MOSFETS [CHAPTER 6] ESEBAMEN, XERVIAR OMEIME

- 6.1 INTRODUCTION
- **6.2** BASIC DEVICE CHARACTERISTICS
- 6.3 NONUNIFORM DOPING AND BURIED-CHANNEL DEVICE
- 6.4 DEVICE SCALING AND SHORT-CHANNEL EFFECTS

Fig. 1 Minimum gate dimension in commercial integrated circuit as a function of the year of production.

FET – Field Effect PET – Potential Effect

Fig. 2 Distinction between (a) field-effect transistor (FET) and (b) potential-effect transistor (PET).

All differ on how the gate capacitor is formed

Fig. 3 Family tree of field-effect transistors (FETs).

Why FET

• Good for applications in analog switching, high-input-impedance amplifiers, and microwave amplifiers

• Higher input impedance than bipolar transistors

•Thermally stable Negative temperature coefficient at high current levels preventing thermal runaway

• High switching speed No minority-carrier storage as a result of no forward-biased p-n junctions

• Linear devices intermodulation and cross-modulation products are smaller than those of bipolar transistors

FET Variants

N-channel MOSFET

Formed by electrons and more conductive with +Vg

P-channel MOSFET

Formed by Holes and more conductive with –Vg

Vg=0, Mosfet is

• Enhancement Mode = Normally off

Low channel conductance. Must apply Vg to form a conductive channel

Depletion Mode = Normally on

High channel conductance. Must apply Vg to turn device off

FET Variant

ig. 5 FET channels: (a) surface inversion channel and (b) buried channel.

Surface Inversion ~ 5nm thick

Buried channels

Free from surface effects, scattering Better carrier mobility Minus - Lower and variable conductance from gatechannel distance

FET Structure

Basic Parameters:

- Channel Length, L
- Channel Width, Z
- Insulator thickness, d
- Junction depth, rj
- substrate doping, Na

Fig. 6 Schematic diagram of a MOSFET.

Source and drain – ion implantation SiO₂ gate dielectric – Thermal oxidation Gate electrode - heavily doped polysilicon or polysilicon + silicide

* Field oxide to distinguish it from the gate oxide or a trench filled with insulator to electrically isolate it from adjacent devices

MOSFET characteristic

Inversion Charge

Equilibrium conditions

1) In fig b, Flat band Vg = Vd = Vbs = 0

2) In fig c, Gate bias Vd = Vbs = 0, Vg $\neq 0$

Quasi-fermi conditions Vg , Vd $\frac{1}{9}$ 0

for inversion to take place at the drain Ψs is ~ twice Ψb (weak inversion)

Ψb=fermi level from intrisic fermi level

Fig. 7 Two-dimensional band diagram of an *n*-channel MOSFET. (a) Device configuration. (b) Flat-band zero-bias equilibrium condition. (c) Equilibrium condition ($V_D = 0$) under a positive gate bias. (d) Nonequilibrium condition under both gate and drain biases. (After Ref. 20.)

MOSFET characteristic

Inversion Charge

Equilibrium case

Surface depletion region reaches a maximum width W_{Dm}, at inversion

Quasi-fermi case

Depletion-layer width is deeper than W_{Dm} and is a function of the drain bias V_d,

Fig. 8 Comparison of charge distribution and energy-band variation of an inverted *p*-region in (a) equilibrium and (b) nonequilibrium at the drain end. (After Ref. 21.)

For strong inversion to occur

$$\psi_s(\text{inv}) \approx V_D + 2 \psi_B$$

MOSFET characteristic

Current-Voltage Characteristics

Basic MOSFET characteristics under the following idealized conditions

- (1) It has an ideal gate structure with no interface traps nor mobile oxide charge
- (2) Only drift current will be considered;
- (3) doping in the channel is uniform
- (4) little or no reverse leakage current
- (5) the transverse field (x-direction) in the channel is >> than the longitudinal field (y-direction).

Inversion charge

ignore condition (1), then V_g , is replaced by V_g , - V_{FB}

$$|Q_n(y)| = [V_G - V_{FB} - \Delta \psi_i(y) - 2\psi_B]C_{ox} - \sqrt{2\varepsilon_s q N_A [\Delta \psi_i(y) + 2\psi_B]}$$

MOSFET characteristic

For a given V_g , the Id first increases linearly with Vd (the linear region), then gradually levels off (the nonlinear region), and finally approaching a saturated value (the saturation region).

Fig. 9 Idealized drain characteristics (I_D vs. V_D) of a MOSFET. The dashed lines separate the linear, nonlinear, and saturation regions.

MOSFET characteristic

Constant Mobility

Condition 1

Effect: The channel acts as a resistor, $I_d \propto V_d$, This is the linear region.

*VT is the gate bias beyond flat-band just starting to induce an inversion charge sheet

If an applied $+V_g > *V_T$ (large enough to cause an inversion at the semiconductor surface.)

