

Introduction to Semiconductor Technology

Outline

- Atoms and Electrons
- Energy Bands and Charge Carrier in Semiconductors

The Photoelectric Effect

Schrödinger's equation simple example

Particle in a potential-box

Energy levels for a particle in a potential-box

MID SWEDEN UNIVERSITY

Schrödinger's equation simple example

Wave function for a "thin" potential barrier

Schrödinger's equation simple example

Mittuniversitetet

Ion Bonds

Kovalent Bonds

Pauli principle

n = huvudkvanttalet = 1,2,3,....
l = impulsmomentkvanttalet = 0,1,2,3,.....(n-1)

$$m_1$$
 = magnetiskt kvanttal = 0, $^{\pm}1, ^{\pm}2, ^{\pm}3, \dots, ^{\pm}1$
 m_s =magnetiska spinkvanttalet = $^{\pm}1/2$

l =angular momentum quantum number

Energy band (Silicon)

•Pauli principle

•For the formation of the crystal, the wave functions overlaps so the electrons are split up into energy bands with 4N state. Which result in a valence band and a conduction band

Energy band

Real band structures for Si and GaAs

Silicon has indirect bandgap Eg=1.12 eV GaAs has direct bandgap Eg=1.43 eV

Energy band in solid material

Direct and indirect bandgap

•Semiconductors with a direct band gap can emit photons

Semiconductors indirect bandgap can emit photons through a defect level in the band gap
In general, the indirect

semiconductors does not

emit photons, instead the

energy is transferred into

heat

Mittuniversitetet

Tailor the bandgap for GaAs and AIAs

Electrons and holes (intrinsic material, undoped

without defects)

Electrons in conducting band

•At T = 0K there are no electrons in the conduction band and the semiconductor is as an insulator

•When T> To there is a number of electrons in the conduction band and the semiconductor can conduct an electrical current

Holes in valens band

Effective mass

•Do not describe the particle's actual mass, but its apparent mass in the crystal lattice

Intrinsic semiconductors

- An ideal semiconductor crystal without impurities and lattice defects called a intrinsic semiconductors. No free charges are at T = 0K
- Electrons and holes are generated in pairs $n=p=n_i$
- The Generations velocity of electron-hole pairs are equal as the recombination velocity r_i=g_i (equilibrium)

Extrinsic semiconductor

MID SWEDEN UNIVERSITY

Extrinsic semiconductor

Bohrs model for an atom applied on a doped semiconductor! The energy for an electron in its ground state m^{*}_n=0.26m_o för kisel

Charge Carrier Concentration

Fermi-Dirac statistics (only one particle in each energy State) the likelihood that an available energy level shall be filled with an electron. E_F is called Fermi level or chemical potential

$$f(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

k is Boltzmann's constant ($k = 8.62 \times 10^{-5} \text{ eV/K} = 1.38 \times 10^{-23} \text{ J/K}$)

$$f(E_F) = [1 + e^{(E_F - E_F)/kT}]^{-1} = \frac{1}{1+1} = \frac{1}{2}$$
 $E = E_F$

Charge Carrier Concentration

Charge Carrier Concentration

The probability to find a hole in the valence band is provided by [1 - f(E)]

