90

Chapter 3

over the entire conduction band, as in Eq. (3-12).% The function N(E) can be
calculated by using quantum mechanics and the Pauli exclusion principle
(Appendix 1V).

It is shown in Appendix IV that N(E) is proportional to E"2 so the
density of states in the conduction band increases with electron energy. On
the other hand, the Fermi function becomes extremely small for large ener-
gies. The result is that the product f{E)N(E) decreases rapidly above E,, and
very few electrons occupy energy states far above the conduction band edge,
Similarly, the probability of finding an empty state (hole) in the valence band
[l — f(E)] decreases rapidly below E,, and most holes occupy states near
the top of the valence band. This effect is demonstrated in Fig. 3-16, which
shows the density of available states, the Fermi function, and the resulting
number of electrons and holes occupying available energy states in the con-
duction and valence bands at thermal equilibrium (i.e., with no excitations ex-
cept thermal energy). For holes, increasing energy points down in Fig. 3-16,
since the E scale refers to electron energy.

The result of the integration of Eq. (3-12) is the same as that obtained
if we represent all of the distributed electron states in the conduction band
by an effective density of states N, located at the conduction band edge E, .
Therefore, the conduction band electron concentration is simply the effective
density of states at E, times the probability of occupancy at E,®

ny=NAE,) (3-13)

In this expression we assume the Fermi level Ey lies at least several kT
below the conduction band. Then the exponential term is large compared
with unity, and the Fermi function f(E,) can be simplified as

———1 - —L ~
f(EC) = [ e =~ o~ (E~ED/KT (3-14)

Since kT at room temperature is only 0.026 eV, this is generally a good
approximation. For this condition the concentration of electrons in the con-
duction band is

g = N e (EEAT | (3-15)
| =

The effective density of states N, is show31}2in Appendix IV to be

2mm, kT
N, =2 2 — (3-16a)

*The upper limit is actually improper in Eq. (3-12), since the conduction band does not extend to infinite
energy. This is unimportant in the calculation of ng, however, since iE) becomes negligibly small for large
values of E. Most electrons occupy states near the bottom of the conduction band at equilibrium.

¢The simple expression for n, obtained in Eq. (3-13) is the direct result of integrating Eq. (3-12), as in Ap-
pendix IV. Equations (3-15) and (3-19) properly include the effects of the conduction and valence bands
through the density-of-states terms.

Electrons

(a) Intrinsic

(b) n-type

N (E) f(E)
E,
E,
N(E) [1=f(E)]
o 0 0.5 1.0 Carrier
N (E) f(E) concentration
Figure 3-16
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Schematic band diagram, density of states, Fermi-Dirac distribution, and the carrier concentrations for

(a) intrinsic, (b) ntype, and (c) ptype semiconductors at thermal equilibrium.

Since the quantities in Eq. (3-16a) are known, values of N, can be tab-
ulated as a function of temperature. As Eq. (3-15) indicates, the e!ec_:tron
concentration increases as Emoves closer to the conduction band. This is the

result we would predict from Fig. 3-15b.

In Eq. (3-16a), m3 is the density-of-states effective mass for electrons.
To illustrate how it is obtained from the band curvature effective masses
mentioned in Section 3.2.2, let us consider the 6 equivalent conduction
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EXAMPLE 3-4

band minima along the X-directions for Si. Looking at the cigar-shaped
equi-energy surfaces in Fig. 3-10b, we find that we have more than one
band curvature to deal with in calculating effective masses. There is a lon-
gitudinal effective mass m; along the major axis of the ellipsoid, and the
transverse effective mass 7, along the two minor axes. Since we have (n1)3/2
appearing in the density-of-states expression Eq. (3-16a), by using dimen-
sional equivalence and adding contributions from all 6 valleys, we get

(mx)*? = 6(m;m?2)"?

It can be seen that this is the geometric mean of the effective masses.

(3-16b)

Calculate the density-of-states effective mass of electrons in Si.

SOLUTION

For Si, m; = 0.98 mg; m, = 0.19 m, from Appendix III.
There are six equivalent X valleys in the conduction band.

mi = 62°[0.98(0.19)*]* m, = 1.1 m,

Note: For GaAs, the conduction band equi-energy surfaces are spher-
ical. So there is only one band curvature effective mass, and it is equal to
the density-of-states effective mass (= 0.067 m).

