Chapter 6 Photolithography

Hong Xiao, Ph. D. hxiao89@hotmail.com www2.austin.cc.tx.us/HongXiao/Book.htm

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiao/Book.htm

Objectives

- List the four components of the photoresist
- Describe the difference between +PR and –PR
- Describe a photolithography process sequence
- List four alignment and exposure systems
- Describe the wafer movement in a track-stepper integrated system.
- Explain relationships of resolution and depth of focus to wavelength and numerical aperture.

Introduction

Photolithography

- Temporarily coat photoresist on wafer
- Transfers designed pattern to photoresist
- Most important process in IC fabrication
- 40 to 50% total wafer process time
- Determines the minimum feature size

Applications of Photolithography

- Main application: IC patterning process
- Other applications: Printed electronic board, nameplate, printer plate, and *et al*.

IC Fabrication

EDA: Electronic Design Automation

PR: Photoresist

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiao/Book.htm

IC Processing Flow

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiao/Book.htm

Photolithography Requirements

- High Resolution
- High PR Sensitivity
- Precision Alignment
- Precise Process Parameters Control
- Low Defect Density

Photoresist

- Photo sensitive material
- Temporarily coated on wafer surface
- Transfer design image on it through exposure
- Very similar to the photo sensitive coating on the film for camera

Photoresist

Negative Photoresist

- Becomes insoluble after exposure
- When developed, the unexposed parts dissolved.
- Cheaper

Positive Photoresist

- Becomes soluble after exposure
- When developed, the exposed parts dissolved
- Better resolution

Negative and Positive Photoresists

Photoresist Chemistry

- Start with printed circuit
- Adapted in 1950 in semiconductor industry
- Critical to the patterning process
- Negative and positive photoresist

Photoresist Composition

- Polymer
- Solvents
- Sensitizers
- Additives

Polymer

- Solid organic material
- Transfers designed pattern to wafer surface
- Changes solubility due to photochemical reaction when exposed to UV light.
- Positive PR: from insoluble to soluble
- Negative PR: from soluble to insoluble

Solvent

- Dissolves polymers into liquid
- Allow application of thin PR layers by spinning.

Sensitizers

- Controls and/or modifies photochemical reaction of resist during exposure.
- Determines exposure time and intensity

Additives

• Various added chemical to achieve desired process results, such as dyes to reduce reflection.

Negative Resist

- Most negative PR are polyisoprene type
- Exposed PR becomes cross-linked polymer
- Cross-linked polymer has higher chemical etch resistance.
- Unexposed part will be dissolved in development solution.

Negative Photoresist

Negative Photoresist

Disadvantages

- Polymer absorbs the development solvent
- Poor resolution due to PR swelling
- Environmental and safety issues due to the main solvents xylene.

Comparison of Photoresists

Positive Photoresist

- Exposed part dissolve in developer solution
- Image the same that on the mask
- Higher resolution
- Commonly used in IC fabs

Positive Photoresist

- Novolac resin polymer
- Acetate type solvents
- Sensitizer cross-linked within the resin
- Energy from the light dissociates the sensitizer and breaks down the cross-links
- Resin becomes more soluble in base solution

Question

- Positive photoresist can achieve much higher resolution than negative photoresist, why didn't people use it before the 1980s?
- Positive photoresist is much more expensive therefore negative photoresist was used until it had to be replaced when the minimum feature size was shrunk to smaller than 3 μ m.

Chemically Amplified Photoresists

- Deep ultraviolet (DUV), $\lambda \le 248$ nm
- Light source: excimer lasers
- Light intensity is lower than I-line (365 nm) from high-pressure mercury lamp
- Need different kind of photoresist

Chemically Amplified Photoresists

- Catalysis effect is used to increase the effective sensitivity of the photoresist
- A photo-acid is created in PR when it exposes to DUV light
- During PEB, head-induced acid diffusion causes amplification in a catalytic reaction
- Acid removes protection groups
- Exposed part will be removed by developer

Chemically Amplified Photoresist

Requirement of Photoresist

- High resolution
 - Thinner PR film has higher the resolution
 - Thinner PR film, the lower the etching and ion implantation resistance
- High etch resistance
- Good adhesion
- Wider process latitude
 - Higher tolerance to process condition change

