

Sensor devices

Outline

- 4 Mechanical Sensors
 - Introduction
 - General Mechanical properties
 - Piezoresistivity
 - •Piezoresistive Sensors
 - •Capacitive sensors
 - •Applications

Introduction

- Two Major classes of mechanical sensors
 - Piezorestistive (material property in silicon)
 - Capacitive sensors
- In applications as
 - Pressure sensors
 - Accelerometer
 - Flow sensors

MID SWEDEN UNIVERSITY

Figure 19.2 Stress–strain curve for a typical metal as well as for a brittle material like silicon (high Young's modulus and no plastic deformation region) (*reprinted with premission from Madou [7]. Copyright CRC Press*).

Silicon is a brittle material with no plastic deformation region (Gray area), which is an advantage in sensor application For example Steel have a

or example Steel have a proportional limit where its dimension remain after unloading. At higher stresses the material "float" and become longer even after unloading

	Yield Strength (10 ⁹ Pa)	Young's Modulus (10 ⁹ Pa)	Density (g/cm ³)	Thermal Conductivity (W/cm °C)	Thermal Expansion (10 ⁻⁶ /°C)
Diamond (single crystal)	53.0	1035.0	3.5	20.0	1.0
SiC (single crystal)	21.0	700.0	3.2	3.5	3.3
Si (single crystal)	7.0	190.0	2.3	1.6	2.3
Al_2O_3	15.4	530.0	4.0	0.5	5.4
Si_3N_4 (single crystal)	14.0	385.0	3.1	0.2	0.8
Gold		80.0	19.4	3.2	14.3
Nickel		210.0	9.0	0.9	12.8
Steel	4.2	210.0	7.9	1.0	12.0
Aluminum	0.2	70.0	2.7	2.4	25.0

Stress in thin film

Stress in thin film cause a curvature of the sample, which can be measured using a laser system

R= radius

- E= Young's module in substrate
- T= substrate thickness
- T= thin film thickness
- V= poisson's ratio in substrate

• Calculation

- Square membranes
- Cantilever beams
 - Max deflection
 - Max longitudinal stress
 - Max transverse stress
 - Resonant Frequency

Square membranes

For a square membrane of side *a*, thickness *t*, Young's Modulus *E*, density ρ , and Poisson's ratio ν , subjected to a uniform pressure *P*, the maximum membrane deflection W_{max} , maximum longitudinal and transverse stress σ_l and σ_t , and fundamental mode resonant frequency of vibration F_o are defined as

Max deflection $W_{\text{max}} = 0.001265 Pa^4/D$

Max longitudinal stress $\sigma_l = 0.3081P(a/t)^2$

Max transverse stress $\sigma_t = \nu \sigma_l$

Resonant frequency
$$F_o = \frac{1.654t}{a^2} \left[\frac{E}{\rho(1-\nu^2)} \right]^{1/2}$$

D, measure the stiffness of the membrane

$$D = \frac{Et^3}{12(1 - \nu^2)}$$

$$Mittuniversitetet$$
MID SWEDEN UNIVERSITY

Not to scale

Cantilever beam uniform distributed load

Max stress

Uniform distributed load P (F is uniformed distributed over L)

$$P = F/a$$

Deflection
$$W(P, x) = \frac{Px^2}{24EI}(6L^2 - 4Lx + x^2)$$

Max Stress
$$\sigma = \frac{PL^2t}{4I}$$

I, bending of inertia "bending resistance"

$$I = \frac{at^3}{12}$$

Figure 19.8 Cantilever beam fixed at one end, subjected to downward force per unit length P.

Cantilever beam point load at the end

Figure 19.8 Cantilever beam fixed at one end, subjected to downward force per unit length P.

Deflection $W(P, x) = \frac{Qx^2}{6EI}(3L-x)$

Max stress $\sigma = QLt/2I$

Fundamental mode resonant frequency

$$F_o = 0.161 \, \frac{t}{L^2} \left(\frac{E}{\rho}\right)^{1/2}$$

Cantilever beam mass M

$$F_o = 0.161 \, \frac{t}{L} \left(\frac{Eta}{ML} \right)^{1/2}$$

- 1. The silicon doping type (n- or p-type) and concentration
- 2. Temperature
- 3. The direction of the current flow relative to the orientation of the crystal lattice
- The direction and type of force (tensile or compressive) relative to the orientation of the crystal lattice.

