Chapter 8 Ion Implantation

Hong Xiao, Ph. D. hxiao89@hotmail.com www2.austin.cc.tx.us/HongXiao/Book.htm

Hong Xiao, Ph. D.

Objectives

- List at least three commonly used dopants
- Identify three doped areas
- Describe the advantages of ion implantation
- Describe major components of an implanter
- Explain the channeling effect
- Relationship of ion range and ion energy
- Explain the post-implantation annealing
- Identify safety hazards

Hong Xiao, Ph. D.

Ion Implantation

- Introduction
- Safety
- Hardware
- Processes
- Summary

Wafer Process Flow

Hong Xiao, Ph. D.

Introduction: Dope Semiconductor

- What is Semiconductor?
- Why semiconductor need to be doped?
- What is n-type dopant?
- What is p-type dopant?

Introduction

- Dope semiconductor
- Two way to dope
 - Diffusion
 - Ion implantation
- Other application of ion implantation

Dope Semiconductor: Diffusion

- Isotropic process
- Can't independently control dopant profile and dopant concentration
- Replaced by ion implantation after its introduction in mid-1970s.

Dope Semiconductor: Diffusion

- First used to dope semiconductor
- Performed in high temperature furnace
- Using silicon dioxide mask
- Still used for dopant drive-in
- R&D on ultra shallow junction formation.

Dopant Oxide Deposition

Oxidation

Drive-in

Strip and Clean

Dope Semiconductor: Ion Implantation

- Used for atomic and nuclear research
- Early idea introduced in 1950's
- Introduced to semiconductor manufacturing in mid-1970s.

Dope Semiconductor: Ion Implantation

- Independently control dopant profile (ion energy) and dopant concentration (ion current times implantation time)
- Anisotropic dopant profile
- Easy to achieve high concentration dope of heavy dopant atom such as phosphorus and arsenic.

Misalignment of the Gate

Ion Implantation, Phosphorus

Comparison of Implantation and Diffusion

Comparison of Implantation and Diffusion

Diffusion	Ion Implantation
High temperature, hard mask	Low temperature, photoresist mask
Isotropic dopant profile	Anisotropic dopant profile
Cannot independently control of the dopant concentration and junction depth	Can independently control of the dopant concentration and junction depth
Batch process	Both Batch and single wafer process

Ion Implantation Control

- Beam current and implantation time control dopant concentration
- Ion energy controls junction depth
- Dopant profile is anisotropic

Applications of Ion Implantation

Applications	Doping	Pre-amorphous	Buried oxide	Poly barrier
Ions	n-type: P, As, Sb	Si or Ge	0	Ν
	p-type: B			

Other Applications

- Oxygen implantation for silicon-oninsulator (SOI) device
- Pre-amorphous silicon implantation on titanium film for better annealing
- Pre-amorphous germanium implantation on silicon substrate for profile control

•

Some Fact about Phosphorus

	Name	Phosphorus
	Symbol	Р
	Atomic number	15
	Atomic weight	30.973762
	Discoverer	Hennig Brand
	Discovered at	Germany
	Discovery date	1669
	Origin of name	From the Greek word "phosphoros" meaning
		"bringer of light" (an ancient name for the
		planet Venus)
	Density of solid	1.823 g/cm^3
	Molar volume	17.02 cm^3
	Velocity of sound	N/A
	Electrical resistivity	10 μΩ cm
	Refractivity	1.001212
	Reflectivity	N/A
	Melting point	44.3 C
	Boiling point	277 C
	Thermal conductivity	0.236 W m ⁻¹ K ⁻¹
	Coefficient of linear thermal expansion	N/A
	Applications	N-type dopant in diffusion, ion implantation,
		epitaxial grow and polysilicon deposition.
Hong	Xiao, Ph. D. www2.austin.cc.tx. Main sources	Dopant of CVD silicate glass (PSG and BPSG). us/HongXiao/Book.htm P (red), PH ₂ , POCl ₂

