

Semiconductor Devices Lecture 4, MI(O)S Capacitor

Content

- Ideal MIS Capacitor
- Silicon MOS Capacitor

Ideal MIS Capacitor, V=0

MIS in Accumulation

MIS in Depletion

MIS in Inversion

When increasing the applied voltage even more, the depletion region stops to grow. Instead the minority carrier form a thin layer close to the oxide interface.

Surface Space-charge region, p-type semiconductor

 $\psi_{Bp} > \psi_s > 0$ Depletion of holes (bands bending downward). $\psi_s = \psi_{Bp}$ Fermi-level at midgap, $E_F = E_i(0)$, $n_p(0) = p_p(0) = n_i$.

Strong inversion (min, condition, p doped semiconductor), the surface conc. of n = p level in the bulk

Space charge density versus surface potential for p-type silicon, p=4*10¹⁵ cm⁻³

Charge distribution, E-field, potential

$$Q_M = -(Q_n + qN_A W_D) = -Q_s$$

$$\phi_{ms}=0$$

Charge distribution, E-field, potential

MIS CV-graph, p-type semiconductor

- a) Low frequency (~Hz)
- c) High Frequency (>kHz)
- d) High Frequency with fast sweep and no illumination

DC bias with a small AC voltage applied

Strong inversion, frequency behavior

The depletion layer

The calculation is similar as for a n⁺p diode

$$w = \sqrt{\frac{2\varepsilon_s \psi_s}{qN_a}}$$

$$W_{Dm} \approx \sqrt{\frac{2\varepsilon_s \psi_s(\text{strong inv})}{qN_A}} \approx \sqrt{\frac{4\varepsilon_s kT \ln(N_A/n_i)}{q^2 N_A}}.$$

Ideal MOS C-V graphs for different oxide thickness

Silicon MOS Capacitor, interface traps

Mobile ions

•Oxide trapped charge

•Fixed oxide charge

- •Interface trapped charge
 - •~10¹⁰ cm⁻², <100>, FGA

Interface trap system

Equivalent circuits including interface-trap

Interface traps influence on C-V curves

High f C method
Low F C method
High and low f C method

No theoretical calc
needed, see eq 49

Conductance method

Conductance method

Properties for different orientation of silicon

Orientation	Plane area of unit cell	Atoms in cell area	Available bonds in cell area	Atoms/cm ²	Available bonds/cm ²
(111)	$\sqrt{3}a^{2}/2$	2	3	7.85×10 ¹⁴	11.8×10^{14}
(110)	$\sqrt{2}a^2$	4	4	9.6×10^{14}	9.6×10^{14}
(100)	a^2	2	2	6.8×10^{14}	6.8×10^{14}
		·····			

 $<100>\sim5*10^{10}$ cm⁻²

 $< 111 > \sim 5*10^{11} \text{ cm}^{-2}$

<111> $\sim3*10^{12}$ cm⁻², radiation damaged

Variation of trap time constant versus energy

Interface traps have a continuum distribution over the band gap, a measured value is therefore strongly depended on applied bias voltage

Oxide charge influence on flat band bias

work-function difference effect on flatband voltage

Work function difference versus doping for poly silicon and Al

MID SWEDEN UNIVERSITY

Real MOS Capacitance

Influence of material parameters on V_T

Carrier transport in MOS structure

Current-voltage characteristics of Au-Si₃N₄-Si capacitor at room temperature

Avalanche injection of electrons into the oxide (c)

Breakdown voltage of MOS capacitor

Hot carrier injection cause a change in the components characteristic

Dielectric breakdown

Occur when a chain of defects forms between metal and semiconductor

Time to breakdown versus oxide field

DE-detector

Fig. 1. Overhanging silicon dioxide edge in the detector window.

Fig. 2. Schematic sketch of the detector structure.

Fig. 4. *IV*-characterization of an 8.8 μ m ΔE detector.

 c_1 n^+ c_2 c_3 sio_2

Fig. 6. Distributed capacitances in the ΔE detector. C_1 is detector window capacitance, C_2 side wall capacitance, C_3 edge capacitance, and C_4 metal oxide semiconductor capacitance.

An example, from "Streetman"

V

EXAMPLE 6-1 An n⁺-polysilicon-gate n-channel MOS transistor is made on a p-type Si substrate with $N_a = 5 \times 10^{15} \text{ cm}^{-3}$. The SiO₂ thickness is 100 Å in the gate region, and the effective interface charge Q_i is $4 \times 10^{10} \text{ qC/cm}^2$. Find C_i and C_{min} on the C-V characteristics, and find W_m , V_{FB} , and V_T .

SOLUTION

$$\begin{split} \varphi_F &= \frac{kT}{q} \ln \frac{N_a}{n_i} = 0.0259 \ln \frac{5 \times 10^{15}}{1.5 \times 10^{10}} = 0.329 \text{ eV} \\ W_m &= 2 \left[\frac{\epsilon_s \phi_F}{qN_a} \right]^{1/2} = 2 \left[\frac{11.8 \times 8.85 \times 10^{-14} \times 0.329}{1.6 \times 10^{-19} \times 5 \times 10^{15}} \right]^{1/2} \\ &= 4.15 \times 10^{-5} \text{cm} = 0.415 \,\mu\text{m} \\ \text{From Fig. 6-17, } \Phi_{ms} &\approx -0.95 \text{ V, and we have} \\ Q_i &= 4 \times 10^{10} \times 1.6 \times 10^{-19} = 6.4 \times 10^{-9} \text{ C/cm}^2 \\ C_i &= \frac{\epsilon_i}{d} = \frac{3.9 \times 8.85 \times 10^{-14}}{0.1 \times 10^{-5}} = 3.45 \times 10^{-7} \text{ F/cm}^2 \\ V_{FB} &= \Phi_{ms} - Q_i/C_i = -0.95 - 6.4 \times 10^{-9}/3.45 \times 10^{-7} = -0.969 \,\text{V} \\ Q_d &= -qN_aW_m = -1.6 \times 10^{-19} \times 5 \times 10^{15} \times 4.15 \times 10^{-5} \\ &= -3.32 \times 10^{-8} \text{ C/cm}^2 \\ V_T &= V_{FB} - \frac{Q_d}{C_i} + 2\phi_F = -0.969 + \frac{3.32 \times 10^{-8}}{3.45 \times 10^{-7}} + 0.658 = -0.215 \\ C_d &= \frac{\epsilon_s}{W_m} = \frac{11.8 \times 8.85 \times 10^{-14}}{4.15 \times 10^{-5}} = 2.5 \times 10^{-8} \text{ F/cm}^2 \\ C_{\min} &= \frac{C_i C_d}{C_i + C_d} = \frac{3.45 \times 10^{-7} \times 2.5 \times 10^{-8}}{3.45 \times 10^{-7} + 2.5 \times 10^{-8}} = 2.33 \times 10^{-8} \,\text{ F/cm}^2 \end{split}$$