By similar arguments, the concentration of holes in the valence band is

py =N,[1 = f(E,)] (3-17)

where N, is the effective density of states in the valence band. The probabil-
ity of finding an empty state at E,, is

1
T1x eiE,—Eri/kT:

¢~ (Er—E)/KT (3-18)

1-f(E)=1

for Erlarger than E, by several k7. From these equations, the concentration
of holes in the valence band is

—(E—E,)/kT \

pO = Nve

(3-19)

The effective density of states in the valence band reduced to the
band edge is

2m71*kT)3/2 .
( j—:”)

N, =22
h
As expected from Fig. 3-15¢, Eq. (3-19) predicts that the hole concen-
tration increases as £ moves closer to the valence band.

Energy Bands and Charge Carriers in Semiconductors

The electron and hole concentrations predicted by Egs. (3-15) and (3-19)
are valid whether the material is intrinsic or doped, provided thermal equilibri-
um is maintained. Thus for intrinsic material, Er lies at some intrinsic level E; near
the middle of the band gap (Fig. 3-15a), and the intrinsic electron and hole con-
centrations are

n, = Nce—(E‘.—E,.)/kT’ pi= Nve—(E,—E‘)/kT (3-21)

The product of 11y and p; at equilibrium is a constant for a particular ma-
terial and temperature, even if the doping is varied:

nopo = (N~ EEVRT)(N o= (E=EVAT) = N N e~ (EEJKT (3_27a)
= NN e E/T
np; = (NceA(E“_ E')/k'})(Nv‘f(E'fE‘)/kT) = NN, e E/*T

(3-22b)
The intrinsic electron and hole concentrations are equal (since the car-
riers are created in pairs), n7; = p;; thus the intrinsic concentration is

n,=VN.N, e E/%T (3-23)

1

The constant product of electron and hole concentrations in Eq. (3-22)

can be written conveniently as
oro=ri] (24

This is an important relation, and we shall use it extensively in later
calculations. The intrinsic concentration for Si at room temperature is ap-
proximately 7; = 1.5 X 10'% ¢,

Comparing Egs. (3-21) and (3-23), we note that the intrinsic level E; is
the middle of the band gap (E. — E; = E,/2),if the effective densities of states
N, and N, are equal. There is usually some difference in effective mass for elec-
trons and holes, however, and N, and N, are slightly different as Eqgs. (3-16) and
(3-20) indicate. The intrinsic level E; is displaced from the middle of the band
gap, more for GaAs than for Ge or Si.

Another convenient way of writing Eqgs. (3-15) and (3-19) is

ny = n; e e EVAT (3-25a)
Do =1, e(E,—EF)/kT | ( 3-25b)

obtained by the application of Eq. (3-21). This form of the equations indicates
directly that the electron concentrations is ; when Eis at the intrinsic level
E;, and that n, increases exponentially as the Fermi level moves away from
E; toward the conduction band. Similarly, the hole concentration p,, varies
from n; to larger values as E,moves from E; toward the valence band. Since
these equations reveal the qualitative features of carrier concentration so
directly, they are particularly convenient to remember.

23
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EXAMPLE 3-5

A Sisample is doped with 10'7 As atoms/cm®. What is the equilibrium hole
concentration p, at 300 K? Where is Eprelative to E;?

SOLUTION

Since N, >> n;, we can approximate n, =N, and

From Eq. (3-25a), we have

17

- = ot Weg
Epe B =kTIn s 0.0259 In 15 % 100 0.407 eV
The resulting band diagram is:
Ep——————————————————————- Ee
0.407 eV
1.1eV & 5 E;
\ E

3.3.3 Temperature Dependence of Carrier Concentrations

The variation of carrier concentration with temperature is indicated by
Eq. (3-25). Initially, the variation of 1y, and p, with T seems relatively straight-
forward in these relations. The problem is complicated, however, by the fact
that n; has a strong temperature dependence [Eq. (3-23)] and that Er can
also vary with temperature. Let us begin by examining the intrinsic carrier
concentration. By combining Egs. (3-23), (3-16a), and (3-20) we obtain