Then apply a small drain Vd (current will flow from the source to the drain through the conducting channel)

MOSFET characteristic

Constant Mobility Condition 2

Effect: The inversion charge at the drain end Q_n ,(L) = 0 Pinch off point occurs there because the relative voltage between the gate and the

semiconductor is reduced

Practically, $Q_n \neq 0$ because of high field and high carrier velocity

Increase Vd (the charge near the drain end is reduced by the channel potential Ψ i)

MOSFET characteristic

Constant Mobility

Condition 3

Effect: the pinch-off point starts to move toward the source, but the pinch-off point voltage is the same

change in L increases Id only when the shortened amount is a substantial fraction of the channel length

Increase Vd more... (Vd > Vsat)

MOSFET characteristic

Fig. 11 v- \mathscr{C} relationship (Eq. 33) for n = 1 and 2, and two-piece linear

approximation. The critical field

 $\mathscr{C}_c = v_s / \mu$, where μ is low-field

mobility, is also indicated.

Reduce Channel length L, the internal longitudinal field \mathscr{C}_y in the channel also increases as a result

Recall: Mobility u is defined as v / \mathscr{E} .

Linear graph = Constant mobility = long channel from low field >> \mathscr{E}_y , *vs* saturates *vs* at room temp for Si = 1E7 cm/s

In btw constant mobility and saturated V_s

$$v(\mathcal{Z}) = \frac{\mu_n \mathcal{Z}}{[1 + (\mu_n \mathcal{Z}/v_s)^n]^{1/n}} = \frac{\mu_n \mathcal{Z}}{[1 + (\mathcal{Z}/\mathcal{Z}_c)^n]^{1/n}}$$

Best fit: n = 2 (electrons), n = 1 (holes)

15

MOSFET characteristic

- Field-Dependent Mobility: Two-Piece Linear Approximation
- Field-Dependent Mobility: Empirical Formula
- Velocity Saturation
- Ballistic Transport

In ultra-short channel lengths whose dimensions are on the order of or shorter than the mean free path, channel carriers do not suffer from scattering. They can gain energy from the field.

They acquire a velocity $>> \mathcal{V}_s$

At room temperature, v_s almost equal the thermal velocity v_{th} for silicon

MOSFET characteristic

- Threshold Voltage

 V_T is the gate bias beyond flat-band just starting to induce an inversion charge sheet and is given by the sum of voltages across the semiconductor ($2\psi_B$) and the gate material

Its shift from V_{FB} + zero as a result of

1) Fixed oxide charge, Qf

2) the work-function difference Φ ms between the gate material and the semiconductor

$$V_{T} = V_{FB} + 2 \psi_{B} + \frac{\sqrt{2 \varepsilon_{s} q N_{A}(2 \psi_{B})}}{C_{ox}} \longleftarrow \begin{array}{c} \text{Total depletion-layer} \\ \text{charge} \end{array}$$

By applying a -ve substrate bias (negative for n-channel or p-substrate),

$$V_T = V_{FB} + 2 \psi_B + \frac{\sqrt{2 \varepsilon_s q N_A (2 \psi_B - V_{BS})}}{C_{ox}}$$

Practically, the difference between equations (1) and (2) should be low as possible by

- low substrate doping
- thin oxide thickness

MOSFET characteristic

Measuring Threshold Voltage

use the linear region by applying a small V_d

(a) Plot ID VS VG

Swing S (inverse of sub-threshold slope) Quantifies how sharply the transistor is turned off by the V_g

(b)

defined as ΔV_g required to induce a ΔI_d one order of magnitude

Fig. 15 Transfer characteristics $(I_D \text{ vs. } V_G)$ in the linear region $(V_D \ll V_G)$. (a) I_D in linear scale to deduce V_T Deviation from linearity at higher V_G is due to lower mobility. (b) I_D in logarithmic scale to show subthreshold swing.

MOSFET characteristic

Sub-threshold Region

 When the gate bias below the threshold
 the semiconductor surface is in weak inversion or depletion It tells how sharply the current drops with gate bias

Importance

For low-voltage, low-power applications, such as when the MOSFET is used as a switch in digital logic and memory applications

For a sharp sub-threshold slope (small Swing), it becomes advisable to have

- -low channel doping
- -thin oxide thickness
- -low interface-trap density
- -low-temperature operation

MOSFET characteristic

Temperature Dependence

1) Mobility (2) Threshold voltage (3) sub-threshold characteristics

The effective mobility in inversion layer is such that gives rise to higher current and trans-conductance at lower temperature

Fig. 18 Threshold-voltage shift (dV_T/dT) of a Si-SiO₂ system at room temperature vs. substrate doping, with oxide thickness *d* as a parameter.

MOSFET characteristic

Temperature Dependence

The MOSFET characteristics improve, as temperature decreases, especially in the subthreshold region

Low temperature operation offers

Subthreshold swing S, Higher mobility,... thus, Higher current and Trans-conductance, lower power consumption, Lower junction leakage current, And Lower metal-line resistance

Demerit Special coolant to operate

Fig. 19 Subthreshold characteristics for a long-channel MOSFET ($L = 9 \mu m$) with temperature as a parameter. (After Ref. 36.)

