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Question 4

Consider quantum mechanical particles incident from the left having well-defined
energy as indicated by the vertical positions of the arrows, in the two systems shown
below. Will the probability of being reflected be greater for the incident particle in Sys-
tem 1 than for the incident particle in System 2? Circle one choice below.

yes / no / not enough information provided

potential V(x) potential V(x)

»

System 2
(wide low potential barrier)

System 1
(narrow high potential barrier)

Question 5

Suppose five precise measurements were made on a particle in rapid succession, such
that the time evolution of the particle wave function befween measurements could be
neglected, in the following order: (1) position, (2) momentum, (3) momentum, (4) po-
sition, (5) momentum. If the results of the first two measurements were x, and p,,, re-
spectively, what would be the results of the next three measurements (circle one each)?

measurement (3): momentum P,/ unknown

measurement (4): position x, / unknown

measurement (5): momentum P, [ unknown

Question 6

If the photoelectric effect were governed by classical physics rather than quantum me-
chanics, what would be result of the following experiments:

(a) By changing the intensity of the incident radiation, what would happen to the
energy and number of ejected electrons?

(b) How about changing the frequency of the light?

Chapter 3

Energy Bands and Charge
Carriers in Semiconductors

OBJECTIVES

1. Understand conduction and valence energy bands, and how
bandgaps are formed

2. Appreciate the idea of doping in semiconductors

3. Use the density of states and Fermi Dirac statistics to calculate carrier

concentrations

4. Calculate drift currents in an electric field in terms of carrier mobility,
and how mobility is affected by scattering

5. Discuss the idea of “effective” masses

In this chapter we begin to discuss the specific mechanisms by which current
flows in a solid. In examining these mechanisms we shall learn why some
materials are good conductors of electric current, whereas others are poor
conductors. We shall see how the conductivity of a semiconductor can be
varied by changing the temperature or the number of impurities. These fun-
damental concepts of charge transport form the basis for later discussions of
solid state device behavior.

In Chapter 2 we found that electrons are restricted to sets of discrete ener-
gy levels within atoms. Large gaps exist in the energy scale in which no en-
ergy states are available. In a similar fashion, electrons in solids are restricted
to certain energies and are not allowed at other energies. The basic differ-
ence between the case of an electron in a solid and that of an electron in an
isolated atom is that in the solid the electron has a range, or band, of avail-
able energies. The discrete energy levels of the isolated atom spread into
bands of energies in the solid because in the solid the wave functions of
electrons in neighboring atoms overlap, and an electron is not necessarily lo-
calized at a particular atom. Thus, for example, an electron in the outer orbit
of one atom feels the influence of neighboring atoms, and its overall wave
function is altered. Naturally, this influence affects the potential energy term
and the boundary conditions in the Schrodinger equation, and we would

3.1
BONDING
FORCES AND

ENERGY BANDS

IN SOLIDS
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3.1.1 Bonding Forces in Solids

The interaction of el
important function

Figure 3-1
Different types of
chemical bonding
in solids: (a) an
example of ionic
bonding in NaCl;
(b) covalent
bonding in the Si
crystal, viewed
along a <100>
direction (see
also Figs. 1-8
and 1-9).
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is surrounded by six nearest neighbor Cl atoms, and vice versa. Four of the
nearest neighbors are evident in the two-dimensional representation shown
in Fig. 3-1a.The electronic structure of Na (Z = 11) is [Ne] 3s',and CI (Z = 17)
has the structure [Ne]3s?3p>. In the lattice each Na atom gives up its outer 3s
electron to a Cl atom, so that the crystal is made up of ions with the electronic
structures of the inert atoms Ne and Ar (Ar has the electronic structure
[Ne]3s23p6). However, the ions have net electric charges after the electron ex-
change. The Na ™ ion has a net positive charge, having lost an electron, and
the C1™ ion has a net negative charge, having gained an electron.

Each Na" ion exerts an electrostatic attractive force upon its six CI~
neighbors, and vice versa. These coulombic forces pull the lattice together
until a balance is reached with repulsive forces. A reasonably accurate cal-
culation of the atomic spacing can be made by considering the ions as hard
spheres being attracted together (Example 1-1).

An important observation in the NaCl structure is that all electrons
are tightly bound to atoms. Once the electron exchanges have been made
between the Na and Cl atoms to form the Na™ and Cl™ ions, the outer orbits
of all atoms are completely filled. Since the ions have the closed-shell con-
figurations of the inert atoms Ne and Ar, there are no loosely bound electrons
to participate in current flow; as a result, NaCl is a good insulator.

In a metal atom the outer electronic shell is only partially filled, usual-
ly by no more than three electrons. We have already noted that the alkali met-
als (e.g.,Na) have only one electron in the outer orbit. This electron is loosely
bound and is given up easily in ion formation. This accounts for the great
chemical activity in the alkali metals, as well as for their high electrical con-
ductivity. In the metal the outer electron of each alkali atom is contributed to
the crystal as a whole, so that the solid is made up of ions with closed shells
immersed in a sea of free electrons. The forces holding the lattice together
arise from an interaction between the positive ion cores and the surrounding
free electrons. This is one type of metallic bonding. Obviously, there are com-
plicated differences in the bonding forces for various metals, as evidenced by
the wide range of melting temperatures (234 K for Hg, 3643 K for W). Howev-
er, the metals have the sea of electrons in common, and these electrons are free
to move about the crystal under the influence of an electric field.

A third type of bonding is exhibited by the diamond lattice semicon-
ductors. We recall that each atom in the Ge, Si, or C diamond lattice is sur-
rounded by four nearest neighbors, each with four electrons in the outer orbit.
In these crystals each atom shares its valence electrons with its four neighbors
(Fig. 3-1b). Bonding between nearest neighbor atoms is illustrated in the di-
amond lattice diagram of Fig. 1-9. The bonding forces arise from a quantum
mechanical interaction between the shared electrons. This is known as cova-
lent bonding; each electron pair constitutes a covalent bond. In the sharing
process it is no longer relevant to ask which electron belongs to a particular
atom—both belong to the bond. The two electrons are indistinguishable, ex-
cept that they must have opposite spin to satisfy the Pauli exclusion principle.
Covalent bonding is also found in certain molecules, such as H,.
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As in the case of the ionic crystals, no free electrons are available to
the lattice in the covalent diamond structure of Fig. 3-1b. By this reasoning
Ge and Si should also be insulators. However, we have pictured an idealized
lattice at 0 K in this figure. As we shall see in subsequent sections, an elec-
tron can be thermally or optically excited out of a covalent bond and there-
by become free to participate in conduction. This is an important feature of
semiconductors.

Compound semiconductors such as GaAs have mixed bonding, in which
both ionic and covalent bonding forces participate. Some ionic bonding is to
be expected in a crystal such as GaAs because of the difference in place-
ment of the Ga and As atoms in the periodic table. The ionic character of
the bonding becomes more important as the atoms of the compound become
further separated in the periodic table, as in the II-VI compounds. Such elec-
tronic structure, and specifically the idea that the outermost valence shell is
complete if it has a stable set of eight electrons (Ne, Ar, Kr), is the basis of
most of chemistry and many of the semiconducting properties.

