Chapter 13 Process Integration

Hong Xiao, Ph. D.

hxiao89@hotmail.com

www2.austin.cc.tx.us/HongXiao/Book.htm

Hong Xiao, Ph. D.

Objectives

- List three isolation methods
- Describe sidewall spacer process and application
- Explain the V_T adjustment implantation
- Name three conductors used for MOSFET gate
- List three metals used for interconnection process
- List basic steps for copper metallization process
- Identify the material most commonly used as final passivation layer for an IC chip

Introduction

- It takes up to 30 masks and several hundreds process steps to finish an IC chip fabrication.
- Every step is related to other steps.
- CMOS processes
 - Front-end:
 - well formation, isolation, and transistor making
 - Back-end
 - Interconnection and passivation

Wafer Preparation

- CMOS IC chips commonly used <100> wafer
- Bipolar and BiCMOS chips usually use with <111> wafers orientation.
- 1960 to mid-1970s, mainly PMOS, n-type wafer
- After mid-1970s, mainly NMOS, p-type wafer
- CMOS developed from NMOS process, for historical reason more fabs use p-type wafer

NMOS and CMOS Processes

- The simplest NMOS IC processing had five mask steps: activation, gate, contact, metal, and bonding pad
- The early CMOS IC processing added three more mask steps: <u>n-well (for p-type substrate)</u>, activation, gate, <u>n-source/drain</u>, <u>p-source/drain</u>, contact, metal, and bonding pad
- Both processes used p-type wafers

Hong Xiao, Ph. D.

NMOS

CMOS of the Early 1980s

Epitaxy Silicon Layer

- Bipolar transistors and BiCMOS chips require epitaxial silicon layer to form a buried layer
 - Some power devices even require wafers made by floating zone method
- When CMOS chip speed is not very high, it doesn't need the epitaxy layer
- High-speed CMOS chips need epitaxy layer

Epitaxy Silicon Layer

- Silicon wafers made by the CZ method always have some oxygen because quartz crucible
- Oxygen can reduce carrier lifetime and slow down the device
- The epitaxy silicon layer creates an oxygen-free substrate and help to achieve high device speed

Epitaxy Silicon Layer

- RCA clean to remove contaminants
- Anhydrate HCl dry clean helps to remove mobile ions and the native oxide
- Epitaxy growth: high temperature CVD
 silicon source: SiH₄ or SiH₂Cl₂, or SiHCl₃
 - H₂ as process, carrier, and purge gas
 - AsH₃ or PH₃ as n-type dopant gas,
 - $-B_2H_6$ as p-type dopant gas

Hong Xiao, Ph. D.

Wafers Used for IC fabrication

- Advanced CMOS IC chips normally use p-type <100> single crystal silicon wafers with p-type epitaxial layer
- Bipolar IC chips usually use <111> wafers

Well Formation

- Single well
- Self-aligned twin well
- Double photo twin well

Single Well

- Early CMOS IC processing
- N-well on p-type wafer
- P-well on n-type wafer
- High energy, low current ion implantation
- Thermal anneal and drive-in

N-well Formation

CMOS with P-well

CMOS with N-well

- More flexibility for the designers
- Self-aligned process save a mask step
- LPCVD Si_3N_4 is a very dense layer
- Block ion implantation on p-well
- Prevent oxidation on p-wee
- Oxide grown on n-well block p-well ion implantation

- Advantage: reduce a photo mask step
 - Reduce cost
 - Improve IC chip yield.
- Disadvantage: wafer surface is not flat
 - n-well always has lower level than p-well
 - Affect photolithography resolution
 - Affect thin film deposition

- N-well implant first
- Phosphorus diffuses slower than boron in single silicon
- If p-well implant first, boron in p-well could diffuse out of control during n-well anneal and drive-in

Twin Well

- Two mask steps
- Flat surface
- Common used in advanced CMOS IC chip
- High energy, low current implanters
- Furnaces annealing and driving-in

Twin Well

Hong Xiao, Ph. D.

Isolations

- Blanket field oxide
- Local oxidation of silicon (LOCOS)
- Shallow trench isolation (STI)

Blanket Field Oxide

- Early years of IC industry
- Simple and strait forward
- Oxidation and etch
- Thickness is determined by V_{FT} ,
- V_{FT} >> V to prevent cross-talking

LOCOS Formation

www2.austin.cc.tx.us/HongXiao/Book.htm

Hong Xiao, Ph. D.

