

Detectors for lonised (-ing) Particles

Outline

- Introduction
- Radioactivity
- Particle interaction with matter
- Ionised particle detectors
- Assignments- Simulation Task

Introduction

Detection of particles (or gamma photon, se also the presentations about photodetectors) from a radioactive decay means, the particles must interact with (ionising) the detector. The three necessary processes are:

- 1) Carrier generation by incident particle
- 2) Carrier transport (with or without carrier multiplication)
- 3) Interaction of current with external circuit to provide the output signal

Radioactivity

- Spontaneous disintegration of atomic nuclei.
 - Alfa decay (He nucleus)
 - Beta decay (electron, positron)
 - Gamma decay (photon)

Stopping Mechanism

• The total stopping power

 $S_{total} = S_n + S_e$

- S_n : nuclear stopping, S_e : electronic stopping
- Low *E*, high *A* ion implantation: mainly nuclear stopping
- High *E*, low *A* ion implantation, electronic stopping mechanism is more important

Stopping Power and Ion Velocity

Ion Velocity

Simulation of stopping power can be done with SRIM software "SRIM.org"

- Ionisation of semiconductor
 - Particle and high energy photons (x-ray,gamma) result in an generation of one e/h-pair /~3Eg
 - For silicon is needed 3.6eV to generate one e/h-pair

n-Si Wafer

Oxide passivation

Opening of windows

Doping by ion implantation B 15 keV 5x10¹⁴ cm⁻² As 30 keV 5x10¹⁵ cm⁻²

Annealing at 600°C, 30 min

Al metallisation

Al pattering at the front Al-rear contact

- Passivated, silicon planar diode detector
- Almost operated with reverse bias voltage, (except photodiodes normally operated with zero bias voltage)

• J. Kemmer, Nucl. Instr. and Meth. 226, 45, (1984)

 Drift of generated carrier in the detector

 $v = \mu \cdot \overline{E}$ for v < vs

- Fast current pulse-high electric field in the detector
- High mobility for holes and electrons
- The mobility for holes are in most cases lower than electrons.

High reverse bias in the detector generate high electric field
Reverse bias 20 V

•Qf= $2 \cdot 10^{12} \, q/cm^2$

- •Vr=20V
- •Result in high electric field at anode

And surface avalanche breakdown

•Edge termination

–Edge implantation(edge of anode) ordiffusion drive in

Edge termination –Field plate

•Edge termination –Floating guard rings, reverse bias 40 V, Qf=2.10¹² q/cm²

Assignments- Simulation Task

- Simulate stopping power for 5 MeV $\alpha-$ particle in silicon using SRIM
- Use the simulated data to generate an realistic e/h-pair generation in Medici
- As an Input file to medici use an file from tsupreme4 with the data;
 - 50x500um,
 - field oxide thickness=5000Å,
 - resitivity of bulk=20000 Ωcm, n-type Phos.,
 - detector window doping=950C, boron, 30 min N_2 followed by 30 min O_2
 - detector window opening width=30um

Assignments- Simulation Task

- In medici use $Qf=1.10^{11} q/cm^2$
- Simulate the current response with Vr=0V, Vr=100V and with generation of e/h pair (alfa particle) at front and at back of the detector, i.e. four different cases!
- Integrate the current pulse and compare the resulting charge collection for the four cases

