

Semiconductor Devices Lecture 5, pn-Junction Diode

Content

- Contact potential
- Space charge region, Electric Field, depletion depth
- Current-Voltage characteristic
- Depletion layer capacitance
- Diffusion capacitance
- Transient Behavior
- Junction Breakdown

$$J_{p}(x) = q \Big[\mu_{p} p(x) \mathscr{C}(x) - D_{p} \frac{dp(x)}{dx} \Big] = 0 \qquad \text{Current density is =0}$$

$$\underbrace{\mu_{p}}{D_{p}} \mathscr{C}(x) = \frac{1}{p(x)} \frac{dp(x)}{dx} \qquad \underbrace{D}_{\mu} = \frac{kT}{q} \qquad -\frac{q}{kT} \frac{d^{\circ} \mathscr{V}(x)}{dx} = \frac{1}{p(x)} \frac{dp(x)}{dx}$$

$$\underbrace{D}_{\mu} = \frac{kT}{q}$$
Einstein-relation

MID SWEDEN UNIVERSITY

Problem

Calculate the built-in potential for a silicon p-n junction with $N_A = 10^{18} \text{ cm}^{-3} \text{ and } N_D = 10^{15} \text{ cm}^{-3} \text{ at } 300 \text{ K}.$

Solution

From Eq. 12 we obtain

$$V_{bi} = (0.0259) \ln \frac{10^{18} \times 10^{15}}{(1.45 \times 10^{10})^2} = 0.755 \text{ v}$$

Also from Fig. 4,

$$V_{bi} = \psi_n + |\psi_p| = 0.30 \text{ V} + 0.46 \text{ V} = 0.76 \text{ V}^{\dagger}.$$

Space charge region, Electric Field

Space charge region, Electric Field

$$\int_{\mathscr{C}_0}^0 d\mathscr{C} = \frac{q}{\epsilon} N_d \int_0^{x_{n0}} dx, \qquad 0 < x < x_{n0}$$
$$\int_0^{\mathscr{C}_0} d\mathscr{C} = -\frac{q}{\epsilon} N_a \int_{-x_{p0}}^0 dx, \quad -x_{p0} < x < 0$$

$$\mathscr{E}_0 = -\frac{q}{\epsilon} N_d x_{n0} = -\frac{q}{\epsilon} N_a x_{p0}$$

Space charge region, Electric Field

$$\mathscr{E}(x) = -\frac{d^{\mathscr{V}}(x)}{dx} \text{ or } -V_0 = \int_{-x_{p0}}^{x_{n0}} \mathscr{E}(x) dx$$

$$V_0 = -\frac{1}{2} \mathscr{E}_0 W = \frac{1}{2} \frac{q}{\epsilon} N_d x_{n0} W$$
The area under E(x)
$$X_{n0} N_d = x_{p0} N_a,$$

$$W = x_{n0} + x_{p0}$$

$$W_0 = \frac{1}{2} \frac{q}{\epsilon} \frac{N_a N_d}{N_a + N_d} W^2$$
Contact potential expressed in doping level and depletion depth

Space charge region, depletion depth

$$W = \left[\frac{2\epsilon V_0}{q} \left(\frac{N_a + N_d}{N_a N_d}\right)\right]^{1/2} = \left[\frac{2\epsilon V_0}{q} \left(\frac{1}{N_a} + \frac{1}{N_d}\right)\right]^{1/2}$$
$$W = \left[\frac{2\epsilon kT}{q^2} \left(\ln\frac{N_a N_d}{n_i^2}\right) \left(\frac{1}{N_a} + \frac{1}{N_d}\right)\right]^{1/2}$$
$$x_{p0} = \frac{W N_d}{N_a + N_d} = \frac{W}{1 + N_a/N_d} = \left\{\frac{2\epsilon V_0}{q} \left[\frac{N_d}{N_a(N_a + N_d)}\right]\right\}^{1/2}$$
What happened with x_{p0} and x_{n0} if N_a or N_d is large?