3.1.2 Energy Bands

As isolated atoms are brought together to form a solid, various interactions
occur between neighboring atoms, including those described in the preced-
ing section. The forces of attraction and repulsion between atoms will find a
balance at the proper interatomic spacing for the crystal. In the process, im-
portant changes occur in the electron energy level configurations, and these
changes result in the varied electrical properties of solids.

In Fig. 2-8, we showed the orbital model of a Si atom, along with the
energy levels of the various electrons in the coulombic potential well of
the nucleus. Let us focus on the outermost shell or valence shell,n = 3, where
two 3s and two 3p electrons interact to form the four “hybridized” sp* elec-
trons when the atoms are brought close together. In Fig. 3-2, we schemat-
ically show the coulombic potential wells of two atoms close to each other,
along with the wave functions of two electrons centered on the two nuclei.
By solving the Schrédinger equation for such an interacting system, we find
that the composite two-electron wave functions are linear combinations of
the individual atomic orbitals (LCAO). The odd or antisymmetric combi-
nation is called the antibonding orbital, while the even or symmetric com-
bination is the bonding orbital. It can be seen that the bonding orbital has
a higher value of the wave function (and therefore the electron probability
density) than the antibonding state in the region between the two nuclei.
This corresponds to the covalent bond between the atoms.

To determine the energy levels of the bonding and the antibonding
states, it is important to recognize that in the region between the two nuclei
the coulombic potential energy V(r) is lowered (solid line in Fig. 3-2) com-
pared to isolated atoms (dashed lines). It is easy to see why the potential en-
ergy would be lowered in this region, because an electron here would be
attracted by two nuclei, rather than just one. For the bonding state the electron
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Linear combinations of atomic orbitals (LCAQ): The LCAO when 2 atoms are brought together leads to 2

Antibonding energy level
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distinct “normal” modesTc higher energy antibonding orbital, and a lower energy bonding orbital. Note
that the electron probability density is high in the region between the ion cores (covalent “bond”), leading

to lowering of the bonding energy level and the cohesion of the crystal. If instead of 2 atoms, one brings
together N atoms, there will be N distinct LCAO, and N closely spaced energy levels in a band.

probability density is higher in this region of lowered potential energy than
for the antibonding state. As a result, the original isolated atomic energy
level would be split into two, a lower bonding energy level and a higher an-
tibonding level. It is the lowering of the energy of the bonding state that
gives rise to cohesion of the crystal. For even smaller interatomic spacings,
the energy of the crystal goes up because of repulsion between the nuclei

and other electronic interactions. Since the probability density is given by the,
square of the wave function, if the entire wave function is multiplied by —1

it does not lead to a different LCAO. The important point to note in this dis:
cussion is that the number of distinct LCAO, and the number of distinct en-
ergy levels, depends on the number of atoms that are brought together. The
lowest energy level corresponds to the totally symmetric LCAO, the highest
corresponds to the totally antisymmetric case, and the other combinations
lead to energy levels in between.

. Qualitatively, we can see that as atoms are brought together, the ap-
plication of the Pauli exclusion principle becomes important. When two atoms
are completely isolated from each other so that there is no interaction of
electron wave functions between them, they can have identical electronic
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Figure 3-3

structures. As the spacing between the two atoms becomes smaller, howev-
er, electron wave functions begin to overlap. The exclusion principle dictates
that no two electrons in a given interacting system may have the same quan-
tum state; thus there must be at most one electron per level after there is a
splitting of the discrete energy levels of the isolated atoms into new levels be-
longing to the pair rather than to individual atoms.

In a solid, many atoms are brought together, so that the split energy
levels form essentially continuous bands of energies. As an example, Fig. 3-3
illustrates the imaginary formation of a silicon crystal from isolated silicon
atoms. Each isolated silicon atom has an electronic structure 1s*2s*2p°3s*3p?
in the ground state. Each atom has available two 1s states, two 2s states, six 2p
states, two 3s states, six 3p states, and higher states (see Tables 2-1 and 2-2).
If we consider N atoms, there will be 2N, 2N, 6N, 2N, and 6N states of type
1s, 25, 2p, 3s, and 3p, respectively. As the interatomic spacing decreases, these
energy levels split into bands, beginning with the outer (n = 3) shell. As the “3s”
and “3p” bands grow, they merge into a single band composed of a mixture of
energy levels. This band of “3s-3p” levels contains 8N available states. As the
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Energy levels in Si as a function of interatomic spacing. The core levels n = 1,2) in Si are completely
filled with electrons. At the actual atomic spacing of the crystal, the 2N electrons in the 3s subshell and
the 2N electrons in the 3p subshell undergo sp® hybridization, and all end up in the lower 4N states (va-
lence band), while the higher-lying 4N states (conduction band) are empty, separated by a band gap.
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distance between atoms approaches the equilibrium interatomic spacing of
silicon, this band splits into two bands separated by an energy gap E,. The
upper band (called the conduction band) contains 4N states, as does the lower
(valence) band. Thus, apart from the low-lying and tightly bound “core” lev-
els, the silicon crystal has two bands of available energy levels separated by
an energy gap E, wide, which contains no allowed energy levels for electrons
to occupy. This gap is sometimes called a “forbidden band,” since in a perfect
crystal it contains no electron energy states.

We should pause at this point and count electrons. The lower “1s” band
is filled with the 2N electrons which originally resided in the collective 1s
states of the isolated atoms. Similarly, the 2s band and the 2p bands will have
2N and 6N electrons in them, respectively. However, there were 4N electrons
in the original isolated n = 3 shells (2N in 3s states and 2N in 3p states). These
4N electrons must occupy states in the valence band or the conduction band
in the crystal. At 0 K the electrons will occupy the lowest energy states avail-
able to them. In the case of the Si crystal, there are exactly 4N states in the va-
lence band available to the 4N electrons. Thus at 0 K, every state in the valence
band will be filled, while the conduction band will be completely empty of
electrons. As we shall see, this arrangement of completely filled and empty en-
ergy bands has an important effect on the electrical conductivity of the solid.

3.1.3 Metals, Semiconductors, and Insulators

Every solid has its own characteristic energy band structure. This variation
in band structure is responsible for the wide range of electrical characteris-
tics observed in various materials. The silicon band structure of Fig. 3-3, for
example, can give a good picture of why silicon in the diamond lattice is a
good insulator. To reach such a conclusion, we must consider the properties
of completely filled and completely empty energy bands in the current con-
duction process.

Before discussing the mechanisms of current flow in solids further, we can
observe here that for electrons to experience acceleration in an applied elec-
tric field, they must be able to move into new energy states. This implies there
must be empty states (allowed energy states which are not already occupied
by electrons) available to the electrons. For example, if relatively few electrons
reside in an otherwise empty band, ample unoccupied states are available into
which the electrons can move. On the other hand, the silicon band structure is
such that the valence band is completely filled with electrons at 0 K and the con-
duction band is empty. There can be no charge transport within the valence
band, since no empty states are available into which electrons can move. There
are no electrons in the conduction band, so no charge transport can take place
there either. Thus silicon has a high resistivity typical of insulators.