Resistivity changes when introducing of mechanical stress

The pizoresistivity have a large influence for the resistance change in semiconductor, the effect is small for metal where the change is caused by "pure" geometrical distortions.

A semiconductor under measurement. A tensile force is applied, perpendicular to the current flow.

a) Stress is defined as $\sigma = F/A$ F = Force, A = Area $\Delta R/R = \pi_1 \sigma_1$ π_1 is the longitudinal piezoresistance coefficient b) $\Delta R/R = \pi_t \sigma_t$ π_t is the transverse

piezoresistance coefficient

In general when both longitudinal and transverse stresses are present we have $\Delta R/R = \pi_t \sigma_t + \pi_l \sigma_l$

The picture show the π_l and π_t for the 100 plane, p-type silicon. Π_l is in the upper half and π_t in the lower half Units are 10⁻¹¹ Pa⁻¹

In sensor application the π should be as large as possible

Mittuniversitetet

Figure 19.7 (A) Schematic drawing of the position and orientation of four piezoresistance elements on a silicon membrane with sides defined by anisotropic silicon etching of a (100) silicon wafer; (B) Wheatstone bridge configuration of the four piezoresistive elements, with arrow directions indicating resistance increases or decreases for membrane deflection downward (*after Sze [15]*, © *1994, reprinted with permission of John Wiley & Sons, Inc.*).

Better identification of resistor in the bridge

Fig. 10 Piezoresistance factor P(N, T) as a function of impurity concentration and temperature for *p*-type silicon. (After Ref. 49)

Piezoresistive Sensors

•Piezorestive pressure sensor

- -Fabrication
 - •Anisotropic etch
 - •Piezoresistor could be by doped area
 - •or deposited polysilicon resistor on an insulator (SiO₂ or Si₃N₄)
- -The stress is maximal at the edges of the membrane, where the resistor should be placed

Piezoresistive Sensors

Figure 19.7 (A) Schematic drawing of the position and orientation of four piezoresistance elements on a silicon membrane with sides defined by anisotropic silicon etching of a (100) silicon wafer; (B) Wheatstone bridge configuration of the four piezoresistive elements, with arrow directions indicating resistance increases or decreases for membrane deflection downward (*after Sze [15]*, © *1994, reprinted with permission of John Wiley & Sons, Inc.*).

Advantage

Convert directly change in resistance

to voltage

$$\Delta V = \frac{\Delta R}{R} V_b$$

Constant bridge voltage

$$S = \frac{\Delta V}{\Delta P} \frac{1}{V_b} = \frac{\Delta R}{\Delta P} \frac{1}{R}.$$

Constant bridge current

$$S = \frac{\Delta V}{I_b} \frac{1}{\Delta P} = \frac{\Delta R}{\Delta P}.$$

A built in temperature sensor is often used to improve the temperature stability

Piezoresistive Sensors Temperature coefficient of offset

Symmetrical mismatch of the resistors, caused by difference in layout (parallel and perpendicular to the edges of the membrane)

Mittuniversitetet

Piezoresistive Sensors Temperature coefficient of sensitivity

Constant bridge voltage

$$\mathrm{TCS}_{v} = \frac{1}{S} \frac{\partial S}{\partial T} = \frac{1}{\pi_{44}} \frac{\partial \pi_{44}}{\partial T} + \frac{1}{\sigma_{l} - \sigma_{t}} \frac{\partial (\sigma_{l} - \sigma_{t})}{\partial T}.$$

Temperature coefficient for π_{44} can be high for p –type silicon

Constant bridge current $TCS_{i} = \frac{1}{S} \frac{\partial S}{\partial T} = \frac{1}{\pi_{44}} \frac{\partial \pi_{44}}{\partial T} + \frac{1}{R} \frac{\partial R}{\partial T} + \frac{1}{\sigma_{l} - \sigma_{t}} \frac{\partial (\sigma_{l} - \sigma_{t})}{\partial T}.$

Piezoresistive Sensors

- Piezoresistive accelerator sensor
- The piezoresistor must be places where the stress is maximal
- To increase the sensitivity an inertial mass is included