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiao/Book.htm

Photoresist Physical Properties

- Photoresist must be able to withstand process conditions
 - Coating, spinning, baking, developing.
 - Etch resistance
 - Ion implantation blocking

Photoresist Performance Factor

- Resolution
- Adhesion
- Expose rate, Sensitivity and Exposure Source
- Process latitude
- Pinholes
- Particle and Contamination Levels
- Step Coverage
- Thermal Flow

Resolution Capability

- The smallest opening or space that can produced in a photoresist layer.
- Related to particular processes including expose source and developing process.
- Thinner layer has better resolution.
- Etch and implantation barrier and pinhole-free require thicker layer
- Positive resist has better resolution due to the smaller size of polymer.

Photoresist Characteristics Summary

Parameter	Negative	Positive
Polymer	Polyisoprene	Novolac Resin
Photo-reaction	Polymerization	Photo-solubilization
Sensitizer	Provide free radicals for polymer cross- link	Changes film to base soluble
Additives	Dyes	Dyes

Photolithography Process

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiao/Book.htm

Basic Steps of Photolithography

- Photoresist coating
- Alignment and exposure
- Development

Basic Steps, Old Technology

- Wafer clean
- Dehydration bake
- Spin coating primer and PR
- Soft bake
- Alignment and exposure
- Development
- Pattern inspection
- Hard bake

www2.austin.cc.tx.us/HongXiao/Book.htm

PR coating

Development

Hong Xiao, Ph. D.

Basic Steps, Advanced Technology

• Wafer clean

- Trackstepper integrated system
- Pre-bake and primer coating
- Photoresist spin coating
- Soft bake
- Alignment and exposure
- Post exposure bake
- Development
- Hard bake
- Pattern inspection

→ PR coating

Development

Figure 6.5

Wafer Clean

Photoresist Coating

Soft Bake

Post Exposure Bake

Development

Hong Xiao, Ph. D.

Hard Bake

Pattern Inspection

Wafer Clean

- Remove contaminants
- Remove particulate
- Reduce pinholes and other defects
- Improve photoresist adhesion
- Basic steps
 - Chemical clean
 - Rinse
 - Dry

Hong Xiao, Ph. D.

Photolithography Process, Clean

- Older ways
 - High-pressure nitrogen blow-off
 - Rotating brush scrubber
 - High-pressure water stream

Wafer Clean Process

Chemical Clean

Rinse

Dry

Hong Xiao, Ph. D.

Photolithography Process, Prebake

- Dehydration bake
- Remove moisture from wafer surface
- Promote adhesion between PR and surface
- Usually around 100 °C
- Integration with primer coating

Photolithography Process, Primer

- Promotes adhesion of PR to wafer surface
- Wildly used: Hexamethyldisilazane (HMDS)
- HMDS vapor coating prior to PR spin coating
- Usually performed in-situ with pre-bake
- Chill plate to cool down wafer before PR coating

Pre-bake and Primer Vapor Coating

Wafer Cooling

- Wafer need to cool down
- Water-cooled chill plate
- Temperature can affect PR viscosity
 - Affect PR spin coating thickness

Spin Coating

- Wafer sit on a vacuum chuck
- Rotate at high speed
- Liquid photoresist applied at center of wafer
- Photoresist spread by centrifugal force
- Evenly coat on wafer surface

Viscosity

- Fluids stick on the solid surface
- Affect PR thickness in spin coating
- Related to PR type and temperature
- Need high spin rate for uniform coating

Relationship of Photoresist Thickness to Spin Rate and Viscosity

www2.austin.cc.tx.us/HongXiao/Book.htm

Dynamic Spin Rate

PR Spin Coater

- Photoresist spread on spinning wafer surface
- Wafer held on a vacuum chuck
- Slow spin ~ 500 rpm
- Ramp up to ~ 3000 7000 rpm

Spin Coater

- Automatic wafer loading system from robot of track system
- Vacuum chuck to hold wafer
- Resist containment and drain
- Exhaust features
- Controllable spin motor
- Dispenser and dispenser pump
- Edge bead removal

Photoresist Spin Coater

Photoresist Applying

Hong Xiao, Ph. D.