Some Fact about Arsenic

Name	Arsenic
Symbol	As
Atomic number	33
Atomic weight	74.9216
Discoverer	Known since ancient times
Discovered at	not known
Discovery date	not known
Origin of name	From the Greek word "arsenikon" meaning
	"yellow orpiment"
Density of solid	5.727 g/cm^3
Molar volume	12.95 cm^3
Velocity of sound	N/A
Electrical resistivity	30.03 μΩ cm
Refractivity	1.001552
Reflectivity	N/A
Melting point	614 C
Boiling point	817 C
Thermal conductivity	$50.2 \text{ W m}^{-1} \text{ K}^{-1}$
Coefficient of linear thermal expansion	N/A
Applications	N-type dopant in diffusion, ion implantation,
	epitaxial grow and polysilicon deposition.
Main sources	As, AsH ₃

Some Fact about Boron

	Name	Boron
	Symbol	В
	Atomic number	5
	Atomic weight	10.811
	Discoverer	Sir Humphrey Davy, Joseph-Louis Gay-Lussac,
	Discovered at	England, France
	Discovery date	1808
	Origin of name	From the Arabic word "buraq" and the Persian
		word "burah"
	Density of solid	2.460 g/cm^3
	Molar volume	4.39 cm^3
	Velocity of sound	16200 m/sec
	Electrical resistivity	$> 10^{12} \mu\Omega$ cm
	Refractivity	N/A
	Reflectivity	N/A
	Melting point	2076 C
	Boiling point	3927 C
	Thermal conductivity	$27 \text{ W m}^{-1} \text{ K}^{-1}$
	Coefficient of linear thermal expansion	$6 \ 10^{-6} \mathrm{K}^{-1}$
	Applications	P-type dopant in diffusion, ion implantation,
		epitaxial grow and polysilicon deposition.
Ho	ng Xigo Ph D www? sustin of the	Dopant of CVD silicate glass (BPSG)
110	Main sources	B, B_2H_6, BF_3

Stopping Mechanism

- Ions penetrate into substrate
- Collide with lattice atoms
- Gradually lose their energy and stop
- Two stop mechanisms

Two Stopping Mechanism

- Nuclear stopping
 - Collision with nuclei of the lattice atoms
 - Scattered significantly
 - Causes crystal structure damage.
- electronic stopping
 - Collision with electrons of the lattice atoms
 - Incident ion path is almost unchanged
 - Energy transfer is very small
 - Crystal structure damage is negligible

Stopping Mechanism

• The total stopping power

$$S_{total} = S_n + S_e$$

- S_n : nuclear stopping, S_e : electronic stopping
- Low *E*, high *A* ion implantation: mainly nuclear stopping
- High *E*, low *A* ion implantation, electronic stopping mechanism is more important

Stopping Mechanisms

Stopping Power and Ion Velocity

Ion Velocity

Ion Trajectory and Projected Range

Ion Projection Range

Projected Range in Silicon

32

Barrier Thickness to Block 200 keV Ion Beam

Implantation Processes: Channeling

- If the incident angle is right, ion can travel long distance without collision with lattice atoms
- It causes uncontrollable dopant profile

Channeling Effect

Hong Xiao, Ph. D.

Post-collision Channeling

Implantation Processes: Channeling

- Ways to avoid channeling effect
 - Tilt wafer, 7° is most commonly used
 - Screen oxide
 - Pre-amorphous implantation, Germanium
- Shadowing effect
 - Ion blocked by structures
- Rotate wafer and post-implantation diffusion

Hong Xiao, Ph. D.

