Semiconductor Physics

Chapter 5, Bipolar transistors

David Krapohl

Department of Information Technology and Media Mid Sweden University

April 27, 2011

David Krapohl

Semiconductor Physics

... or table of contents

Static characteristics Symbols and nomenclature: npn- and pnp-transistors Biasing configurations

Output Characteristics

Nonideal Effects Emitter bandgap narrowing

Symbols and nomenclature: npn- and pnp-transistors

Biasing configurations

Common-Base

David Krapohl

Semiconductor Physics

Biasing configurations

Common-Emitter

Biasing configurations

Common-Collector

Connection and biases in common-base configuration

Doping profiles and critical dimensions

David Krapohl

Energy band diagram of a npn transistor

Electron currents

Emitter and collector edge

$$0 = -\frac{n_p - n_{po}}{\tau_n} + D_n \frac{d^2 n_p}{dx^2}$$
$$n_p(x) = n_{po} + C_1 exp\left(\frac{x}{L_n}\right) + C_2 exp\left(\frac{-x}{L_n}\right)$$

 C_1 and C_2 are constants and $L_{\equiv}\sqrt{D_n\tau_n}$

$$C_{1} = \left\{ n_{p}(W) - n_{po} - \left[n_{p}(0) - n_{po} \right] exp\left(\frac{-W}{L_{n}}\right) \right\} / 2 \sinh \frac{W}{L_{n}}$$

$$C_{2} = \left\{ \left[n_{p}0 - n_{po} \right] exp\left(\frac{W}{L_{n}}\right) \left[n_{p}(W) - n_{po} \right] \right\} / 2 \sinh \frac{W}{L_{n}}$$

David Krapohl

Electron currents

Emitter and collector edge

Boundary conditions for the two edges of the base:

$$n_{p}(0) = n_{po}exp\left(\frac{qV_{BE}}{kT}\right)$$

$$n_{p}(W) = n_{po}exp\left(\frac{qV_{BC}}{kT}\right)$$

$$I_{nE} = \frac{A_{E}qD_{n}n_{po}}{L_{n}}coth\frac{W}{L_{n}}exp\left(\frac{qV_{BE}}{kT}\right)$$

$$I_{nC} = \frac{A_{E}qD_{n}n_{po}}{L_{n}}cosech\frac{W}{L_{n}}exp\left(\frac{qV_{BE}}{kT}\right)$$

The ratio of I_{nC}/I_{nE} is called **base transport factor** α_T

Electron currents

Emitter and collector edge

$$I_{nE} \approx I_{nC} \approx \frac{A_E q D_n n_{po}}{W} exp\left(\frac{q V_{BE}}{kT}\right) \approx \frac{A_E q D_n n_i^2}{W N_B} exp\left(\frac{q V_{BE}}{kT}\right)$$

Can be reduced to:

$$I_{nE} \approx I_{nC} \approx \frac{2A_E D_N Q_B}{W^2}$$

 Q_B is the injected excess charge in the base:

1

$$Q_B = q \int_0^W [n_p(x) - n_{po}] dx$$

Doping profile

Electron Currents

A build-in electric field enhances electron transport.

$$p(x) \approx N_B(x) = n_i exp\left(\frac{E_i - E_F}{kT}\right)$$

built-in field

$$\mathscr{E}(x) = \frac{dE_i}{qdx} = \frac{kT}{qN_B}\frac{dN_B}{dx}$$

Electron Currents

$$I_n(x) = A_E q \left(\mu_n \mu_p \mathscr{E} + D_n \frac{dn_p}{dx} \right)$$

substituting \mathscr{E}

$$I_n(x) = A_E q D_n \left(\frac{n_p}{N_B} \frac{dN_B}{dx} + \frac{dn_p}{dx} \right)$$

steady state solution with boundary condition $n_p(W) = 0$

$$n_p(x) = \frac{I_n(x)}{A_E q D_n N_B(x)} \int_x^W N_B(x) dx$$

Electron Currents

total impurity dose per area in the base

$$N_b \equiv \int_x^W N_B(x) dx$$

called Gummel number. (Si: $10^{12} to 10^{13} cm^{-2}$)

David Krapohl

Semiconductor Physics

Hole Currents

diffusion current injected from base to emitter

$$I_{pE} = \frac{A_E q D_p E p_{noE}}{W_E} \left[exp\left(\frac{q V_{BE}}{kT}\right) - 1 \right]$$