Photoresist Suck Back

Hong Xiao, Ph. D.

Hong Xiao, Ph. D.

Hong Xiao, Ph. D.

Hong Xiao, Ph. D.

Edge Bead Removal (EBR)

- PR spread to the edges and backside
- PR could flakes off during mechanical handling and causes particles
- Front and back chemical EBR
- Front optical EBR

Hong Xiao, Ph. D.

Hong Xiao, Ph. D.

Ready For Soft Bake

Optical Edge Bead Removal

- After alignment and exposure
- Wafer edge expose (WEE)
- Exposed photoresist at edge dissolves during development

Optical Edge Bead Removal

Developer Spin Off

www2.austin.cc.tx.us/HongXiao/Book.htm

Soft Bake

- Evaporating most of solvents in PR
- Solvents help to make a thin PR but absorb radiation and affect adhesion
- Soft baking time and temperature are determined by the matrix evaluations
- Over bake: polymerized, less photo-sensitivity
- Under bake: affect adhesion and exposure

Soft Bake

- Hot plates
- Convection oven
- Infrared oven
- Microwave oven

Baking Systems

Hot Plates

- Widely used in the industry
- Back side heating, no surface "crust"
- In-line track system

Wafer Cooling

- Need to cool down to ambient temperature
- Water-cooled chill plate
- Silicon thermal expansion rate: 2.5×10^{-6} /°C
- For 8 inch (200 mm) wafer, 1 °C change causes 0.5 μ m difference in diameter

Alignment and Exposure

- Most critical process for IC fabrication
- Most expensive tool (stepper) in an IC fab.
- Most challenging technology
- Determines the minimum feature size
- Currently 0.18 μm and pushing to 0.13 μm

Alignment and Exposure Tools

- Contact printer
- Proximity printer
- Projection printer
- Stepper

Contact Printer

- Simple equipment
- Use before mid-70s
- Resolution: capable for sub-micron
- Direct mask-wafer contact, limited mask lifetime
- Particles

Contact Printer

Contact Printing

Proximity Printer

- ~ 10 μ m from wafer surface
- No direct contact
- Longer mask lifetime
- Resolution: $> 3 \,\mu m$

Proximity Printing

Projection Printer

- Works like an overhead projector
- Mask to wafer, 1:1
- Resolution to about 1 μm

Projection System

Scanning Projection System

Stepper

- Most popular used photolithography tool in the advanced IC fabs
- Reduction of image gives high resolution
- $0.25 \,\mu m$ and beyond
- Very expensive

Q & A

- Why does the 5:1 shrink ratio is more popular than the 10:1 shrink ratio?
- 10:1 image shrink has better resolution than 5:1 image shrink. However, it only exposes a quarter of the area, which means total exposure time will be quadrupled.

Step-&-Repeat Alignment/Exposure

Hong Xiao, Ph. D.

Step&Repeat Alignment System

Exposure Light Source

- Short wavelength
- High intensity
- Stable
- High-pressure mercury lamp
- Excimer laser

Spectrum of the Mercury Lamp

Photolithography Light Sources

	Name	Wavelength (nm)	Application feature size (mm)
	G-line	436	0.50
Mercury Lamp	H-line	405	
	I-line	365	0.35 to 0.25
	XeF	351	
Excimer Laser	XeCl	308	
	KrF (DUV)	248	0.25 to 0.15
	ArF	193	0.18 to 0.13
Fluorine Laser	F ₂	157	0.13 to 0.1

Exposure Control

- Exposure controlled by production of light intensity and exposure time
- Very similar to the exposure of a camera
- Intensity controlled by electrical power
- Adjustable light intensity
- Routine light intensity calibration

Question

• Someone did a routine illuminator intensity calibration with a reticle still on the stage. What kind of problem will it induce?

Answer

Since the reticle can block some light, photodetector on wafer stage will receive less photons than it should receive. Therefore, it will give a lower reading. To calibrate, the applied power will be increased and the light intensity will be higher than it should be. It could cause overexposure and CD loss.

Standing Wave Effect

- •Interference of the incident and reflection lights
- •Periodically overexposure and underexposure
- •Affects photolithography resolution.