MOSFET characteristic

Non Uniform Doping and Buried Channel Device

In non uniform doping profiles, threshold can be analyzed using

Fig. 20 Nonuniform channel doping profiles. (a) High-low profile. (b) Low-high (retrograde) profile. (c) – (d) Their approximations using step profiles.

MOSFET characteristic

Non Uniform Doping

High-Low Profile

*x*s → step depth
 = sum of projected range and standard deviation of original implant

As x_s get wider or equal to W_{Dm} , The surface region can be considered a uniform doped region with a higher concentration

If $W_{Dm} > \chi_s$

$$V_T = V_{FB} + 2\psi_B + \frac{qN_BW_{Dm} + q\Delta Nx_s}{C_{ox}}$$

$$W_{Dm} = \sqrt{\frac{2\varepsilon_s}{qN_B} \left(2\psi_B - \frac{q\Delta N x_s^2}{2\varepsilon_s}\right)}$$

*from the eqtns, a higher surface concentration N_B decreases WDm but increases V_T

MOSFET characteristic

Non Uniform Doping

High-Low Profile

For a typical case, the threshold voltage depends on the implanted dose \mathbf{D}_{I} and the centroid of the dose \mathbf{x}_{c}

MOSFET characteristic

Non Uniform Doping

Low-High Profile \rightarrow Retrograde profile

Subtraction of ΔN from background doping

MOSFET characteristic

doping profile and depletion regions

Caused by

- the surface doping of the opposite type of the substrate

- part of the surface doped layer is not fully depleted

Vg can resize the opening .i.e. >>Vg = larger channel, >> -Vg = smaller channel

Fig b) The net channel thickness is reduced from \boldsymbol{x}_s by the amounts of surface depletion W_{Ds} and the bottom p-n junction depletion W_{Dn}

MOSFET characteristic

Buried Channel Device

Fig 23. Energy-band diagrams of a buried-channel MOSFET, for the bias conditions of (a) flat band $(Vg = V*_{FB})$, (b) surface depletion, and (c) threshold (Vg=VT)

 $V*_{FB}$ below refers to the condition that the surface *n*-layer has flat band, as opposed to the p-substrate

$$V_{FB}^* = V_{FB} + \psi_{bi}$$

$$V_T < V_G < V_{FB}^*$$

$$Q = Q_B = (x_s - W_{Ds} - W_{Dn})N_D$$

 \mathbf{Q} – Channel Charge, $\mathbf{Q}_{\mathbf{B}}$ = Bulk Charge

$$V_{FB}^* < V_G$$

$$Q = Q_B + Q_I$$

$$= (x_s - W_{Dn})N_D + C_{ox}(V_G - V_{FB}^*)$$

Assuming long-channel constant-mobility model, Substitute Q into the eqtn to get $I_{\rm D}$

$$I_D = \frac{Z}{L} \int_0^L |Q_n(y)| v(y) dy$$

27

DEVICE SCALING AND SHORT-CHANNEL EFFECTS

As the MOSFET dimensions shrink, they need to be designed properly to preserve the long-channel behavior as much as possible

As the channel length decreases, the depletion widths of the source and drain become comparable to the channel length and punch-through between the drain and source will eventually occur

Even with best practice, keeping long-channel behavior becomes impossible **short-channel effects** cause

2-d potential distribution high channel electric field

Table 2MOSFET Sealing

DEVICE SCALING AND SHORT-CHANNEL EFFECTS

Drain-Induced Barrier Lowering (DIBL)

when the source and drain depletion regions are a substantial fraction of the channel length, short-channel effects start to occur

When W_s + W_D ~ L => punch-through => high leakage current between source and drain

Fig 28. Energy-band diagram at the semiconductor surface from source to drain, for (a) long channel and (b) short-channel MOSFETs, showing the DIBL effect in the latter. Dashed lines $V_D = 0$. Solid lines $V_D > 0$.

DEVICE SCALING AND SHORT-CHANNEL EFFECTS

Fig 30. Current components of a MOSFET under high fields

With shorter channel lengths

Non-ideal scaling \Rightarrow increase internal electric fields \Rightarrow anomalous currents

 \Rightarrow Highest Field occurs at the drain

A perfect substrate tie ($R_{sub} = 0$) will sink all the hot holes

As channel carriers (electrons) go through the high-field region, they acquire extra energy from the field without losing it to the lattice. These energetic carriers are called hot carriers

DEVICE SCALING AND SHORT-CHANNEL EFFECTS

Multiplication and Oxide Reliability

Ig is to due to hot carriers over the barrier and it differs from carriers tunneling through the barrier

It peaks at $V_G \sim V_D$

- Their impact creates problems
- => Create oxide charges and Interface traps
- => the VT shifts, higher value
- \Rightarrow Degrading trans conductance, $g_{\rm m}$
- => Reduced Channel mobility
- => Larger Sub threshold swing S

Fig 31. Drain current, substrate current, and gate current vs. gate voltage of a MOSFET. L/W = 03um/30um