Semiconductor materials at 0 K have basically the same structure as
insulators—a filled valence band separated from an empty conduction band
by a band gap containing no allowed energy states (Fig. 3-4). The difference
lies in the size of the band gap E,, which is much smaller in semiconductors
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Figure 3-4
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than in insulators. For example, the semiconductor Si has a band gap of about
1.1 eV compared with 5 eV for diamond. The relatively small band gaps of
semiconductors (Appendix III) allow for excitation of electrons from the
lower (valence) band to the upper (conduction) band by reasonable amounts
of thermal or optical energy. For example, at room temperature a semicon-
ductor with a 1-eV band gap will have a significant number of electrons ex-
cited thermally across the energy gap into the conduction band, whereas an
insulator with E, = 10 eV will have a negligible number of such excitations.
Thus an important difference between semiconductors and insulators is that
the number of electrons available for conduction can be increased greatly in
semiconductors by thermal or optical energy.

In metals the bands either overlap or are only partially filled. Thus
electrons and empty energy states are intermixed within the bands so that
electrons can move freely under the influence of an electric field. As ex-
pected from the metallic band structures of Fig. 3-4, metals have a high elec-
trical conductivity.

3.1.4 Direct and Indirect Semiconductors

The “thought experiment” of Section 3.1.2, in which isolated atoms were
brought together to form a solid, is useful in pointing out the existence of
energy bands and some of their properties. Other techniques are general-
ly used, however, when quantitative calculations are made of band struc-
tures. In a typical calculation, a single electron is assumed to travel through
a perfectly periodic lattice. The wave function of the electron is assumed to

be in the form of a plane wave! moving, for example, in the x- direction

1Discussions of plane waves are available in most sophomore physics texis or in introductory electromag-

netics texts.
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with propagation constant k, also called a wave vector. The space-dependent
wave function for the electron is

U (x) = Uk, x)e~ (3-1)
where the function U(k,, x) modulates the wave function according to the pe-
riodicity of the lattice. P

In s.uch a calculation, allowed values of energy can be plotted vs. the
pro.pagatl.on constant k. Since the periodicity of most lattices is different in
various directions, the (£, k) diagram must be plotted for the various crystal
dlr('actlons, and the full relationship between E and k is a complex surface
which should be visualized in three dimensions.

".['he band structure of GaAs has a minimum in the conduction band and
a maximum in the valence band for the same k value (k = 0). On the other
hanq, Si has its valence band maximum at a different value of k than its con-
d.uctlon band minimum. Thus an electron making a smallest-energy transi-
tion from the conduction band to the valence band in GaAs can do so without
a change in k value; on the other hand, a transition from the minimum point
in the Si conduction band to the maximum point of the valence band requires
some change in k. Thus there are two classes of semiconductor energy bands;
filrect and indirect (Fig. 3-5). We can show that an indirect transition involv-,
ing a change in k, requires a change of momentum for the electron. ,

Assuming that U is constant in Eq. (3-1) for an essentially free electron,
slilow that the x-component of the electron momentum in the crystal is
given by (p,) = #k,
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Figure 3-5
Direct and indi-
rect electron
transitions in
semiconductors:
(a) direct transi-
tion with accom-
panying photon
emission; (b) indi-
rect transition via
a defect level.

EXAMPLE 3-1
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SOLUTION

From Eq. (3-1)
LL‘k(-\') = Ue
Using Eq. (2-21b) and the momentum operator,

/ Uze”"k"‘é . (efkv"‘) dx
e, Ji

ax
(P 0
/ U? dx
ik, f U? dx
=—0p =1k,
f U? dx

With these limits of integration, both the numerator and denomina-
tor are infinite. For problems of this type, one integrates between the finite
limits —L/2 and +L/2 and, in the final result, then assumes that L approaches
infinity.

This result implies that (E,k) diagrams such as shown in Fig. 3-5 can be
considered plots of electron energy vs. momentum, with a scaling factor 7.

The direct and indirect semiconductors are identified in Appendix III.
In a direct semiconductor such as GaAs, an electron in the conduction band
can fall to an empty state in the valence band, giving off the energy differ-
ence E, as a photon of light. On the other hand, an electron in the conduc-
tion band minimum of an indirect semiconductor such as Si cannot fall
directly to the valence band maximum but must undergo a momentum
change as well as changing its energy. For example, it may go through some
defect state (E,) within the band gap. We shall discuss such defect states in
Sections 4.2.1 and 4.3.2. In an indirect transition which involves a change in
k, part of the energy is generally given up as heat to the lattice rather than
as an emitted photon. This difference between direct and indirect band struc-
tures is very important for deciding which semiconductors can be used in de-
vices requiring light output. For example, semiconductor light emitters and
lasers (Chapter 8) generally must be made of materials capable of direct
band-to-band transitions or of indirect materials with vertical transitions
between defect states.

Band diagrams such as those shown in Fig. 3-5 are cumbersome to draw
in analyzing devices, and do not provide a view of the variation of electron
energy with distance in the sample. Therefore, in most discussions we shall use
simple band pictures such as those shown in Fig. 3-4, remembering that elec-
tron transitions across the band gap may be direct or indirect.

»
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3.1.5 Variation of Energy Bands with Alloy Composition

As I1I-V ternary and quaternary alloys are varied over their composition
ranges (see Sections 1.2.4 and 1.4.1), their band structures change. For example,
Fig. 3-6 illustrates the band structure of GaAs and AlAs, and the way in which
the bands change with composition x in the ternary compound Al Ga,_,As.
The binary compound GaAs is a direct material, with a band gap of 1.43 eV
at room temperature. For reference, we call the direct (k = 0) conduction band
minimum I'. There are also two higher-lying indirect minima in the GaAs con-
duction band, but these are sufficiently far above I' that few electrons reside
there (we discuss an important exception in Chapter 10 in which high-field ex-
citation of electrons into the indirect minima leads to the Gunn effect). We
call the lowest-lying GaAs indirect minimum L and the other X. In AlAs the
direct I’ minimum is much higher than the indirect X minimum, and this ma-
terial is therefore indirect with a band gap of 2.16 eV at room temperature.

In the ternary alloy Al,Ga,_,As all of these conduction band minima
move up relative to the valence band as the composition x varies from 0
(GaAs) to 1 (AlAs). However, the indirect minimum X moves up less than
the others, and for compositions above about 38 percent Al this indirect min-
imum becomes the lowest-lying conduction band. Therefore, the ternary alloy
AlGaAs is a direct semiconductor for Al compositions on the column III sub-
Jattice up to about 38 percent, and is an indirect semiconductor for higher Al
mole fractions. The band gap energy E, is shown in color on Fig. 3-6c.

The variation of energy bands for the ternary alloy GaAs,_,P, is gen-
erally similar to that of AlGaAs shown in Fig. 3-6. GaAsP is a direct semi-
conductor from GaAs to about GaAsjssP,s and is indirect from this
composition to GaP (see Fig. 8-11). This material is often used in visible
LEDs.