Standing Wave Intensity

Standing Wave Effect on Photoresist

Post Exposure Bake

- Photoresist glass transition temperature T_g
- Baking temperature higher than T_g
- Thermal movement of photoresist molecules
- Rearrangement of the overexposed and underexposed PR molecules
- Average out standing wave effect,
- Smooth PR sidewall and improve resolution
Post Exposure Bake

- For DUV chemical amplified photoresist, PEB provides the heat needed for acid diffusion and amplification.
- After the PEB process, the images of the exposed areas appear on the photoresist, due to the significant chemical change after the acid amplification

Post Exposure Bake

- PEB normally uses hot plate at 110 to 130 °C for about 1 minute.
- For the same kind of PR, PEB usually requires a higher temperature than soft bake.
- Insufficient PEB will not completely eliminate the standing wave pattern,
- Over-baking will cause polymerization and affects photoresist development

PEB Minimizes Standing Wave Effect

Wafer Cooling

- After PEB the wafer is put on a chill plate to cool down to the ambient temperature before sent to the development process
- High temperature can accelerate chemical reaction and cause over-development,
- PR CD loss

Development

- Developer solvent dissolves the softened part of photoresist
- Transfer the pattern from mask or reticle to photoresist
- Three basic steps:
 - Development
 - Rinse
 - Dry

Hong Xiao, Ph. D.

Development: Immersion

Develop

Rinse

Spin Dry

Hong Xiao, Ph. D.

Developer Solution

- +PR normally uses weak base solution
- The most commonly used one is the tetramethyl ammonium hydride, or TMAH $((CH_3)_4NOH).$

Development

Development Profiles

Developer Solutions

Positive PRNegative PRDeveloperTMAHXylene

Rinse DI Water n-Butylacetate

Hong Xiao, Ph. D.

Schematic of a Spin Developer

Optical Edge Bead Removal Exposure

Optical Edge Bead Removal Exposure

Applying Development Solution

www2.austin.cc.tx.us/HongXiao/Book.htm

Applying Development Solution

Hong Xiao, Ph. D.

Development Solution Spin Off

Hong Xiao, Ph. D.

DI Water Rinse

Spin Dry

Ready For Next Step

Hard Bake

- Evaporating all solvents in PR
- Improving etch and implantation resistance
- Improve PR adhesion with surface
- Polymerize and stabilize photoresist
- PR flow to fill pinhole

PR Pinhole Fill by Thermal Flow

Hard Bake

- Hot plate is commonly used
- Can be performed in a oven after inspection
- Hard bake temperature: 100 to 130 °C
- Baking time is about 1 to 2 minutes
- Hard bake temperature normally is higher than the soft bake temperature for the same kind of photoresist

Hard Bake

- Under-bake
 - Photoresist is not filly polymerized
 - High photoresist etch rate
 - Poor adhesion
- Over-baking
 - PR flow and bad resolution

Photoresist Flow

• Over baking can causes too much PR flow, which affects photolithography resolution.

Q & A

- If wrong PR is refilled in the spinner, what could be the consequence?
- Each PR has its own sensitivity & viscosity, require its own spin rates, ramp rates, and time, baking times and temperature, exposure intensities and times, developer solutions and development conditions.
- Pattern transfer will fail.

Hong Xiao, Ph. D.

Pattern Inspection

- Fail inspection, stripped PR and rework
 - Photoresist pattern is temporary
 - Etch or ion implantation pattern is permanent.
- Photolithography process can rework
- Can't rework after etch or implantation.
- Scanning electron microscope (SEM)
- Optical microscope

Q & A

• Why can't optical microscope be used for the 0.25 μm feature inspection?

• Because the feature size $(0.25 \ \mu m = 2500 \ \text{Å})$ is smaller than the wavelength of the visible light, which is from 3900 Å (violet) to 7500 Å (red)..

Electron Microscope

Pattern Inspection

- Overlay or alignment
 - run-out, run-in, reticle rotation, wafer rotation, misplacement in X-direction, and misplacement in Y-direction
- Critical dimension (CD)
- Surface irregularities such as scratches, pin holes, stains, contamination, etc.