Shadowing Effect

After Annealing and Diffusion

Q & A

- Why don't people use channeling effect to create deep junction without high ion energy?
- Ion beam is not perfectly parallel. Many ions will start to have a lot of nuclear collisions with lattice atoms after they penetrating into the substrate. Some ions can channel deep into the substrate, while many others are stopped as the normal Gaussian distribution.

www2.austin.cc.tx.us/HongXiao/Book.htm

Damage Process

- Implanted ions transfer energy to lattice atoms
 Atoms to break free
- Freed atoms collide with other lattice atoms
 - Free more lattice atoms
 - Damage continues until all freed atoms stop
- One energetic ion can cause thousands of displacements of lattice atoms

Lattice Damage With One Ion

Implantation Processes: Damage

- Ion collides with lattice atoms and knock them out of lattice grid
- Implant area on substrate becomes amorphous structure

Before Implantation

After Implantation

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiao/Book.htm

Implantation Processes: Anneal

- Dopant atom must in single crystal structure and bond with four silicon atoms to be activated as donor (N-type) or acceptor (P-type)
- Thermal energy from high temperature helps amorphous atoms to recover single crystal structure.

Hong X Lage Price Atomswww2.austin.cc.tx.us/HongXiao/Book.htm Dopant Atom 47

Hong X Lage Price Atoms www2.austin.cc.tx.us/Hong Xiao/Book.htm Dopant Atom 48

Hong X Lage Price Atoms www2.austin.cc.tx.us/Hong Xiao/Book.htm Dopant Atom 49

Hong X Jaraftice Atomswww2.austin.cc.tx.us/HongXiao/Book.htm Dopant Atom 50

Hong X Lage Price Atomswww2.austin.cc.tx.us/HongXiao/Book.htm Dopant Atom 51

Hong X Lage tice Atomswww2.austin.cc.tx.us/HongXiao/Book.htm Dopant Atom 52

Hong X Lage Price Atomswww2.austin.cc.tx.us/HongXiao/Book.htm Dopant Atoms 53

Implantation Processes: Annealing

Before Annealing

After Annealing

www2.austin.cc.tx.us/HongXiao/Book.htm

Rapid Thermal Annealing (RTA)

- At high temperature, annealing out pace diffusion
- Rapid thermal process (RTP) is widely used for post-implantation anneal
- RTA is fast (less than a minute), better WTW uniformity, better thermal budget control, and minimized the dopant diffusion

RTP and Furnace Annealing

RTP Annealing

Furnace Annealing

Question and Answer

- Why can't the furnace temperature be ramped-up and cooled-down as quickly as RTP system ?
- A furnace has very large thermal capacity, it needs very high heating power to ramp-up temperature rapidly. It is very difficult to ramp up temperature very fast without large temperature oscillation due to the temperature overshoot and undershoot.

Ion Implantation: Hardware

- Gas system
- Electrical system
- Vacuum system
- Ion beamline

Ion Implanter

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiao/Book.htm

Ion Implanter

Ion Implantation: Gas System

- Special gas deliver system to handle hazardous gases
- Special training needed to change gases bottles
- Argon is used for purge and beam calibration

Ion Implantation: Electrical System

- High voltage system
 - Determine ion energy that controls junction depth
- High voltage system
 - Determine ion energy that controls junction depth
- RF system
 - Some ion sources use RF to generate ions

Ion Implantation: Vacuum System

- Need high vacuum to accelerate ions and reduce collision
- MFP >> beamline length
- 10⁻⁵ to 10⁻⁷ Torr
- Turbo pump and Cryo pump
- Exhaust system

Ion Implantation: Control System

- Ion energy, beam current, and ion species.
- Mechanical parts for loading and unloading
- Wafer movement to get uniform beam scan
- CPU board control boards
 - Control boards collect data from the systems, send it to CPU board to process,
 - CPU sends instructions back to the systems through the control board.

Ion Implantation: Beamline

- Ion source
- Extraction electrode
- Analyzer magnet
- Post acceleration
- Plasma flooding system
- End analyzer

Ion Beam Line

Ion implanter: Ion Source

- Hot tungsten filament emits thermal electron
- Electrons collide with source gas molecules to dissociate and ionize
- Ions are extracted out of source chamber and accelerated to the beamline
- RF and microwave power can also be used to ionize source gas

Ion Source

RF Ion Source

Dopant Gas

Microwave Ion Source

Ion Implantation: Extraction

- Extraction electrode accelerates ions up to 50 keV
- High energy is required for analyzer magnet to select right ion species.
Extraction Assembly