Since light emission is most efficient for direct materials, in which elec-
trons can drop from the conduction band to the valence band without chang-
ing k (and therefore momentum), LEDs in GaAsP are generally made in
material grown with a composition less than x = 0.45. For example, most red
LEDs in this material are made at about x = 0.4, where the I' minimum is still
the lowest-lying conduction band edge, and where the photon resulting from
a direct transition from this band to the valence band is in the red portion of
the spectrum (about 1.9 eV). The use of impurities to enhance radiative re-
combination in indirect material will be discussed in Section 8.2.

The mechanism of current conduction is relatively easy to visualize in the
case of a metal: the metal atoms are imbedded in a “sea” of relatively free
electrons, and these electrons can move as a group under the influence of an
electric field. This free electron view is oversimplified, but many important
conduction properties of metals can be derived from just such a model. How-
ever, we cannot account for all of the electrical properties of semiconductors
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Variation of direct and indirect conduction bands in AlGaAs as a funcfion of composition: (a) the (E k)

diagram for GaAs, showing three minima in the con

duction band; (b) AlAs band diagram; (c) positions

of the three conduction band minima in AlLGa,_As as x varies over the range of compositions from

Gahs (x = 0) to AlAs [x = 1). The smallest band gap,
x = 0.38, and then follows the indirect X band.

E, (shown in color), follows the direct I band to

in this way. Since the semiconductor has a filled valence band and an empt
conduction band at 0 K, we must consider the increase in conduction bef)m)i/
electrons by thermal excitations across the band gap as the temperature is
raised. In addition, after electrons are excited to the conduction band, the
empty states left in the valence band can contribute to the conduction pro’cess
The introduction of impurities has an important effect on the energy ban(i
structure and on the availability of charge carriers. Thus there is considerable
flexibility in controlling the electrical properties of semiconductors

3.2.1 Electrons and Holes

As the temperature of a semiconductor is raised from 0 K, some electrons in
the valence band receive enough thermal energy to be ;:xcited across the
band gap to the conduction band. The result is a material with some elec-
trons in an otherwise empty conduction band and some unoccupied states in
an otherwise filled valence band (Fig. 3-7).2 For convenience, an empty state
in the valence band is referred to as a hole. If the conductiox’l band elthron
and the hole are created by the excitation of a valence band electron to the
conduction band, they are called an electron-hole pair (abbreviated EHP)

After excitation to the conduction band, an electron is surrounded b.
a large number of unoccupied energy states. For example, the equilibriun}l]
number of electron-hole pairs in pure Si at room temperature is only about
10'° EHP/cm®, compared to the Si atom density of 5 X 10 atoms/cn}l]3 Thus
the few electrons in the conduction band are free to move about via the .rnan
available empty states. ’

The corresponding problem of charge transport in the valence band is
somewhat more complicated. However, it is possible to show that the effects
of current in a valence band containing holes can be accounted for by sim-
ply keeping track of the holes themselves. ’

In a filled band, all available energy states are occupied. For every elec-
tron moving with a given velocity, there is an equal and opposite electron mo-
tion elsewhere in the band. If we apply an electric field, the net current is zero

In i —7 i T
g. 3 and in subsequent discussion i
\ ft [ q ' s, we refer to the bottom Of the conduction band as Ec and the

Figure 3-7
Electron-hole
pairs in a
semiconductor.

v — — — S
Energy Bands and Charge Carriers in Semiconductors 73



74

Chapter 3

because for every electron j moving with velocity v; there is a corresponding
electron j' with velocity —v;. Figure 3-8 illustrates this effect in terms of the
electron energy vs. wave vector plot for the valence band. Since k is proportional
to electron momentum, it is clear the two electrons have oppositely directed
velocities. With N electrons/cm’ in the band we express the current density using
a sum over all of the electron velocities, and including the charge —¢ on each
electron. In a unit volume,

N

J=(=q)D v;=0 (filled band) (3-2a)

Now if we create a hole by removing the jth electron, the net current
density in the valence band involves the sum over all velocities, minus the con-
tribution of the electron we have removed:

N
T=(=q)> vi — (=q)v; (jthelectron missing) (3-2b)

But the first term is zero, from Eq. (3-2a). Thus the net current is +gv;.
In other words, the current contribution of the hole is equivalent to that of
a positively charged particle with velocity v;, that of the missing electron. Of
course, the charge transport is actually due to the motion of the new un-
compensated electron (j'). Its current contribution (—¢) (—v;) is equivalent
to that of a positively charged particle with velocity +v;. For simplicity, it is
customary to treat empty states in the valence band as charge carriers with
positive charge and positive mass.

A simple analogy may help in understanding the behavior of holes. If
we have two bottles, one completely filled with water and one completely
empty, we can ask ourselves “Will there be any net transport of water when
we tilt the bottles?” The answer is “no”. In the case of the empty bottle, the
answer is obvious. In the case of the completely full bottle also, there cannot
be any net motion of water because there is no empty space for water to
move into. Similarly, an empty conduction band completely devoid of elec-
trons or a valence band completely full of electrons cannot give rise to a net
motion of electrons, and thus to current conduction.

Next, we imagine transferring some water droplets from the full bottle
into the empty bottle, leaving behind some air bubbles, and ask ourselves
the same question. Now when we tilt the bottles there will be net transport
of water: the water droplets will roll downhill in one bottle and the air bub-
bles will move uphill in the other. Similarly, a few electrons in an otherwise
empty conduction band move opposite to an electric field, while holes in an
otherwise filled valence band move in the direction of the field. The bubble
analogy is imperfect, but it may provide a physical feel for why the charge and
mass of a hole have opposite signs from those of an electron.

In all the following discussions we shall concentrate on the electrons in
the conduction band and on the holes in the valence band. We can account
for the current flow in a semiconductor by the motion of these two types of
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Figure 3-8
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A valence band V\I/(itb all states filled, including states j and j', marked for discussion. The jth electron
with wave vector J is matched by an electron at " with the opposite wave vector —k;. There is no net

current in the ban
of the electron at | is no longer compensated.

charge carriers. We draw valence and conduction bands on an electron ener-
gy scale E, as in Fig. 3-8. However, we should remember that in the valence
band, hole energy increases oppositely to electron energy, because the two car-
riers have opposite charge. Thus hole energy increases downward in Fig, 3-8
and holes, seeking the lowest energy state available, are generally found at the
top of the valence band. In contrast, conduction band electrons are found at the
bottom of the conduction band.