David Krapohl

Semiconductor Physics

Recombination

- Shockley-Read-Hall recombination
- Auger recombination

$$\frac{1}{\tau} = \frac{1}{\tau_n} + \frac{1}{\tau_A}$$

Base-emitter recombination

$$I_{rE} \propto rac{1}{ au} exp\left(rac{qV_{BE}}{mkT}
ight)$$

Collector base junction

$$I_{CO} \approx A_C q \left(\frac{D_{pC} p_{noC}}{W_C - W_{DC}} + \frac{D_n n_{po}}{W} \right)$$

David Krapohl

Semiconductor Physics

Current gain

$$I_E = I_{nE} + I_{rE} + I_{pE}$$

$$I_C = I_{nC} + I_{CO}$$

$$I_B = I_{pE} + I_{rE} + (I_{nE} - I_{nC}) - I_{CO}$$

It holds true that

 $I_E = I_C + I_B$

Parameters for a Bipolar Transistor

Common base current gain

 I_{CBO}

$$\alpha_0 \equiv h_{FB} = \frac{I_C - I_{CB0}}{I_E} = \frac{I_{nC}}{I_E} = \frac{I_{nC}}{I_n E} \frac{I_{nE}}{I_E} = \alpha_T \gamma$$

 γ is defined as emitter injection efficiency

Common emitter configuration

$$I_{\rm C} = \beta_0 I_B + I_{\rm CEO}$$

 I_{CEO} is I_{CO} when $I_B = 0$, or open base:

$$I_C = \alpha_0 (I_B + I_{CO}) + I_{CBO}$$
$$= \frac{\alpha_0}{1 - \alpha_0} I_B + \frac{I_{CBO}}{1 - \alpha_0}$$
$$\Rightarrow \beta_0 \equiv h_{FE} = \frac{\alpha_0}{1 - \alpha_0}$$

David Krapohl

Base transport factor, emitter injection efficiency

Base transport factor

$$\alpha_T \equiv \frac{I_{nC}}{I_{nE}} = \frac{1}{\cosh(W/L_n)} \approx 1 - \frac{W}{2L_n^2}$$

Emitter injection efficiency

$$\gamma \equiv \frac{I_{nE}}{I_E} \approx \frac{I_{nE}}{I_{nE} + I_{pE}} \approx \left[1 + \frac{p_{noE}D_{pE}L_n}{N_{PO}D_nW_E} \tanh\left(\frac{W}{L_n}\right)\right]^{-1}$$

David Krapohl

Semiconductor Physics

$$h_{FE} = rac{\gamma}{1-\gamma} = rac{n_{po}D_nW_E}{p_{noE}D_{pE}L_n} \operatorname{coth}\left(rac{W}{L_n}
ight) \propto rac{n_{po}}{p_{noE}W} \propto rac{N_E}{N_BW} \propto rac{N_E}{N_b'}$$

David Krapohl

Semiconductor Physics

Output Characteristics

- **①** applied voltages control the boundary densities through the term exp(qv/kT)
- emitter and collector currents are given by minority density gradients at x=0 and x=W (junction boundaries)
- Base current is the difference between emitter and collector current

Emitter bandgap narrowing

To improve h_{FE} , the emitter should be much more heavily doped than the base, that is $N_E >> N_B$. At high doping concentrations bandgap narrowing has to be considered. Bandgap reduction:

$$\Delta E_g = 18.7 \ln \left(\frac{N}{7 \cdot 10^{17}}\right)$$

N larger than $7\cdot 10^{17}$ Intrinsic carrier density in the emitter is:

$$n_{iE}^2 = N_C N_V \exp\left(-\frac{E_g - \Delta E_g}{kT}\right) = n_i^2 \exp\left(\frac{\Delta E_g}{kT}\right)$$

 n_i : intrinsic carrier density

2

Emitter bandgap narrowing

Minority carrier concentration becomes

$$p_{noE} = \frac{n_{iE}^2}{N_E} = \frac{n_i^2}{N_E} \exp\left(\frac{\Delta E_g}{kT}\right)$$

Increased minority carrier concentration in the emitter. The net result is an increased hole diffusion current and the current gain is recuded

$$h_{FE} \propto rac{n_{po}}{p_{noE}} \propto \exp\left(-rac{\Delta E_g}{kT}
ight)$$

Kirk Effect

In modern bipolar transistors with a lightly doped collector region, the net charge is changed significantly under high-current condition. The high-field region is relocated from the base-collector junction towards the n+-substrate.

It is referred to as the Kirk effect and increases the effective Gummel number and causes a reduction of h_{FE} (current gain).

Current Crowding

Minimization of the emitter resistance results in non-uniform current passing through the emitter area.

 S_{ef} effective width carries most of the current.

MID SWEDEN UNIVERSITY

David Krapohl

Semiconductor Physics