2wk
h2

3/2
T) (771;5171;‘)3/46‘%/2” (3-26)

n,.( T) = 2(

The exponential temperature dependence dominates 7;(7), and a plot
of In n; vs. 10% T appears linear (Fig. 3-17).” In this figure we neglect varia-
tions due to the 7** dependence of the density-of-states function and the fact

"When plotting quantities such as carrier concentration, which involve a Boltzmann factor, it is common to use
an inverse temperature scale. This allows terms which are exponential in 1/T to appear linear in the semi-
logarithmic plot. When reading such graphs, remember that temperature increases from right to left.
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that E, varies somewhat with temperature.® The value of n; at any tempera-
ture is a definite number for a given semiconductor, and is known for most
materials. Thus we can take n; as given in calculating 1, or p, from Eq. (3-25).7

With n; and T given, the unknowns in Eq. (3-25) are the carrier con-
centrations and the Fermi level position relative to E;. One of these two

%For Si the band gap E, varies from about 1.11 eV at 300 K to about 1.16 eV at O K.

9Care must be taken to use consistent units in these calculations. For example, if an energy such as Eg is
expressed in electron volis V), it should be multiplied by g (1.6 x 107!% C) to convert to joules if k is in
J/K; dlternatively, E, can be kept in eV and the value of kin eV/K can be used. At 300 K we can use
kT = 0.0259 eV and E, in eV.

S e
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Figure 3-17
Intrinsic carrier
concentration for
Ge, Si, and GaAs
as a function of in-
verse temperature.
The room temper-
ature values are
marked for
reference.
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Figure 3-18
Carrier concentra-
tion vs. inverse
temperature for Si
doped with 10
donors/cm?.

quantities must be given if the other is to be found. If the carrier concentra-
tion is held at a certain value, as in heavily doped extrinsic material, E can
be obtained from Eq. (3-25). The temperature dependence of electron con-
centration in a doped semiconductor can be visualized as shown in Fig. 3-18,
In this example, Si is doped n-type with a donor concentration N, of 10 cm ™3,
At very low temperatures (large 1/7), negligible intrinsic EHPs exist, and
the donor electrons are bound to the donor atoms. As the temperature is
raised, these electrons are donated to the conduction band, and at about 100
K (1000/T = 10) all the donor atoms are ionized. This temperature range is
called the ionization region. Once the donors are ionized, the conduction
band electron concentration is ny = N, = 10'> cm >, since one electron is ob-
tained for each donor atom. When every available extrinsic electron has been
transferred to the conduction band, n, is virtually constant with temperature
until the concentration of intrinsic carriers n; becomes comparable to the ex-
trinsic concentration N,. Finally, at higher temperatures #; is much greater
than N,, and the intrinsic carriers dominate. In most devices it is desirable
to control the carrier concentration by doping rather than by thermal EHP
generation. Thus one usually dopes the material such that the extrinsic range
extends beyond the highest temperature at which the device is to be used.

3.3.4 Compensation and Space Charge Neutrality

When the concept of doping was introduced, we assumed the material con-
tained either N, donors or N, acceptors, so that the extrinsic majority carri-
er concentrations were n, = N, or p, = N,, respectively, for the n-type or

107 -
Intrinsic
\ Extrinsic
108 \
T \
g \ lonization
~ - \
< \
\
13 \
10 \
\\ n;
i \
101 1 1 1 1 1 1
0 2 4 6 8 10 12
1000/T (K)~!

p-type material. It often happens, however, that a semiconductor contains
both donors and acceptors. For example, Fig. 3-19 illustrates a semiconduc-
tor for which both donors and acceptors are present, but N; > N,,. The pre-
dominance of donors makes the material n-type, and the Fermi level is
therefore in the upper part of the band gap. Since E is well above the ac-
ceptor level E,, this level is essentially filled with electrons. However, with
Erabove E;, we cannot expect a hole concentration in the valence band com-
mensurate with the acceptor concentration. In fact, the filling of the E, states
occurs at the expense of the donated conduction band electrons. The mech-
anism can be visualized as follows: Assume an acceptor state is filled with a
valence band electron as described in Fig. 3-12b, with a hole resulting in the
valence band. This hole is then filled by recombination with one of the con-
duction band electrons. Extending this logic to all the acceptor atoms, we ex-
pect the resultant concentration of electrons in the conduction band to be N,
— N, instead of the total N, This process is called compensation. By this
process it is possible to begin with an n-type semiconductor and add accep-
tors until N, = N, and no donated electrons remain in the conduction band.
In such compensated material, ny = n; = p, and intrinsic conduction is ob-
tained. With further acceptor doping the semiconductor becomes p-type with
a hole concentration of essentially N, — N,.