It would be instructive to compare the (E, k) band diagrams with the
“simplified” band diagrams that are used for routine device analysis (Fig. 3-9).
As discussed in Examples 3-1 and 3-2,an (E, k) diagram is a plot of the total
electron energy (potential plus kinetic) as a function of the crystal-direction-
dependent electron wave vector (which is proportional to the momentum
and therefore the velocity) at some point in space. Hence, the bottom of the
cpnduction band corresponds to zero electron velocity or kinetic energy, and
simply gives us the potential energy at that point in space. For holes, the top
of the valence band corresponds to zero kinetic energy. For simplified band
dlagrams, we plot the edges of the conduction and valence bands (i.e., the
potential energy) as a function of position in the device. Energies highér in
the band correspond to additional kinetic energy of the electron. Also, the fact
that the? band edge corresponds to the electron potential energy tell’s us that
the variation of the band edge in space is related to the electric field at dif-
ferent points in the semiconductor. We will show this relationship explicitly
in Section 4.4.2.

In Fig. 3-9, an electron at location A sees an electric field given by the
slope of the band edge (potential energy), and gains kinetic energy (at the ex-
pense of potential energy) by moving to point B. Correspondingly, in the (E, k)
diagram, the electron starts at k = 0, but moves to a nonzero wave vector i(B.

unless an electron is removed. For example, if the jth electron is removed, the motion
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Figure 3-9
Superimposition
of the (E k)

band structure

on the E-
versus-position
simplified band
diagram for a
semiconductor in
an electric field.
Electron energies
increase going
up, while hole en-
ergies increase
going down. Simi-
larly, electron and
hole wave vectors
point in opposite
directions and
these charge car-
riers move oppo-
site to each other,
as shown.

EXAMPLE 3-2

Electron
energy

Electron
K.E.

Hole

energy

Hole

The electron then loses kinetic energy to heat by scattering mechanisms (dis-
cussed in Section 3.4.3) and returns to the bottom of the band at B. The slopes
of the (E, x) band edges at different points in space reflect the local electric
fields at those points. In practice, the electron may lose its kinetic energy in
stages by a series of scattering events, as shown by the colored dashed lines.

3.2.2 Effective Mass

The electrons in a crystal are not completely free, but instead interact with
the periodic potential of the lattice. As a result, their “wave-particle” motion
cannot be expected to be the same as for electrons in free space. Thus, in ap-
plying the usual equations of electrodynamics to charge carriers in a solid, we
must use altered values of particle mass. In doing so, we account for most of
the influences of the lattice, so that the electrons and holes can be treated as
“almost free” carriers in most computations. The calculation of effective mass
must take into account the shape of the energy bands in three-dimensional
k-space, taking appropriate averages over the various energy bands.

Find the (E, k) relationship for a free electron and relate it to the electron
mass.
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From Example 3-1, the electron momentum is p = mv = fik. Then

2_1 P’ ﬁ_,2k2

Thus the electron energy is parabolic with wave vector k. The electron
mass is inversely related to the curvature (second derivative) of the (E,
k) relationship, since

dk* m

Although electrons in solids are not free, most energy bands are close
to parabolic at their minima (for conduction bands) or maxima (for va-
lence bands). We can also approximate effective mass near those band ex-
trema from the curvature of the band.

The effective mass of an electron in a band with a given (E, k) rela-
tionship is found in Example 3-2 to be

ﬁ2

mt= e

(3-3)

Thus the curvature of the band determines the electron effective mass.
For example, in Fig. 3-6a it is clear that the electron effective mass in GaAs
is much smaller in the direct I' conduction band (strong curvature) than in
the L or X minima (weaker curvature, smaller value in the denominator of
the m* expression).

A particularly interesting feature of Figs. 3-5 and 3-6 is that the cur-
vature of d’E/dk? is positive at the conduction band minima, but is negative
at the valence band maxima. Thus, the electrons near the top of the valence
band have negative effective mass, according to Eq. (3-3). Valence band elec-
trons with negative charge and negative mass move in an electric field in the
same direction as holes with positive charge and positive mass. As discussed
In Section 3.2.1, we can fully account for charge transport in the valence band
by considering hole motion.

SOLUTION
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For a band centered at k = 0 (such as the T band in GaAs), the (E, k)
relationship near the minimum is usually parabolic:

ﬁ2
E= 2m*

K+ E, (3-4)

Comparing this relation to Eq. (3-3) indicates that the effective mass
m* is constant in a parabolic band. On the other hand, mapy qonductlon
bands have complex (E, k) relationships that depenq on t'he dlrectlgn of elec-
tron transport with respect to the principal crystal directions. In_thls case, the
effective mass is a tensor quantity. However, we can use appropriate averages
over such bands in most calculations. .

Figure 3-10a shows the band structures for Si and GaAs viewed al(')ng.tw()
major directions. While the shape is parabolic near the band edges (as. 1{1@1cat-
ed in Figure 3-5 and Example 3-2), there are signiﬁcgnt non-parabolicities at
higher energies. The energies are plotted along the high symmetry [111] and
[100] directions in the crystal. The k = 0 point is denoted as I'. When we go along

Conduction band
Upper

Lower
valley

[100] X L [111] [100] X

Wave vector

(a) (b)

Realistic band structures in semiconductors: (a) Conduction and vale.nce bands in Si and QoAs ;
along [111] and [100]; (b) ellipsoidal constant energy surface for Si, near the 6 conduction ban
minima along the X directions. (From Chelikowsky and Cohen, Phys. Rev. B14, 556, 1976).
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the [100] direction, we reach a valley near X, while we reach the L valley along
the [111] direction. (Since the energies are plotted along different directions, the
curves do not look symmetric.) The valence band maximum in most semicon-
ductors is at the I' point. It has three branches: the heavy hole band with the
gmallest curvature, a light hole band with a larger curvature, and a split-off band
at a different energy. We notice that for GaAs the conduction band minimum and
the valence band maximum are both at k = 0; therefore it is direct band gap. Sil-
icon, on the other hand, has 6 equivalent conduction minima at X along the 6
equivalent (100) directions; therefore, it is indirect.

Figure 3-10b shows the constant energy surface for electrons in one
of the six conduction bands for Si. The way to relate these surfaces to the
band structures shown in Fig. 3-10a is to consider a certain value of ener-
gy,and determine all the k vectors in 3 dimensions for which we get this en-
ergy. We find that for Si we have 6 cigar-shaped ellipsoidal equi-energy
surfaces near the conduction band minima along the six equivalent X-di-
rections, with a longitudinal effective mass, m,, along the major axis, and
two transverse effective masses, m,, along the minor axes. For GaAs, the
conduction band is more or less spherical for low energies. On the other
hand, we have warped spherical surfaces in the valence band. The impor-
tance of these surfaces will be clear in Sections 3.3.2 and 3.4.1 when we
consider different types of effective masses in semiconductors.

In any calculation involving the mass of the charge carriers, we must use
effective mass values for the particular material involved. In all subsequent dis-
cussions, the electron effective mass is denoted by m2; and the hole effective
mass by m%. The n subscript indicates the electron as a negative charge carri-
er, and the p subscript indicates the hole as a positive charge carrier.