Wafer Clean

P-type substrate

Hong Xiao, Ph. D.

Pad Oxidation

Hong Xiao, Ph. D.

LPCVD Nitride

Hong Xiao, Ph. D.

Photoresist Coating

Hong Xiao, Ph. D.

LOCOS Mask

Hong Xiao, Ph. D.

LOCOS Mask

Hong Xiao, Ph. D.

LOCOS Mask Exposure

Hong Xiao, Ph. D.

Development

Hong Xiao, Ph. D.

Etch Nitride

Hong Xiao, Ph. D.

Strip Photoresist

Hong Xiao, Ph. D.

Isolation Implantation

Thermal Oxidation

Strip Nitride

Problem of LOCOS

- Bird's beak
 - Oxygen diffuse isotropically in silicon dioxide
 - Oxide grow underneath nitride
 - Waste surface area
- Uneven surface
 - Oxide grow above the silicon surface
 - Affect photolithography and thin film deposition

Bird's Beak of LOCOS

Poly Buffered LOCOS (PBL)

- Reducing "bird's beak"
- Deposit polysilicon before LPCVD nitride
- Poly-Si consumes lateral diffusing oxygen
- Reduce "bird's beak" to 0.1 to 0.2 μ m.

Poly Buffered LOCOS

Pad oxidation, poly and nitride LPCVD

Nitride, poly, and oxide etch, B implantation

Oxidation

Strip pad oxidation, poly and nitride

Shallow Trench Isolation (STI)

- LOCOS and PBL work fine when feature size > 0.5 μm
- Intolerable when feature $< 0.35 \ \mu m$
- Silicon etch and oxidation of trench was researched to reduce oxide encroachment
- Process was then developed with CVD oxide trench fill

STI and LOCOS

- STI
 - No bird's beak
 - Smoother surface
 - More process steps
- LOCOS
 - Simpler, cheaper, and production proven
 - Used in IC fabrication until feature $< 0.35 \ \mu m$

STI and LOCOS

- Early STI process
 - Oxide etch back
 - CF_4/O_2 chemistry
 - Endpoint by C-N line
- Advanced STI process: oxide CMP
 - Better process control
 - Higher yield

Early STI: Wafer Clean

P-type substrate

Hong Xiao, Ph. D.

Early STI: Grow Pad Oxide

Hong Xiao, Ph. D.

Early STI: LPCVD Silicon Nitride

Early STI: Photoresist Coating

Hong Xiao, Ph. D.

Early STI: STI Mask

Hong Xiao, Ph. D.

Early STI: STI Mask Alignment

Hong Xiao, Ph. D.

Early STI: STI Mask Exposure

Hong Xiao, Ph. D.

Early STI: Development

Hong Xiao, Ph. D.

Early STI: Etch Nitride and Pad Oxide

Hong Xiao, Ph. D.

Early STI: Strip Photoresist

Hong Xiao, Ph. D.

Early STI: Etch Silicon

Hong Xiao, Ph. D.

Early STI: Grow Barrier Oxide

Early STI: Channel Stop Implantation, Boron

Early STI: CVD Oxide

Early STI: Photoresist Coating

Early STI: Oxide Etch Back, Stop on Nitride

Early STI: Strip Nitride

Early STI: Photoresist Coating

Early STI: Oxide Etch Back

Hong Xiao, Ph. D.

Early STI: Oxide Annealing

Advanced STI

- No need for channel stop ion implantation to raise the field threshold voltage.
- Trench fill can also be achieved with O₃-TEOS process

– Need anneal at > 1000 °C to densify the film

• HDP oxide does not require thermal anneal

Advanced STI: Pad Oxidation and LPCVD Nitride

Advanced STI: STI Mask

Advanced STI: Etch Nitride, Oxide, and Silicon, Strip Photoresist

Advanced STI: HDP CVD Oxide

Advanced STI: CMP Oxide, Stop on Nitride

Advanced STI: Nitride Strip

Transistor Making

- Metal gate
- Self-aligned gate
- Lightly doped drain (LDD)
- Threshold adjustment
- Anti punch-through
- Metal and high- κ gate MOS