The exact relationship among the electron, hole, donor, and acceptor
concentrations can be obtained by considering the requirements for space
charge neutrality. If the material is to remain electrostatically neutral, the
sum of the positive charges (holes and ionized donor atoms) must balance the
sum of the negative charges (electrons and ionized acceptor atoms):

po+ Nj=ny+ N, (3-27)
Thus in Fig. 3-19 the net electron concentration in the conduction band is

ny=p, + (N; = N;) (3-28)

97

Figure 3-19
Compensation in
an n-type semi-
conductor

(Ng> No).
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If the material is doped n-type (ny >> p,) and all the impurities are
ionized, we can approximate Eq. (3-28) by ny = N, — N,

Since the intrinsic semiconductor itself is electrostatically neutral and
the doping atoms we add are also neutral, the requirement of Eq. (3-27)
must be maintained at equilibrium. The electron and hole concentrations
and the Fermi level adjust such that Egs. (3-27) and (3-25) are satisfied.

3.4

DRIFT OF
CARRIERS IN
ELECTRIC AND
MAGNETIC FIELDS

Figure 3-20

(a) Random ther-
mal motion of an
electron in a
solid; (b) well-
directed drift
velocity with an
applied electric

field.

Knowledge of carrier concentrations in a solid is necessary for calculating cur-
rent flow in the presence of electric or magnetic fields. In addition to the val-
ues of n and p, we must be able to take into account the collisions of the
charge carriers with the lattice and with the impurities. These processes will
affect the ease with which electrons and holes can flow through the crystal,
that is, their mobility within the solid. As should be expected, these collision
and scattering processes depend on temperature, which affects the thermal
motion of the lattice atoms and the velocity of the carriers.

3.4.1 Conductivity and Mobility

The charge carriers in a solid are in constant motion, even at thermal equi-
librium. At room temperature, for example, the thermal motion of an indi-
vidual electron may be visualized as random scattering from lattice vibrations,
impurities, other electrons, and defects (Fig. 3-20a). Since the scattering is ran-
dom, there is no net motion of the group of n electrons/cm’ over any period
of time. This is not true of an individual electron, of course. The probability of

A

A

Ve = T My &
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the electron in Fig. 3-20a returning to its starting point after some time ¢ is
negligibly small. However, if a large number of electrons is considered (e.g.,
10'® cm ™ in an n-type semiconductor), there will be no preferred direction
of motion for the group of electrons and no net current flow.

If an electric field €, is applied in the x-direction, each electron expe-
riences a net force -¢é, from the field. This force may be insufficient to alter
appreciably the random path of an individual electron; the effect when av-
eraged over all the electrons, however, is a net motion of the group in the
_y-direction (Fig. 3-20b). If p, is the x-component of the total momentum
of the group, the force of the field on the n electrons/cm? is

dp,
dr |gieiq

—nqé, =

Initially, Eq. (3-29) seems to indicate a continuous acceleration of the
electrons in the —x-direction. This is not the case, however, because the net
acceleration of Eq. (3-29) is just balanced in steady state by the decelera-
tions of the collision processes. Thus while the steady field €, does produce
a net momentum p_,, the net rate of change of momentum when collisions
are included must be zero in the case of steady state current flow.