There is nothing mysterious about the concept of an “effective” mass,
m;s, and about the fact that it is different in different semiconductors. Indeed,
the “true” mass of an electron, m, is the same in Si, Ge, or GaAs—it is the
same as for a free electron in vacuum. To understand why the effective mass
is different from the true mass, consider Newton’s second law, which states
that the time rate of change of momentum is the force.

dp/dt = d(mv)/dt = Force (3-5a)

An electron in a crystal experiences a total force F;, + F.,, where F,,
is the collection of internal periodic crystal forces, and F,, is the externally
applied force. It is inefficient to solve this complicated problem involving
the periodic crystal potential (which is obviously different in different semi-
conductors) every time we try to solve a semiconductor device problem. It
is better to solve the complicated problem of carrier motion in the periodic
crystal potential just once, and encapsulate that information in what is called
the bandstructure, (£, k), whose curvature gives us the effective mass, m:. The
electron then responds to external forces with this new m2. Newton’s law is
then written as:

d(m,v)/dt =F, (3-5b)
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Figure 3-11
Electron-hole
pairs in the
covalent bonding
model of the

Si crystal.

This is clearly an enormous simplification compared to the more de-
tailed problem. Obviously, the periodic crystal forces depend on the details
of a specific semiconductor; therefore, the effective mass is different in dif-
ferent materials.

Once we determine the band curvature effective mass components from
the orientation-dependent (£, k), we have to combine them appropriately
for different types of calculations. We shall see in Section 3.3.2 that when we
are interested in determining the numbers of carriers in the bands, we have
to use a “density-of-states” effective mass by taking the geometric mean of
the band curvature effective masses, and the number of equivalent band ex-
trema. On the other hand we will find in Section 3.4.1 that in problems in-
volving the motion of carriers, one must take the harmonic mean of the band
curvature effective masses to get the “conductivity” effective mass.

3.2.3 Intrinsic Material

A perfect semiconductor crystal with no impurities or lattice defects is called
an intrinsic semiconductor. In such material there are no charge carriers at
0 K, since the valence band is filled with electrons and the conduction band
is empty. At higher temperatures electron-hole pairs are generated as va-
lence band electrons are excited thermally across the band gap to the con-
duction band. These EHPs are the only charge carriers in intrinsic material.

The generation of EHPs can be visualized in a qualitative way by con-
sidering the breaking of covalent bonds in the crystal lattice (Fig. 3-11).If one
of the Si valence electrons is broken away from its position in the bonding
structure such that it becomes free to move about in the lattice, a conduction
electron is created and a broken bond (hole) is left behind. The energy re-
quired to break the bond is the band gap energy E,. This model helps in vi-
sualizing the physical mechanism of EHP creation, but the energy band
model is more productive for purposes of quantitative calculation. One im-
portant difficulty in the “broken bond” model is that the free electron and the
hole seem deceptively localized in the lattice. Actually, the positions of the
free electron and the hole are spread out over several lattice spacings and
should be considered quantum mechanically by probability distributions (see
Section 2.4).
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Since the electrons and holes are created in pairs, the conduction band
electron concentration n (electrons per cm?) is equal to the concentration of
holes in the valence band p (holes per cm?®). Each of these intrinsic carrier
concentrations is commonly referred to as n,. Thus for intrinsic material

n=p=n (3-6)

At a given temperature there is a certain concentration of electron-
hole pairs n;. Obviously, if a steady state carrier concentration is maintained,
there must be recombination of EHPs at the same rate at which they are gen-
erated. Recombination occurs when an electron in the conduction band
makes a transition (direct or indirect) to an empty state (hole) in the valence
band, thus annihilating the pair. If we denote the generation rate of EHPs as
g; (EHP/cm’-s) and the recombination rate as 7;, equilibrium requires that

=8 (3-7a)

Each of these rates is temperature dependent. For example, g,(T) in-
creases when the temperature is raised, and a new carrier concentration n;is
established such that the higher recombination rate r,(7) just balances gen-
eration. At any temperature, we can predict that the rate of recombination
of electrons and holes r; is proportional to the equilibrium concentration of
electrons n, and the concentration of holes p,:

K=oy py = ant = 8 (3-7b)

The factor « is a constant of proportionality which depends on the particu-
lar mechanism by which recombination takes place. We shall discuss the cal-
culation of n; as a function of temperature in Section 3.3.3: recombination
processes will be discussed in Chapter 4.

3.2.4 Exirinsic Material

In addition to the intrinsic carriers generated thermally, it is possible to create
carriers in semiconductors by purposely introducing impurities into the Ccrys-
tal. This process, called doping, is the most common technique for varying the
conductivity of semiconductors. By doping, a crystal can be altered so that it
has a predominance of either electrons or holes. Thus there are two types of
doped semiconductors, n-type (mostly electrons) and p-type (mostly holes).
When a crystal is doped such that the equilibrium carrier concentrations N
and p, are different from the intrinsic carrier concentration n;, the material is
said to be extrinsic.

When impurities or lattice defects are introduced into an otherwise
perfect crystal, additional levels are created in the energy band structure,
usually within the band gap. For example, an impurity from column V of the
periodic table (P, As, and Sb) introduces an energy level very near the con-
duction band in Ge or Si. This level is filled with electrons at 0 K, and very
little thermal energy is required to excite these electrons to the conduction
band (Fig. 3-12a). Thus at about 50-100 K virtually all of the electrons in the
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Figure 3-12
Energy band
model and chemi-
cal bond model of
dopants in semi-
conductors: (a)
donation of elec-
trons from donor
level to conduc-
tion band; (b) ac-
ceptance of
valence band
electrons by an
acceptor level,
and the resulting
creation of holes;
(c) donor and ac-
ceptor atoms in

the covalent bond-

ing model of a Si
crystal.
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impurity level are “donated” to the conduction band. Such an impurity level
is called a donor level, and the column V impurities in Ge or Si are called
donor impurities. From Fig. 3-12a we note that the material doped with donor
impurities can have a considerable concentration of electrons in the con-
duction band, even when the temperature is too low for the intrinsic EHP
concentration to be appreciable. Thus semiconductors doped with a signifi-
cant number of donor atoms will have n, >> (n;, py) at room temperature.
This is n-type material.
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Atoms from column III (B, Al, Ga, and In) introduce impurity levels in
Ge or Si near the valence band. These levels are empty of electrons at 0 K
(Fig.3-12b). At low temperatures, enough thermal energy is available to ex-
cite electrons from the valence band into the impurity level, leaving behind
holes in the valence band. Since this type of impurity level “accepts” electrons
from the valence band, it is called an acceptor level, and the column III im-
purities are acceptor impurities in Ge and Si. As Fig. 3-12b indicates, doping
with acceptor impurities can create a semiconductor with a hole concentra-
tion po, much greater than the conduction band electron concentration 7,
(this type is p-type material).

In the covalent bonding model, donor and acceptor atoms can be visual-
ized as shown in Fig.3-12c. An As atom (column V) in the Si lattice has the four
necessary valence electrons to complete the covalent bonds with the neighbor-
ing Si atoms, plus one extra electron. This fifth electron does not fit into the bond-
ing structure of the lattice and is therefore loosely bound to the As atom. A small
amount of thermal energy enables this extra electron to overcome its coulom-
bic binding to the impurity atom and be donated to the lattice as a whole. Thus
it is free to participate in current conduction. This process is a qualitative model
of the excitation of electrons out of a donor level and into the conduction band
(Fig. 3-12a). Similarly, the column IIT impurity B has only three valence elec-
trons to contribute to the covalent bonding (Fig. 3-12c), thereby leaving one
bond incomplete. With a small amount of thermal energy, this incomplete bond
can be transferred to other atoms as the bonding electrons exchange positions.
Again, the idea of an electron “hopping” from an adjacent bond into the in-
complete bond at the B site provides some physical insight into the behavior of
an acceptor, but the model of Fig. 3-12b is preferable for most discussions.