Transistor Making: Metal Gate

• Form source/drain first

– Diffusion doping with silicon dioxide mask

- Align gates with source/drain, then gate area was etched and gate oxide is grown
- The third mask define the contact holes
- The fourth mask form metal gates and interconnections.
- Last mask defined the bonding pad ^{Hong Xiao, Ph. D.} www2.austin.cc.tx.us/HongXiao/Book.htm</sup>

Wafer Clean, Field Oxidation, and Photoresist Coating

www2.austin.cc.tx.us/HongXiao/Book.htm

Photolithography and Oxide Etch

www2.austin.cc.tx.us/HongXiao/Book.htm

Source/drain Doping and Gate Oxidation

www2.austin.cc.tx.us/HongXiao/Book.htm

Contact, Metallization, and Passivation

Silicon

Self-aligned Gate

- Introduction of ion implantation
- NMOS instead of PMOS
- Polysilicon replaced aluminum for gate
 - Al alloy can't sustain the high temperature post-implantation anneal

Self-aligned Gate

- Activation area for transistors making
- Gate oxidation and polysilicon deposition
- Gate mask defines the gate and local interconnection.
- Transistors are made after ion implantation and thermal annealing
- Advanced MOSFET are made in this way

Transistor Making: Self-aligned Gate

Hot Electron Effect

- Gate width is < 2 microns,
- Vertical electric field accelerates electrons tunneling through the thin gate oxide layer
- Hot electron effect
 - gate leakage affect transistor performance
 - trapping of electrons in the gate oxide cause reliability problems for the IC chips
- LDD is used to prevent hot electron effect

Hong Xiao, Ph. D.

Hot Electron Effect

LDD Formation

- Low energy, low current ion implantation
 - very low dopant concentration and shallow junction just extended underneath the gate
- Sidewall spacers can be formed by depositing and etching back dielectric layers
- High current, low energy ion implantation forms the heavily doped source/drain

- Source/drain are kept apart from the gate

LDD Formation

- Reduce the vertical electric field of the source/drain bias
- Reduce the available electrons for tunneling
- Suppress the hot electron effect

Poly Etch, PR Strip and Poly Anneal

LDD implantation

Nitride Deposition

Nitride Etch Back

Source Drain Implantation

Implantation Anneal

Dopant Diffusion Buffer

- Sub-0.18 μ m, and <1.5 V, hot electron effect may not be so important anymore
- The LDD implantation process probably is no longer needed.
- Sidewall spacers are still needed to provide a diffusion buffer for the dopant in the source/drain junction.

Dopant Diffusion Buffer

After anneal, source/drain are just right
Hong Xiao, Ph. D.After anneal, source/drain are too close
www2.austin.cc.tx.us/HongXiao/Book.htm93

V_T Adjustment Implantation

- Controls threshold voltage of MOSFET
 - Ensure supply voltage can turn-on or turn-off the MOSFET in IC chip
- Low energy, low current implantation
- Usually before the gate oxide growth
- Two implantations: a p-type and an n-type

V_T Adjust Implantation

- Wafer clean
- Grow sacrificial oxide (a)
- Activation mask
- Threshold adjustment implantation (b)
- Strip photoresist
- Anneal
- Strip sacrificial oxide (c)

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiao/Book.htm

Anti-punch-through Implantation

- Punch-through effect
 - The depletion regions of the source and drain short each other under the influence of both gate-substrate bias and source-drain bias
- Anti punch-through implantation
 - Medium energy, low current
 - Protects transistors against punch-through
 - Normally performed with well implantation

Anti Punch-through Implantation

Halo Implantation

- Another implantation process commonly used to suppress punch through effect
- Low energy and low current
- Large incident angle, 45°

Halo Implantation

High-ĸ Gate Dielectric

- Device sizes shrinking, t_{ox} is too thin for MOSFET to operate reliably even at 1 V
- Need high- κ dielectric to replace SiO₂ as gate dielectric material for < 0.1 μ m device
 - High-κ, thicker gate dielectric, better prevention of tunneling and breakdown
 - Large enough gate capacitance to hold enough charges to turn-on the MOSFET

Metal Gate

- Lower resistivity
- Help to improve device speed
- A possible future transistor making process
- Metal and high- κ dielectric gate

Strip Photoresist

Extension Ion Implantation

Oxide/Nitride Etch Back,

RPCVD Nitride

CVD PSG

Strip Nitride

Strip Polysilicon

Strip Oxide

Deposit (Ta_2O_5) and RTA

CVD Tungsten

CMP Tantalum Pentaoxide

Metal and High-κ Gate MOSFET Dummy Gate Process

- For $< 0.1 \ \mu m$ IC device
- PSG CMP, polysilicon and oxide stripping, and high- κ dielectric deposition.
- Ta₂O₅, $\kappa \sim 25$, TiO₂ κ up to 80, and HfO₂
- CVD plus RTA process
- It may never be used due to complexity
- Advantage: can used Ta_2O_5 hard hard to etch.