To find the total rate of momentum change from collisions, we must
investigate the collision probabilities more closely. If the collisions are truly
random, there will be a constant probability of collision at any time for each
electron. Let us consider a group of NV, electrons at time ¢ = 0 and define N(¢)
as the number of electrons that ave not undergone a collision by time . The
rate of decrease in N(¢) at any time ¢ is proportional to the number left un-
scattered at ¢,

dN () %N(t) (3-30)

e

where 7 ! is a constant of proportionality.
The solution to Eq. (3-30) is an exponential function
N(t) = Nye 1 (3-31)
and 7 represents the mean time between scattering events,'? called the mean
free time. The probability that any electron has a collision in the time inter-
val dt is di/t . Thus the differential change in p, due to collisions in time df is

dt

dp, = —p, 5 (3-32)

"Equations (3-30) and (3-31) are typical of events dominated by random processes, and the forms of
these equations occur often in many branches of physics and engineering. For example, in the radioactive
decay of unstable nuclear isotopes, Ny nuclides decay exponentially with a mean lifetime 7. Other exam-
ples will be found in this text, including the absorption of light in a semiconductor and the recombination
of excess EHPs.
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The rate of change of p, due to the decelerating effect of collisions is

dp,
dt

_ Py
t

(3-33)
collisions

The sum of acceleration and deceleration effects must be zero for
steady state. Taking the sum of Egs. (3-29) and (3-33), we have

B ngé,=0 (3-34)

The average momentum per electron is

Px . .
y=—"=—qteé, (3-35
(po)=""=—4qr’, , 5)
where the angular brackets indicate an average over the entire group of elec-
trons. As expected for steady state, Eq. (3-35) indicates that the electrons

have on the average a constant net velocity in the negative x-direction:

(=Bl L g

nk n

X (3-36)

Actually, the individual electrons move in many directions by thermal
motion during a given time period, but Eq. (3-36) tells us the net drift of an
average electron in response to the electric field. The drift speed described
by Eq. (3-36) is usually much smaller than the random speed due to the ther-
mal motion vy,

The current density resulting from this net drift is just the number of
electrons crossing a unit area per unit time (n{v,)) multiplied by the charge
on the electron (—q):

J.=—qn{vy
ampere _coulomb electrons cm ‘

cm? electron cm?® s |

Using Eq. (3-36) for the average velocity, we obtain

_ng’ty

J, == (3-38)
nE

X X
Thus the current density is proportional to the electric field, as we ex-

pect from Ohm’s law:

The conductivity o({2-cm) ! can be written

qt .
o =qnp,, Wwherep, = — (3-40a)
n
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The quantity p,, called the electron mobility, describes the ease with
which electrons drift in the material. Mobility is a very important quantity in
characterizing semiconductor materials and in device development.

Here m is the conductivity effective mass for electrons, different from
the density-of-states effective mass mentioned in Eq. (3-16b). While we use
the density-of-states effective mass to count the number of carriers in bands,
we must use the conductivity effective mass for charge transport problems.
To illustrate how it is obtained from the band curvature effective masses
mentioned in Section 3.2.2, once again let us consider the 6 equivalent con-
duction band minima along the X-directions for Si, with the band curvature
longitudinal effective mass, 71, along the major axis of the ellipsoid, and the
transverse effective mass, m,, along the two minor axes (Fig. 3-10b). Since we
have 1/m: in the mobility expression Eq. (3-40a), by using dimensional
equivalence, we can write the conductivity effective mass as the harmonic
mean of the band curvature effective masses.

1 1/1 2 i
s i | == i = (3-40Db)
mi 3 \m; m,

Calculate the conductivity effective mass of electrons in Si. EXAMPLE 3-6

101

For Si, m; = 0.98 mg; m, = 0.19 m, (Appendix IIT). SOLUTION

There are 6 equivalent X valleys in the conduction band.

1/mx =1/3(1/m, + 1/m, + 1/m,) = 1/3(1/m; + 2/m,)

TETE et
=3 098 m, 0.19m,

m =026 my,

Note: For GaAs, the conduction band equi-energy surfaces are spheri-
cal. So there is only one band curvature effective mass. (The density of
states effective mass and the conductivity effective mass are both 0.067 m,.)

The mobility defined in Eq. (3-40a) can be expressed as the average par-
ticle drift velocity per unit electric field. Comparing Egs. (3-36) and (3-40a),
we have

W
MH %

X

(3-41)

The units of mobility are (cm/s)/(V/cm) = cm?/V-s, as Eq. (3-41) sug-
gests. The minus sign in the definition results in a positive value of mobility,
since electrons drift opposite to the field.
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Figure 3-21
Drift of electrons
and holes in a
semiconductor

bar.