Ion Implantation: Analyzer Magnet

- Gyro radius of charge particle in magnetic field relate with B-field and mass/charge ratio
- Used for isotope separation to get enriched U_{235}
- Only ions with right mass/charge ratio can go through the slit
- Purified the implanting ion beam

Analyzer

Ions in BF₃ Plasma

Ions	Atomic or molecule weight
$^{10}\mathbf{B}$	10
$^{11}\mathbf{B}$	11
10 BF	29
11 BF	30
F_2	38
${}^{10}\mathrm{BF}_{2}$	48
${}^{11}\text{BF}_{2}$	49

Hong Xiao, Ph. D.

Question and Answer

 ${}^{10}B^+$ is lighter and can penetrate deeper than ${}^{11}B^+$, why don't use ${}^{10}B^+$ in deep junction implantation?

- Only 20% of boron atoms are ¹⁰B
- ${}^{10}B^+$ ion concentration is only 1/4 of ${}^{11}B^+$
- ${}^{10}B^+$ beam current is 1/4 of ${}^{11}B^+$ beam current
- Quadruple implantation time, lower throughput

Ion Implantation: Post Acceleration

- Increasing (sometimes decreasing) ion energy for ion to reach the required junction depth determined by the device
- Electrodes with high DC voltage
- Adjustable vertical vanes control beam current

Ion Implantation: Plasma Flooding System

- Ions cause wafer charging
- Wafer charging can cause non-uniform doping and arcing defects
- Elections are "flooding" into ion beam and neutralized the charge on the wafer
- Argon plasma generated by thermal electrons emit from hot tungsten filament

Post Acceleration

Ion Beam Current Control

Hong Xiao, Ph. D.

Bending Ion Trajectory

Charge Neutralization System

- Implanted ions charge wafer positively
- Cause wafer charging effect
- Expel positive ion, cause beam blowup and result non-uniform dopant distribution
- Discharge arcing create defects on wafer
- Breakdown gate oxide, low yield
- Need eliminate or minimize charging effect

Charging Effect

Charge Neutralization System

- Need to provide electrons to neutralize ions
- Plasma flooding system
- Electron gun
- Electron shower are used to

Plasma Flooding System

Hong Xiao, Ph. D.

Electron Gun

Wafer Handling

- Ion beam diameter: ~25 mm (~1"),
- Wafer diameter: 200 mm (8") or larger
- Needs to move beam or wafer, or both, to scan ion beam across the whole wafer
 - Spin wheel
 - Spin disk
 - Single wafer scan

Single Wafer Scanning System

Ion Implantation: Beam Stop

- absorb the ion beam energy,
- ion beam detector
 - beam current, beam energy, and beam shape measurement
- Water cooled metal plate carries away the heat and blocks the X-ray radiation

Ion Implantation: End Analyzer

- Faraday charge detector
- Used to calibrate beam current, energy and profile

Ion Implantation: The Process

- CMOS applications
- CMOS ion implantation requirements
- Implantation process evaluations