We can calculate rather simply the approximate energy required to ex-
cite the fifth electron of a donor atom into the conduction band (the donor
binding energy). Let us assume for rough calculations that the As atom of
Fig. 3-12c has its four covalent bonding electrons rather tightly bound and
the fifth “extra” electron loosely bound to the atom. We can approximate
this situation by using the Bohr model results, considering the loosely bound
electron as ranging about the tightly bound “core” electrons in a hydrogen-
like orbit. From Eq. (2-15) the magnitude of the ground-state energy (n = 1)
of such an electron is

mq*

2K (3-6)

The value of K must be modified from the free-space value 41e, used
in the hydrogen atom problem to
K =41e, €, (3-9)

where €, is the relative dielectric constant of the semiconductor material. In
addition, we must use the conductivity effective mass m: typical of the semi-
conductor, discussed in more detail in Section 3.4.1.
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EXAMPLE 3-3

It was mentioned in Section 3.2 that the covalent bonding model gives a
false impression of the localization of carriers. As an illustration, calcu-
late the radius of the electron orbit around the donor in Fig. 3-12c, as-
suming a ground state hydrogen-like orbit in Si. Compare with the Sj
lattice constant. Use m,, = 0.261m, for Si.

SOLUTION

From Eq. (2-10) with n = 1 and using €, = 11.8 for Si,
dmeeohi’  11.8(8.85 X 10712)(6.63 x 10734)?
r = =

mig®  w(0.26)(9.11 X 10731)(1.6 X 10719)2
r=241%10"m = 24.1 A,

»

Note that this is more than four lattice spacings a = 5.43 A.

Generally, the column V donor levels lie approximately 0.01 eV below
the conduction band in Ge, and the column IIT acceptor levels lie about 0.01 eV
above the valence band. In Si the usual donor and acceptor levels lie about
0.03-0.06 eV from a band edge.

In TII-V compounds, column VI impurities occupying column V sites
serve as donors. For example, S, Se, and Te are donors in GaAs, since they sub-
stitute for As and provide an extra electron compared with the As atom.
Similarly, impurities from column II (Be, Zn, Cd) substitute for column III
atoms to form acceptors in the III-V compounds. A more ambiguous case
arises when a III-V material is doped with Si or Ge, from column IV. These
impurities are called amphoteric, meaning that Si or Ge can serve as donors
or acceptors depending on whether they reside on the column III or column
V sublattice of the crystal. In GaAs it is common for Si impurities to occupy
Gassites. Since the Si has an extra electron compared with the Ga it replaces,
it serves as a donor. However, an excess of As vacancies arising during growth
or processing of the GaAs can cause Si impurities to occupy As sites, where
they serve as acceptors.

The importance of doping will become obvious when we discuss elec-
tronic devices made from junctions between p-type and n-type semiconduc-
tor material. The extent to which doping controls the electronic properties of
semiconductors can be illustrated here by considering changes in the sample
resistance which occur with doping. In Si, for example, the intrinsic carrier
concentration »; is about 10" cm ™ at room temperature. If we dope Si with
10" As atoms/cm®, the conduction electron concentration changes by five
orders of magnitude. The resistivity of Si changes from about 2 X 10° Q-cm
to 5 2-cm with this doping.

When a semiconductor is doped n-type or p-type, one type of carrier
dominates. In the example given above, the conduction band electrons out-
number the holes in the valence band by many orders of magnitude. We refer
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to the small number of holes in n-type material as minority carriers and the
relatively large number of conduction band electrons as majority carriers.
Similarly, electrons are the minority carriers in p-type material, and holes
are the majority carriers.

3.2.5 Electrons and Holes in Quantum Wells

We have discussed single-valued (discrete) energy levels in the band gap aris-
ing from doping, and a continuum of allowed states in the valence and con-
duction bands. A third possibility is the formation of discrete levels for
electrons and holes as a result of quantum-mechanical confinement.

One of the most useful applications of MBE or OMVPE growth of
multi-layer compound semiconductors, as described in Section 1.4, is the fact
that a continuous single crystal can be grown in which adjacent layers have dif-
ferent band gaps. For example, Fig. 3-13 shows the spatial variation in con-
duction and valence bands for a multilayer structure in which a very thin layer
of GaAs is sandwiched between two layers of AlGaAs, which has a wider
band gap that the GaAs. We will discuss the details of such heterojunctions
(junctions between dissimilar materials) in Section 5.8. It is interesting to point
out here, however, that a consequence of confining electrons and holes in a
very thin layer is that these particles behave according to the particle in a po-
tential well problem, with quantum states calculated in Section 2.4.3. Therefore,
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Figure 3-13

Energy band discontinuities for a thin layer of GaAs sandwiched between layers of wider band gap

AlGaAs. In this case, the GaAs region is so thin that quantum states are formed in the valence and con-

duction bands. Electrons in the GaAs conduction band reside on “particle in a potential well” states

such as Ey shown here, rather than in the usual conduction band states. Holes in the quantum well occu-

py similar discrete states, such as Ej,.
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instead of having the continuum of states normally available in the conduc-
tion band, the conduction band electrons in the narrow-gap material are con-
fined to discrete quantum states as described by Eq. (2-33), modified for
effective mass and finite barrier height. Similarly, the states in the valence
band available for holes are restricted to discrete levels in the quantum well,
This is one of the clearest demonstrations of the quantum mechanical re-
sults discussed in Chapter 2. From a practical device point of view, the for-
mation of discrete quantum states in the GaAs layer of Fig. 3-13 changes
the energy at which photons can be emitted. An electron on one of the dis-
crete conduction band states (E, in Fig. 3-13) can make a transition to an
empty discrete valence band state in the GaAs quantum well (such as Ey),
giving off a photon of energy E, + E, + E,, greater than the GaAs band gap.
Semiconductor lasers have been made in which such a qudntum well is used
to raise the energy of the transition from the infrared, typical of GaAs, to
the red portion of the spectrum. We will see other examples of quantum wells
in semiconductor devices in later chapters.

3.3
CARRIER
CONCENTRATIONS

In calculating semiconductor electrical properties and analyzing device be-
havior, it is often necessary to know the number of charge carriers per cm?
in the material. The majority carrier concentration is usually obvious in heav-
ily doped material, since one majority carrier is obtained for each impurity
atom (for the standard doping impurities). The concentration of minority
carriers is not obvious, however, nor is the temperature dependence of the
carrier concentrations.