Current-Voltage characteristic

Current-Voltage Characteristic

Current-Voltage Characteristic

MID SWEDEN UNIVERSITY

Current-Voltage Characteristic, forward bias junctions

Current-Voltage Characteristic

Current-Voltage Characteristic, injection of minority carrier (forward bias)

$$\frac{p(-x_{p0})}{p(x_{n0})} = e^{q(V_0 - V)/kT}$$

 $\frac{p_p}{p_n} = e^{qV_0/kT}$

1) Contact potential caused by a different concentration across the junction

2) With bias applied

 $\frac{p(x_{n0})}{dt} = e^{qV/kT}$ p_n

Current-Voltage Characteristic, injection of minority carrier (forward

bias)
$$p(xno) = pne^{qv/kT}$$
 Subtracting equilibrium
hole and electron conc.
$$\Delta p_n = p(x_{n0}) - p_n = p_n(e^{qV/kT} - 1)$$
$$\Delta n_p = n(-x_{p0}) - n_p = n_p(e^{qV/kT} - 1)$$
$$\boxed{\Delta n_p = n(-x_{p0}) - n_p = n_p(e^{qV/kT} - 1)e^{-x_p/L_n}}$$
$$\boxed{\delta n(x_p) = \Delta n_p e^{-x_p/L_n} = n_p(e^{qV/kT} - 1)e^{-x_p/L_n}}$$
$$\boxed{\delta p(x_n) = \Delta p_n e^{-x_n/L_p} = p_n(e^{qV/kT} - 1)e^{-x_n/L_p}}$$
$$\underbrace{\delta p(x_n) = \Delta p_n e^{-x_n/L_p} = p_n(e^{qV/kT} - 1)e^{-x_n/L_p}}_{a_p = \frac{x_p - x_p/L_n}{x_p - x_p - x_p}}$$

Current-Voltage Characteristic, injection of minority carrier (forward bias)

Hole diffusion current at point x_n

$$I_p(x_n) = -qAD_p \frac{d\delta p(x_n)}{dx_n} = qA \frac{D_p}{L_p} \Delta p_n e^{-x_n/L_p} = qA \frac{D_p}{L_p} \delta p(x_n)$$

Hole current injected into the n-material

$$I_p(x_n = 0) = \frac{qAD_p}{L_p} \Delta p_n = \frac{qAD_p}{L_p} p_n(e^{qV/kT} - 1)$$

Electron current injected into the p-material

$$I_n(x_p=0) = -\frac{qAD_n}{L_n}\Delta n_p = -\frac{qAD_n}{L_n}n_p(e^{qV/kT}-1)$$

Current-Voltage Characteristic, the diode equation.

Total current at $x_n = x_p = 0$

$$I = I_p(x_n = 0) - I_n(x_p = 0) = \frac{qAD_p}{L_p}\Delta p_n + \frac{qAD_n}{L_n}\Delta n_p$$

Voltage depended minority injection included

$$I = qA\left(\frac{D_p}{L_p}p_n + \frac{D_n}{L_n}n_p\right)(e^{qV/kT} - 1) = I_0(e^{qV/kT} - 1)$$

Current-Voltage Characteristic, the diode equation.

Reversed bias!

$$I = qA\left(\frac{D_p}{L_p}p_n + \frac{D_n}{L_n}n_p\right)(e^{-qV_r/kT} - 1)$$

Increasing Vr gives:

$$I = -qA\left(\frac{D_p}{L_p}p_n + \frac{D_n}{L_n}n_p\right) = -I_0$$

Shockley Equation

Good agreement for Ge. Bad for Si

Current-Voltage Characteristic, the diode equation.

The current is constant through the component

The doping affect the injection

The p-doping is higher than the n-doping which gives a bigger hole injection

Current-Voltage Characteristic, reverse biased junction

$$\Delta p_n = p_n (e^{q(-V_r)/kT} - 1) \simeq -p_n \text{ for } V_r \gg kT/q$$

$$\Delta p_n = p(x_{n0}) - p_n = p_n(e^{qV/kT} - 1)$$

Current-Voltage Characteristic, reverse biased junction

Current-Voltage Characteristic, 2 order effect

- 1. Generation and recombination in the depletion volume
- 2. Ohmic losses

Current-Voltage Characteristic, 2 order effect

Recombination center in the bandgap. In reverse bias mode the center act as a generations center, which affect the leakage current. (b)

Current-Voltage Characteristic, 2 order effect

The diode equation is modified to take care of the effect of recombination. An ideality factor n with a value from 1 to 2, is therefore introduced. 1 is pure diffusion and 2 is pure recombination. A real diode is somewhere in-between.

$$I = I_0'(e^{qV/\mathbf{n}kT} - 1)$$

I₀' is modified to better explain the current when recombination/generation center affect the leakage current.