Metal and High-κ Gate MOSFET Traditional Process

- Traditional MOSFET making process in R&D
 - Dielectric deposition and annealing
 - Metal deposition
 - Photolithography
 - Metal etch
 - Ion implantation
 - Rapid thermal annealing.
- Too early to predict which method will win

Hong Xiao, Ph. D.

Interconnection

- Making transistor: front-end
- Interconnection: back-end
 - Multi metal layers with dielectric in between
 - Local interconnection: silicide
 - PMD: doped oxide, PSG or BPSG
 - W and Al alloy metallization
 - IMD: USG and FSG
 - Transition to copper and low- κ interconnection

Local Interconnection

- Connection between neighboring transistors
- Usually polysilicon or polycide stack
- WSi₂, TiSi₂, and CoSi₂ are commonly used – WSi_x: CVD process with WF₆ and SiH₄
- TiSi₂: PVD Ti on Si then thermal anneal

Tungsten Silicide Process

- Wafer clean
- Grow gate oxide
- Deposited amorphous silicon
- Deposited tungsten silicide (a)
- Gate and local interconnection mask
- Etch tungsten silicide (fluorine chemistry) (b)
- Etch amorphous silicon (chlorine chemistry)
- Strip photoresist
- Polysilicon and silicide annealing (c)

Hong Xiao, Ph. D.

Self-aligned Silicide (Salicide)

- TiSi₂ and CoSi₂
- Lower resistivity than WSi₂
- TiSi₂ when gate size > 0.2 μ m
- $CoSi_2$ when gate size < 0.2 μm
- Metal (Ti or Co) PVD
- Thermal anneal to form silicide
- Strip unreacted metal

Cobalt Self-aligned Silicide Process

Tungsten Local Interconnection

- Lower resistance, higher speed, less power
- Damascene: similar to W plug formation
 - Etched trenches are in silicate glass layer
 - Deposit Ti and TiN barrier/adhesion layers
 - CVD W fill trenches
 - CMP to remove bulk W from wafer surface
 - W left in trenches to form local interconnection

Tungsten Local Interconnection

- CMP PSG
- Wafer clean
- <u>Local interconnection mask</u> (a)
- Etch PSG
- Strip photoresist
- <u>Wafer clean</u> (b)
- Argon sputtering clean
- Sputtering Ti
- Sputtering TiN
- CVD TiN
- TiN treatment
- <u>CVD Tungsten</u> (c)
- CMP Tungsten
- <u>CMP titanium and titanium nitride</u> (d)
- Wafer clean

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiad/DOOK.num

Mask 10: Local Interconnection

Hong Xiao, Ph. D.

Strip Photoresist/Clean

Hong Xiao, Ph. D.

PVD Ti/TiN and CVD TiN/W

Hong Xiao, Ph. D.

Hong Xiao, Ph. D.

Early Global Interconnection

- Oxide CVD
- Photolithography, oxide etch, and PR strip
- Metal PVD
- Photolithography, metal etch, and PR strip
 - Oxide etch forms contact or via holes
 - metal etch forms interconnection lines

Early Aluminum Interconnection

- <u>CVD PSG</u> (a)
- <u>PSG reflow</u> (b)
- Wafer clean
- Contact hole mask
- Etch PSG
- <u>Strip photoresist</u> (c)
- Wafer clean
- <u>Deposit Al alloy</u> (d)
- Metal interconnection mask
- Etch metal
- <u>Strip photoresist</u> (e)
- Metalaafineal

PSG SiO (a) n N-wel P-type substrate PSG SiO (b) N-wel P-type substrate PS(SiO (c) N-wel P-type substrate AL \cdot S PSO SiO (d) N-well P-type substrate PS(SiO (e) n N-wel www2.austin.cc.tx.us/Hon 07 P-type substrate