CMOS Implantation Requirements

Implant Step	0.35 m n, 64 Mb	0.25 m n, 256 Mb	0.18 m n, 1 Gb
N-well			
Well	P/600/2×10 ¹³	P/400/2×10 ¹³	P/300/1×10 ¹³
Anti-punch through	P/100/5×10 ¹³	As/100/5×10 ¹²	As/50/2×10 ¹²
Threshold	B/10/7×10 ¹²	B/5/3×10 ¹²	B/2/4×10 ¹²
Poly dope	P/30/2×10 ¹⁵	B/20/2×10 ¹⁵	B/20/3×1015
Poly diffusion block	-	-	N ₂ /20/3×10 ¹⁵
Lightly doped drain (LDD)	B/7/5×10 ¹³	B/5/1×10 ¹⁴	B/2/8×10 ¹³
Halo (45° implant)	-	-	As/30/5×10 ¹³
Source/drain contact	B/10/2×10 ¹⁵	B/7/2×10 ¹⁵	B/6/2×10 ¹⁵
P-well			
Well	B/225/3×10 ¹³	B/200/1×10 ¹³	B/175/1×10 ¹³
Anti-punch through	B/30/2×10 ¹³	B/50/5×10 ¹²	B/45/5×10 ¹²
Threshold	B/10/7×10 ¹²	B/5/3×10 ¹²	B/2/4×10 ¹²
Poly dope	P/30/5×10 ¹⁵	P/20/2×10 ¹⁵	As/40/3×10 ¹⁵
Poly diffusion block	-	-	N ₂ /20/3×10 ¹⁵
Lightly doped drain (LDD)	P/20/5×10 ¹³	P/12/5×10 ¹³	P/5/3×10 ¹³
Halo (45° implant)	B/30/3×10 ¹²	B/20/3×10 ¹²	B/7/2×10 ¹³
Source/drain contact	As/30/3×10 ¹⁵	As/20/3×10 ¹⁵	As/15/3×10 ¹⁵

Hong Xiao, Ph. D.

Implantation Process: Well Implantation

• High energy (to MeV), low current $(10^{13}/\text{cm}^2)$

Implantation Process: V_T Adjust Implantation

Low Energy, Low Current

Lightly Doped Drain (LDD) Implantation

• Low energy (10 keV), low current ($10^{13}/cm^{2}$)

Implantation Process: S/D Implantation

• Low energy (20 keV), high current (> $10^{15}/cm^2$)

Ion Implantation Processes

Ion ImplantationEnergyCurrentWellHigh energylow currentSource/DrainLow energyhigh currentV_T AdjustLow energylow currentLDDLow energylow current

Process Issues

- Wafer charging
- Particle contamination
- Elemental contamination
- Process evaluation

Wafer Charging

- Break down gate oxide
- Dielectric strength of SiO₂: ~10 MV/cm
- 100 Å oxide breakdown voltage is 10 V
- Gate oxide: 30 to 35 Å for 0.18 μ m device
- Require better charge neutralization

Wafer Charging Monitoring

- Antenna capacitor changing test structure
- The ratio of polysilicon pad area and thin oxide area is called antenna ratio
- Can be as high as 100,000:1
- The larger antenna ratio, the easier to breakdown the thin gate oxide

Antenna Ratio

105

Particle Contamination

- Large particles can block the ion beam especially for the low energy processes,
- V_T adjust, LDD and S/D implantations,
- Cause incomplete dopant junction.
- Harmful to yield

Elemental Contamination

- Co-implantation other elements with intended dopant
- ${}^{94}Mo^{++}$ and ${}^{11}BF_2^{+,}$ same mass/charge ratio (A/e = 49)
- Mass analyzer can't separate these two
- ⁹⁴Mo⁺⁺ causes heavy metal contamination
- Ion source can't use standard stainless steel
- Other materials such as graphite and tantalum are normally used
Process Evaluation

- Four-point probe
- Thermal wave
- Optical measurement system (OMS)

Four-Point Probe

- Perform after anneal
- Measure sheet resistance
- Sheet resistant is a function of dopant concentration and junction depth
- Commonly used to monitor doping process

Four-Point Probe Measurement

For a typical four-point probe, $S_1 = S_2 = S_3 = 1$ mm, If current is applied between P_1 and P_4 , $R_s = 4.53$ V/I If current is applied between P_1 and P_3 , $R_s = 5.75$ V/I

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiao/Book.htm

Thermal Wave System

- Argon "pump" laser generates thermal pulses on wafer surface
- He-Ne probe laser measures DC reflectivity (*R*) and reflectivity modulation induced by the pump laser (*DR*) at the same spot
- Ratio DR/R is called thermal wave (TW) signal,
 - TW signal DR/R related to the crystal damage
 - crystal damage is a function of the implant dose