Ohmic losses

$$C = \left| \frac{dQ}{dV} \right|$$

Def. of Capacitance

$$W = \left[\frac{2\epsilon V_0}{q} \left(\frac{N_a + N_d}{N_a N_d}\right)\right]^{1/2} \quad (equilibrium)$$

$$W = \left[\frac{2\epsilon(V_0 - V)}{q} \left(\frac{N_a + N_d}{N_a N_d}\right)\right]^{1/2} \quad (with \ bias)$$

$$|Q| = qAx_{n0}N_d = qAx_{p0}N_a$$

Equal amount of charge on each side, opposite charge

$$x_{n0} = \frac{N_a}{N_a + N_d} W, \quad x_{p0} = \frac{N_d}{N_a + N_d} W$$

Propagation of depletion region caused by the doping

$$|Q| = qA \frac{N_d N_a}{N_d + N_a} W = A \left[2q\epsilon (V_0 - V) \frac{N_d N_a}{N_d + N_a} \right]^{1/2}$$

$$C_{j} = \left| \frac{dQ}{d(V_{0} - V)} \right| = \frac{A}{2} \left[\frac{2q\epsilon}{(V_{0} - V)} \frac{N_{d}N_{a}}{N_{d} + N_{a}} \right]^{1/2}$$

 $C_j = \epsilon A \left[\frac{q}{2\epsilon(V_0 - V)} \frac{N_d N_a}{N_d + N_a} \right]^{1/2} = \frac{\epsilon A}{W}$

Differentiation gives the junction capacitance. The capacitance is voltage dependent and decrease with increased reverse bias

etet

Can be written as a simple plate capacitor

$$C_{j} = \left| \frac{dQ}{d(V_{0} - V)} \right| = \frac{A}{2} \left[\frac{2q\epsilon}{(V_{0} - V)} \frac{N_{d}N_{a}}{N_{d} + N_{a}} \right]^{1/2}$$

p⁺n-diod

$$C_j = \frac{A}{2} \left[\frac{2q\epsilon}{V_0 - V} N_d \right]^{1/2} \quad \text{for } p^+ - n$$

$$N_{A}(W) = -\frac{C^{3}}{qK_{s}\varepsilon_{0}A^{2}(dC/dV)}$$

$$N_{A}(W) = \frac{2}{qK_{s}\varepsilon_{0}A^{2}[d(1/C^{2})/dV]}$$

$$W = \frac{K_{s}\varepsilon_{0}A}{C}$$

$$W = \frac{K_{s}\varepsilon_{0}A}{C}$$

$$W = \frac{1}{2}$$

$$W = \frac{K_{s}\varepsilon_{0}A}{C}$$

$$W = \frac{1}{2}$$

et

Diffusion capacitance

Long diodes, The diode is longer than the diffusion length for the minority carrier, no contribution to the capacitance

Short diodes, the most silicon diodes behave as short diodes

Transient Behavior

Injection of minority carrier, when the diode is forward biased. p⁺n-diode

Transient Behavior

Junction Breakdown

•Zener breakdown

•Avalanche breakdown

Junction Breakdown, zener

Junction Breakdown, Avalanche

An electron is accelerated in a high electric Field, which gives impact ionization. Positive temp coeff.

Junction Breakdown, PIN-diode

Fig. 27 Breakdown voltage for $p^+ - \pi - n^+$ and $p^+ - r - n^+$ junctions. W is the thickness of the lightly doped p-type (π) or the lightly doped n-type (r) region.

Junction Breakdown, avalanche in surface

Fig. 28 (a) Planar diffusion process that forms junction curvature near the edge of the diffusion mask, where r_j is the radius of curvature. (b) Formation of cylindrical and spherical regions by diffusion through a rectangular mask.

Junction Breakdown, avalanche in surface