Multi-level Interconnection

- Earlier interconnection has rough surface
- problems in photolithography and metal PVD
- Tungsten to fill narrow contact and via holes

Multi-level Interconnection

- The basics interconnection process steps:
 - Dielectric CVD and planarization
 - Photolithography, oxide etch, and PR strip
 - W CVD, bulk W removal
 - Metal stack PVD,
 - Photolithography, oxide etch, and PR strip
- PSG or BPSG for PMD and USG for IMD

Multi-level Interconnection

- Dielectric CMP for planarization
- W CMP to removal bulk tungsten
- Metal stack: Ti welding layer, Al·Cu alloy, and TiN ARC
- Metal etch defines metal interconnection lines

PE-TEOS USG Dep/Etch/Dep/CMP

Via Etch, Etch USG

Tungsten CVD and CMP

Via Etch, Etch USG

Etch Metal 2

Copper Interconnection

- Lower resistivity and higher resistance toelectromigration than aluminum alloy
- Faster and reliable interconnection
- Hard to dry etch delayed copper application
- CMP developed and matured in the 1990s
- Used in bulk W removal for plug formation
- Copper process is similar to W plug process

Copper Interconnection

- Trenches are etched on dielectric surface
- Copper is deposited into the trenches
- CMP removes bulk copper layer on surface
- Copper lines embedded in dielectric layer
- No need for metal etch

Copper Interconnection

- Dual damascene process
- Most commonly used method for the copper metallization
 - Photolithography, etch via, and PR strip
 - Photolithography, etch trench, and PR strip
 - Metal depositions and anneal
 - Metal CMP

Basic Differences

- Traditional process: one dielectric etch and one metal etch
- Dual damascene copper process: two dielectric etches, no metal etch
- The main challenges of the dual damascene copper process are dielectric etch, metal deposition and metal CMP

PECVD Nitride/USG/nitride/USG

Via Mask, Etch Via, and Strip PR

Trench Mask, Etch Trench, Strip PR

PVD Ta and Cu, ECP Bulk Cu, Anneal

CMP Cu and Ta, PECVD Nitride

Copper Metallization

- Nitride seal layer prevent copper diffusion and oxidation
- Etch stop nitride separate via and trench etch
- Tantalum used as copper barrier layer
- PVD copper seed layer
- ECP bulk copper

Copper and Low- κ

- Further increase IC chip speed
- low-κ dielectric still in R&D
- α -CF, $\kappa = 2.5$ to 2.7
- Can't be etched with fluorine chemistry
- It needs oxygen chemistry to etch
- New challenges for the process integration

PECVD α-CF, USG, Via Mask, and Etch USG Hard Mask

Hong Xiao, Ph. D.

PECVD α -CF and USG

Hong Xiao, Ph. D.

Etch α -CF and Seal Nitride

Hong Xiao, Ph. D.

PVD Ta, Cu Seed, and ECP Cu

Hong Xiao, Ph. D.

CMP Copper and Tantalum

Hong Xiao, Ph. D.

Copper and Low- κ

- Oxygen plasma is used to etch α -CF
- PR can't last long in oxygen plasma
- SiO₂ hard mask is needed
- Oxygen can't etch oxide and nitride
- Trench and via can be etched at the same time
 High selectivity of α-CF to oxide and nitride
- PR is removed when oxygen plasma etch α -CF

Passivation

- Protect IC chip from moisture and other contaminants such as sodium
- Silicon nitride is the most commonly used
- Usually oxide layer is used as a stress buffer
- SiH₄ based PECVD for both oxide and nitride
- Bonding pad mask or connecting bump mask
- Fluorine based nitride/oxide etch
- Strip PR to finish wafer processing Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

Metal Anneal

PECVD Oxide

PECVD Nitride

Hong Xiao, Ph. D.

Photoresist Coating

Hong Xiao, Ph. D.

Bonding Pad Mask Exposure and Development

Hong Xiao, Ph. D.

Etch Nitride and Oxide

Strip Photoresist

Summary

- Well formation process
- Isolations: field oxide, LOCOS, and STI
- Sidewall spacer for LDD and salicide
- Al, poly-Si and silicide for gate and local interconnections
- W, Ti and Al alloy are commonly used in traditional interconnection process.

Summary

- Basic process steps for copper metallization are dielectric deposition, dielectric etches, metal deposition, and metal polishing
- Silicon nitride is the most commonly used passivation materials in IC processing