Misalignment Cases

Critical Dimension

140

Pattern Inspection

- If the wafers pass the inspection, they will move out of photo bay and go to the next process step
- Either etch or ion implantation

Track-Stepper System or Photo Cell

- Integrated process system of photoresist coating, exposure and development
- Center track robot
- Higher throughput
- Improves process yield

Wafer In

Hong Xiao, Ph. D.

Pre-bake and Primer Vapor Coating

Hong Xiao, Ph. D.
Photoresist Spin Coating

Hong Xiao, Ph. D.

Soft Bake

Hong Xiao, Ph. D.

Alignment and Exposure

Hong Xiao, Ph. D.

Post Exposure Bake (PEB)

Hong Xiao, Ph. D.

Development

Hong Xiao, Ph. D.

Hard Bake

Hong Xiao, Ph. D.

Wafer out

Hong Xiao, Ph. D.

Schematic of a Photo Cell

Stacked Track System

- Smaller footprint
- Lower cost of ownership (COO)

Stacked Track System

Future Trends

- Smaller feature size
- Higher resolution
- Reducing wavelength
- Phase-shift mask

Optical Lithography

- Optics
- Light diffraction
- Resolution
- Depth of focus (DOF)

Diffraction

- Basic property of optics
- Light is a wave
- Wave diffracts
- Diffraction affects resolution

Light Diffraction Without Lens

Diffraction Reduction

- Short wavelength waves have less diffraction
- Optical lens can collect diffracted light and enhance the image

Light Diffraction With Lens

Numerical Aperture

- *NA* is the ability of a lens to collect diffracted light
- $NA = 2 r_0 / D$
 - $-r_0$: radius of the lens
 - -D = the distance of the object from the lens
- Lens with larger *NA* can capture higher order of diffracted light and generate sharper image.

Resolution

- The achievable, repeatable minimum feature size
- Determined by the wavelength of the light and the numerical aperture of the system. The resolution can be expressed as

Resolution

$$R = \frac{K_1 I}{NA}$$

- K_1 is the system constant, I is the wavelength of the light, $NA = 2 r_o/D$, is the numerical aperture
- *NA*: capability of lens to collect diffraction light

Hong Xiao, Ph. D.

Exercise 1, $K_1 = 0.6$ $R = \frac{K_1 I}{NA}$

	1	NA	R
G-line	436 nm	0.60	m n
I-line	365 nm	0.60	111
DUV	248 nm	0.60	m n
	193 nm	0.60	m n

To Improve Resolution

- Increase NA
 - Larger lens, could be too expensive and unpractical
 - Reduce DOF and cause fabrication difficulties
- Reduce wavelength
 - Need develop light source, PR and equipment
 - Limitation for reducing wavelength
 - UV to DUV, to EUV, and to X-Ray
- Reduce K₁
 - Phase shift mask

Wavelength and Frequency of Electromagnetic Wave

RF: Radio frequency; MW: Microwave; IR: infrared; and UV: ultraviolet

Depth of focus

- The range that light is in focus and can achieve good resolution of projected image
- Depth of focus can be expressed as:

$$DOF = \frac{K_2 l}{2(NA)^2}$$

Exercise 2, $K_2 = 0.6$

$$DOF = \frac{K_2 l}{2(NA)^2}$$

	1	NA	DOF
G-line	436 nm	0.60	m n
I-line	365 nm	0.60	m n
DUV	248 nm	0.60	m n
	193 nm	0.60	m m

Hong Xiao, Ph. D.

Depth of Focus

- Smaller numerical aperture, larger DOF
 - Disposable cameras with very small lenses
 - Almost everything is in focus
 - Bad resolution
- Prefer reduce wavelength than increase *NA* to improve resolution
- High resolution, small DOF
- Focus at the middle of PR layer

Hong Xiao, Ph. D.

Focus on the Mid-Plain to Optimize the Resolution

Surface Planarization Requirement

- Higher resolution requires
 - Shorter *I*
 - Larger NA.
- Both reduces *DOF*
- Wafer surface must be highly planarized.
- CMP is required for 0.25 μ m feature patterning.