Piezoresistive Sensors

Capacitive Sensors

Capacitor two electrodes separated by a dielectric

WID SWEDEN UNIVERSITY

Capacitive Sensors

- a) Pressure sensor
- b) accelerometer

 $C(\theta) = \frac{\varepsilon S}{l\theta} \ln\left(\frac{2d + l\theta}{2d + l\theta}\right)$

Comparison of different technologies

TABLE 3 Comparison of Some Characteristics of Three Common SensingTechnologies for Accelerometers (Adapted from Ref. 67)

	Capacitive	Piezoelectric	Piezoresistive Low	
Impedance	High	High		
Size	Medium	Small	Medium	
Temperature range	Very wide	Wide	Medium	
Linearity error (sensor only)	High	Medium	Low	
DC response	Yes	No	Yes	
AC response	Wide	Wide	Medium	
Damping available	Yes	No	Yes	
Sensitivity	High	Medium	Medium	
Zero shifts due to shock	No	Yes	No	
Electronics required	Yes	Yes	No	
Cost	Medium	High	Low	

Applications

Symmetric capacitive accelerometer with low thermal sensitivity

In some cases the movabel electrode must be damped to avoid serious oscillations. A small cavity with a viscous liquid or gas can fulfil the requirements

Flow sensors (gas)

With no flow the two sensors display the same temperature

With gas flow the first sensor is cooled, while the second is heated up by the gas

Some examples, Bulk micro-machined piezoresistive sensor

Laboratory for Electron Devices Ljubljana SLOVENIA

Surface Micromachined Motor

Fan L-S, Tai Y-C and Muller R S 1988 Integrated moveable micromechanical structures for sensors and actuators *IEEE Trans. Electron Devices* **ED-35** 724–30

Mittuniversitetet

Rotary Electrostatic Micromotor

Fan Long-Shen, Tai Yu-Chong and Muller R S 1989 IC-processed electrostatic micromotors *Sensors Actuators* **20** 41–7

World's Smallest Guitar

A 10 μ m long Si guitar (same size as a single cell) with six strings, each ~50 nm (100 atoms) wide. (Cornell University)

Automotive Airbag Accelerometer

Bulk micromachined proof mass suspended between mass deflection electrodes attached by wafer bonding

Automotive Airbag Accelerometer

A 3-Axis Force Balanced Accelerometer Using a Single Proof-Mass

Mark A. Lemkin, Bernhard E. Boser, David Auslander*, Jim H. Smith**

Fluidic MEMS

Electrostatic micropump with two one-way check valves

Zengerle R, Ulrich J, Kluge S, Richter M and Richter A 1995, A bi-directional silicon micropump *Sensors Actuators* A50 81–6

Exercises

Calculate the maximum deflection and maximum stresses for a square silicon membrane of thickness 10 μ m and side length 2 mm for an applied pressure of 1000 Pa. For silicon, E = 190 GPa and $\nu = 0.28$.

2)

1)

A silicon cantilever beam with a piezoresistor located at the point of maximum stress is subjected to a point load Q at the end of the beam. Q is 10 µN, the length of the beam is 1000 µm, and the beam thickness is 3 µm. Calculate the beam width that results in a 3% resistance change for the piezoresistor due to the load Q. Assume the beam lies perpendicular to the silicon <110> lattice direction.

3)

What is the resonant frequency F_o for a silicon cantilever beam 1000 µm long, 100 µm wide, and 3 µm thick? The density of silicon is 2.3 g/cm³.

Exercises

4) A polysilicon cantilever fabricated using surface micromachining is 500 μ m long, 75 μ m wide, and 3 μ m thick. The sacrificial layer thickness for the process was 2.0 μ m. The electrically grounded beam is electrostatically actuated using a positive voltage V applied to a conducting bottom electrode (length 20 μ m, width 75 μ m) under the end of the beam. Neglecting fringing effects, estimate the voltage V required to deflect the beam by 0.2 μ m.

Force Q between two parallel plates of area A, separation d and applied voltage V

 $Q = 0.5 \varepsilon_0 \varepsilon_r \frac{AV^2}{J^2}$

Exercises

Answer:

1) Wmax=1.17um, σI=12.3 MPa, σt=3.45 MPa

2) σmax= 4.3*10⁷ Pa, a=150 um

3) fo= 4.39 kHz

4) V=9.6V

Mittuniversitetet