Thermal Wave System

Thermal Wave System

- Performed immediately after the implant process
 Four-point probe needs anneal first
- Non-destructive, can measure production wafers
 Four-point probe is only good for test wafers
- Low sensitivity at low dosage
- Drift of the TW signal over time
 - needs to be taken as soon as the implantation finished
- Don't have very high measurement accuracy
 - Laser heating relax crystal damage

Optical Measurement System (OMS)

- transparent wafer coated a with a thin layer of copolymer, which contains energy sensitive dye
- During ion implantation, energetic ions collide with dye molecules and break them down
- Makes the copolymer becomes more transparent
- The higher the dosage, the higher the transparency
- Photon count change before and after implantation
- Determine dosage of certain ion at certain energy

Optical Measurement System (OME)

www2.austin.cc.tx.us/HongXiao/Book.htm

Ion Implantation: Safety

- One of most hazardous process tools in semiconductor industry
- Chemical
- Electro-magnetic
- Mechanical

Ion Implantation: Chemical Safety

- Most dopant materials are highly toxic, flammable and explosive.
- Poisonous and explosive: AsH_3 , PH_3 , B_2H_6
- Corrosive: BF₃
- Toxic: P, B, As, Sb
- Common sense: get out first, let the trained people to do the investigation.

Hong Xiao, Ph. D.

www2.austin.cc.tx.us/HongXiao/Book.htm

Ion Implantation: Electro-magnetic Safety

- High voltage: from facility 208 V to acceleration electrode up to 50 kV.
- Ground strip, Work with buddy!
- Lock & tag
- Magnetic field: pacemaker, etc.

Ion Implantation: Radiation Safety

- High energy ions cause strong X-ray radiation
- Normally well shield

Ion Implantation: Corrosive by-products

- BF₃ as dopant gas
- Fluorine will react with hydrogen to from HF
- Anything in the beamline could have HF
- Double glove needed while wet clean those parts

Ion Implantation: Mechanical Safety

- Moving parts, doors, valves and robots
- Spin wheel
- Hot surface
- •

Technology Trends

- Ultra shallow junction (USJ)
- Silicon on insulator (SOI)
- Plasma immersion ion implantation (PIII)

Ultra Shallow Junction (USJ)

- USJ ($x_i \le 0.05 \ \mu m$) for sub-0.1 μm devices
 - p-type junction, boron ion beam at extremely low energy, as low as 0.2 keV
- The requirements for the USJ
 - Shallow
 - Low sheet resistance
 - Low contact resistance
 - Minimal impact on channel profile
 - Compatible with polysilicon gate

Soft Error

- Electron-hole pairs generated by α -decay
- Electrons from substrate overwrite the messages in memory capacitors
 - Storage capacitors need large capacitance
 - Limit further shrinking device feature size
- Silicon-on-insulator (SOI) complete isolate device from bulk substrate

α -particle Induced Electron-hole Pairs

CMOS on SOI Substrate

SOI Formation

- Implanted wafers
 - Heavy oxygen ion implantation
 - High temperature annealing
- Bonded wafers
 - Two wafers
 - Grow oxide on one wafer
 - High temperature bond wafer bonding
 - Polish one wafer until thousand Å away from SiO_2

Oxygen Ion Implantation

High Temperature Annealing

Plasma Immersion Ion Implantation

- Deep trench capacitor for DRAM
- Deeper and narrower
- Very difficult to heavily dope both sidewall and bottom by ion implantation
- Plasma immersion ion implantation (PIII)
- An ion implantation process without precise ion species and ion energy selection

Deep Trench Capacitor

ECR Plasma Immersion System

Summary of Ion Implantation

- Dope semiconductor
- Better doping method than diffusion
- Easy to control junction depth (by ion energy) and dopant concentration (by ion current and implantation time).
- Anisotropic dopant profile.

Summary of Ion Implantation

- Ion source
- Extraction
- Analyzer magnets
- Post acceleration
- Charge neutralization system
- Beam stop

Summary of Ion Implantation

- Well High energy, low cur
- Source/Drain
- Vt Adjust
- LDD

High energy, low current Low energy, high current Low energy, low current Low energy, low current