MF variation for 150 μ m thick LGAD structure

- MF decreases with fluence for thinner LGAD designs too
- Somewhat higher MF for thinner sensors, after mid-ranged fluence irradiation (around 5x10¹⁴n_{eq}cm⁻²)

3/12/2015

Summary and conclusions

- Charge multiplication factor is dependent on both p-well and n⁺ doping profiles
 - n⁺ and p-well doping profiles must be tuned vary carefully
- Charge multiplication factors decrease with irradiation fleuence
 - Model developed during HPK campaign used for simulations
 - No additional parameter/assumptions were made
 - No acceptor removal assumed
 - Simulated trend are very similar to measured one
- Practically, there is no Charge multiplication for LGAD irradiated with fluence above $5x10^{14} n_{eq} cm^{-2}$
- Similar lowering of MF with fluence is observed for thinner LGAD structures
- LGAD MF degradation appears to be due to trap effects only
- Since MF lowering with fluence is due to the acceptor & donor traps, the LGAD MF degradation would not be improved by use of Gallium implantation, instead of Boron for p-well
- Would like to carry out simulations for actual LGAD doping profiles (if available!)

Backup

LGAD simulation structure for Breakdown

E field contours

E field contours and electron flow for strip-type LGAD
Gave much lower MF for non-irradiated LGAD as most of electrons are by-passing the multiplication region

50 100 Microns 150 Electron Con 200 14.110.7 7.31 250 3.37 Ω 300 20 0 10 20 30 40 50 60 70 80

Microns

e- conc plot for plane parallel LGAD, Non-irradiated

200V bias, after 1ns to laser firing

Electron flow for plane-parallel LGAD designs used for the present simulations

3/12/2015

Microns

TCT set up DU

Simulated TCT pulse for moderate multiplication case

Simulated TCT pulses

No second peak (due to multiplication) for fluence 1e15 and 2e15 neqcm⁻²