To obtain equations for the carrier concentrations we must investigate
the distribution of carriers over the available energy states. This type of dis-
tribution is not difficult to calculate, but the derivation requires some back-
ground in statistical methods. Since we are primarily concerned here with
the application of these results to semiconductor materials and devices, we
shall accept the distribution function as given.

3.3.1 The Fermi Level

Electrons in solids obey Fermi-Dirac statistics.® In the development of this
type of statistics, one must consider the indistinguishability of the electrons,

*Examples of other types of statistics are Maxwell-Boltzmann for classical particles (e.g., gas) and Bose—
Einstein for photons. For two discrete energy levels, £, and E, (with £, > ), classical gas atoms follow a
Boltzmann distribution; the number n, of atoms in sfate E, is related to the number n, in E, at thermal equi-
librium by

m_Ne B Ny sy
assuming the two levels have N, and N; number of states, respectively. The exponential term exp(—AE/kT)
is commonly called the Boltzmann factor. It appears also in the denominator of the Fermi-Dirac distribution
function. We shall return to the Boltzmann distribution in Chapter 8 in discussions of the properties of
lasers.
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heir wave nature, and the Pauli exclusion principle. The rather simple result
t fethes e statistical arguments is that the distribution of electrons over a range
(0

of allowed energy levels at thermal equilibrium is

[ 1
E

;f(E)=m—fg/Tr

(3-10)

 —

where k is Boltzmann’s constant (k = 8.62 ><.10—5 eV{K = '1.38 X 1023 J/K.)'
The function f(E), the Fermi-Dirac distr:ibutton _ﬁln@zon, gives the probabil-
ity that an available energy state at E will be occupied by an e'lectron at at?-
solute temperature 7. The quantity Ej is cglled the_ Fermi level, anq it
represents an important quantity in the analysis of §emlconductor behavior.
We notice that, for an energy E equal to the Fermi level energy Ep, the oc-
cupation probability is

il 1

FE,) =[1 + e BT = —— =

3-11)
1+1 2 (

Thus an energy state at the Fermi level has a probability of '/, of being

ied by an electron.

OCCUp: (ciloZer examination of f(E) indicates that at 0 K the distribution takgs
the simple rectangular form shown in Fig. 3-14. With 7' = 0 in th.e denorpl-
nator of the exponent, f(E) is 1/(1 + 0) = 1 when .the e).q?onent is negative
(E < Ep),and is 1/(1 + o) = 0 when the exponent is positive (E > Ep).This
rectangular distribution implies that at 0 K every available energy state up
to Eis filled with electrons, and all states above Ep are empty.

At temperatures higher than 0 K, some probability exists for states
above the Fermi level to be filled. For example, at 7' = T} in Fig. 3'—14 there
is some probability f(E) that states above Eare filled, and there is a corre-
sponding probability [1 — f(E)] that states below Ej are empty. The Fer.rr-n
function is symmetrical about Ep for all temperatures; that is, the probabgl-
ty f(Er + AE) that a state AE above Eis fille'd is the same as the probabil-
ity [1 — f(Er — AE)] that a state AE below Eis empty. The symmetry of the
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Figure 3—-15

The Fermi distribu-

tion function
applied to
semiconductors:
(@) intrinsic materi-

al; (b) ntype ma-
terial; (c) ptype
material.

distribution of empty and filled states about £ makes the Fermi level a nat-
ural reference point in calculations of electron and hole concentrations in
semiconductors.

In applying the Fermi-Dirac distribution to semiconductors, we must
recall that f(E) is the probability of occupancy of an available state at E.
Thus if there is no available state at E (e.g., in the band gap of a semicon-
ductor), there is no possibility of finding an electron there. We can best vi-
sualize the relation between f(E) and the band structure by turning the f{( E)
vs. E diagram on its side so that the E scale corresponds to the energies of the
band diagram (Fig. 3-15). For intrinsic material we know that the concen-
tration of holes in the valence band is equal to the concentration of elec-
trons in the conduction band. Therefore, the Fermi level E. must lie at the
middle of the band gap in intrinsic material.* Since f{ E)is symmetrical about
Ep, the electron probability “tail” of f( E) extending into the conduction band
of Fig. 3-15a is symmetrical with the hole probability tail [1 — f(E)] in the va-
lence band. The distribution function has values within the band gap between
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FEy 1 12 0 fFE) 1 12 0
(a) Intrinsic (b) n-type

[1=£(E,)]

/

f(E)y 1 12 0
(c) p-type

*Actually the intrinsic E; is displaced slightly from the middle of the gap, since the densities of available
states in the valence and conduction bands are not equal (Section 3.3.2).

Energy Bands and Charge Carriers in Semiconductors

E, and E,, but there are no energy states available, and no electron occu-
. y results from f(E) in this range.
The tails in f(E) are exaggerated in Fig. 3-15 for illustrative purpos-
es. Actually, the probability values at E, and E, are qui_te s_mall for intrin-
sic material at reasonable temperatures. For example, in Si at 300 K, n; =
= 10'° cm 3, whereas the densities of available states at £, and E, are on
tllle order of 10" cm 3. Thus the probability of occupancy.f(E) for an indi-
vidual state in the conduction band and the hole probability [1 - f(E)] for
a state in the valence band are quite small. Because of the rel.atnfel}{ l_arge
density of states in each band, small changes in f(E) can result in significant
changes in carrier concentration. '

In n-type material there is a high concentration of electrons in the con-
duction band compared with the hole concentration in the valence band (r.e-
call Fig. 3-12a). Thus in n-type material the distribution function f(E) must.he
above its intrinsic position on the energy scale (Fig. 3-15b). Since f(E) retains
its shape for a particular temperature, the larger concentration of electron§ at
E, in n-type material implies a correspondingly smaller hole concentration
at E,. We notice that the value of f(E) for each energy level in the conduction
band (and therefore the total electron concentration ny) increases as Epmoves
closer to E.. Thus the energy difference (E. — Ef) gives a measure of n; we
shall express this relation mathematically in the following section.

For p-type material the Fermi level lies near the valence band (Fig. 3-15c¢)
such that the [1— f{E)] tail below E, is larger than the f{E) tail above E,. The value
of (Ep — E,) indicates how strongly p-type the material is.

It is usually inconvenient to draw f(E) vs. E on every energy band dia-
gram to indicate the electron and hole distributions. Therefore, it is common
practice merely to indicate the position of Ein band diagrams. This is suffi-
cient information, since for a particular temperature the position of Erim-
plies the distributions in Fig. 3-15.

panc

3.3.2 Electron and Hole Concentrations at Equilibrium

The Fermi distribution function can be used to calculate the concentrations
of electrons and holes in a semiconductor, if the densities of available states
in the valence and conduction bands are known. For example, the concen-
tration of electrons in the conduction band is

Ny = Afof(E)N(E)dE (3-12)

where N(E)dE is the density of states (cm ) in the energy range dE. The
subscript 0 used with the electron and hole concentration symbols (1, py) in-
dicates equilibrium conditions. The number of electrons per unit volume in
the energy range dE is the product of the density of states and the probabil-
ity of occupancy f(E). Thus the total electron concentration is the integral
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