I-line and DUV

• Mercury i-line, 365 nm

– Commonly used in 0.35 μ m lithography

- DUV KrF excimer laser, 248 nm
 - 0.25 $\mu m,$ 0.18 μm and 0.13 μm lithography
- ArF excimer laser,193 nm

– Application: $< 0.13 \ \mu m$

- F₂ excimer laser 157 nm
 - Still in R&D, $< 0.10 \,\mu m$ application

I-line and DUV

- SiO₂ strongly absorbs UV when $\lambda < 180$ nm
- Silica lenses and masks can't be used
- 157 nm F₂ laser photolithography
 - Fused silica with low OH concentration, fluorine doped silica, and calcium fluoride (CaF_2) ,
 - With phase-shift mask, even $0.035 \,\mu\text{m}$ is possible
- Further delay next generation lithography

Next Generation Lithography (NGL)

- Extreme UV (EUV) lithography
- X-Ray lithography
- Electron beam (E-beam) lithography

Future Trends

www2.austin.cc.tx.us/HongXiao/Book.htm

Phase Shift Mask

$$d(n_f - 1) = I/2$$

n_f : Refractive index of phase shift coating

Hong Xiao, Ph. D.

Phase Shift Mask

$$d(n_g - 1) = I/2$$

n_g : refractive index of the quartz substrate

Hong Xiao, Ph. D.

Phase Shift Mask Patterning

Future Trends

- Even shorter wavelength
 - 193 nm
 - 157 nm
 - Silicate glass absorbs UV light when $\lambda < 180$ nm
 - CaF₂ optical system
- Next generation lithography (NGL)
 - Extreme UV (EVU)
 - Electron Beam
 - X-ray (?)
EUV

- $\lambda = 10$ to 14 nm
- Higher resolution
- Mirror based
- Projected application ~ 2010
- $0.1 \ \mu m$ and beyond

EUV Lithography

X-ray lithography

- Similar to proximity printer
- Difficult to find pure X-ray source
- Challenge on mask making
- Unlikely will be used in production

X-ray Printing

Optical Mask and X-ray Mask

www2.austin.cc.tx.us/HongXiao/Book.htm

E-Beam

- Used for making mask and reticles
- Smallest geometry achieved: 0.014 μm
- Direct print possible, no mask is required
 Low throughput
- Scattering exposure system (SCALPEL) looks promising
 - Tool development
 - Reticle making
 - Resist development

Electron Beam Lithography System

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiao/Book.htm

SCALPEL

Ion Beam Lithography

- Can achieve higher resolution
 - Direct writing and projection resist exposing
 - Direct ion implantation and ion beam sputtering patterned etch, save some process steps
- Serial writing, low throughput
- Unlikely will be used in the mass production
- Mask and reticle repairing
- IC device defect detection and repairing

Safety

- Chemical
- Mechanical
- Electrical
- Radiation

Chemical Safety

- Wet clean
 - Sulfuric acid (H_2SO_4): corrosive
 - Hydrogen peroxide (H_2O_2) : strong oxidizer
- Xylene (solvent and developer of –PR): flammable and explosive
- HMDS (primer): flammable and explosive
- TMAH (+PR development solution): poisonous and corrosive

Chemical Safety

- Mercury (Hg, UV lamp) vapor
 highly toxic;
- Chlorine (Cl₂, excimer laser)
 - toxic and corrosive
- Fluorine (F₂, excimer laser)
 - toxic and corrosive

Mechanical Safety

- Moving Parts
- Hot surface
- High pressure lump

Electrical Safety

- High voltage electric power supply
- Power off
- Ground static charges
- Tag-out and lock-out

Radiation Safety

- UV light can break chemical bonds
- Organic molecules have long-chain structure
- More vulnerable to the UV damage
- UV light can be used to kill bacteria for sterilization
- Can cause eye injury if direct look at UV source
- UV protection goggle sometimes is required.

Summary

- Photolithography: temporary patterning process
- Most critical process steps in IC processing
- Requirement: high resolution, low defect density
- Photoresist, positive and negative
- Process steps: Pre-bake and Primer coating, PR spin coating, soft bake, exposure, PEB, development, hard bake, and inspection
- NGL: EUV and e-beam lithography