The current density can be written in terms of mobility as

J.\‘ = q”p“nc(g.\' (3742)

This derivation has been based on the assumption that the current is
carried primarily by electrons. For hole conduction we change n to p, —¢ to
+q,and p, to ., where p, = +(v,)/%€, is the mobility for holes. If both elec-
trons and holes participate, we must modify Eq. (3-42) to

T.=q(np, + pw,)8, = o€, (3-43)

Values of p, and p, are given for many of the common semiconductor ma-
terials in Appendix IIT. According to Eq. (3-40), the parameters determining
mobility are 7* and mean free time 7. Effective mass is a property of the ma-
terial’s band structure, as described by Eq. (3-3). Thus we expect n2 to be small
in the strongly curved I' minimum of the GaAs conduction band (Fig. 3-6),
with the result that , is very high. In a more gradually curved band, a larger m*
in the denominator of Eq. (3-40) leads to a smaller value of mobility. It is rea-
sonable to expect that lighter particles are more mobile than heavier particles
(which is satisfying, since the common-sense value of effective mass is not always
apparent). The other parameter determining mobility is the mean time between
scattering events, 7. In Section 3.4.3 we shall see that this is determined primar-
ily by temperature and impurity concentration in the semiconductor.

3.4.2 Drift and Resistance

Let us look more closely at the drift of electrons and holes. If the semicon-
ductor bar of Fig. 3-21 contains both types of carrier, Eq. (3-43) gives the
conductivity of the material. The resistance of the bar is then
I
r_Pb_L1 (3-44)
wt  wt o

Electric field
Current
Hole motion

/ Electron motion

Electron motion
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where p is the resistivity (Q-cm). The physical mechanism of carrier drift
requires that the holes in the bar move as a group in the direction of the
electric field and that the electrons move as a group in the opposite direc-
tion. Both the electron and the hole components of current are in the di-
rection of the € field, since conventional current is positive in the direction
of hole flow and opposite to the direction of electron flow. The drift current
described by Eq. (3-43) is constant throughout the bar. A valid question
arises, therefore, concerning the nature of the electron and hole flow at the
contacts and in the external circuit. We should specify that the contacts to
the bar of Fig. 3-21 are ohmic, meaning that they are perfect sources and
sinks of both carrier types and have no special tendency to inject or collect
either electrons or holes.

If we consider that current is carried around the external circuit by
electrons, there is no problem in visualizing electrons flowing into the bar at
one end and out at the other (always opposite to I). Thus for every electron
leaving the left end (x = 0) of the bar in Fig. 3-21, there is a corresponding
electron entering at x = L, so that the electron concentration in the bar re-
mains constant at n. But what happens to the holes at the contacts? As a
hole reaches the ohmic contact at x = L, it recombines with an electron,
which must be supplied through the external circuit. As this hole disappears,
a corresponding hole must appear at x = 0 to maintain space charge neu-
trality. It is reasonable to consider the source of this hole as the generation
of an EHP at x = 0, with the hole flowing into the bar and the electron flow-
ing into the external circuit.

3.4.3 Effects of Temperature and Doping on Mobility

The two basic types of scattering mechanisms that influence electron and
hole mobility are lattice scattering and impurity scattering. In lattice scatter-
ing a carrier moving through the crystal is scattered by a vibration of the lat-
tice, resulting from the temperature.'! The frequency of such scattering events
increases as the temperature increases, since the thermal agitation of the lat-
tice becomes greater. Therefore, we should expect the mobility to decrease
as the sample is heated (Fig. 3-22). On the other hand, scattering from crys-
tal defects such as ionized impurities becomes the dominant mechanism at
low temperatures. Since the atoms of the cooler lattice are less agitated, lat-
tice scattering is less important; however, the thermal motion of the carriers
is also slower. Since a slowly moving carrier is likely to be scattered more
strongly by an interaction with a charged ion than is a carrier with greater mo-
mentum, impurity scattering events cause a decrease in mobility with de-
creasing temperature. As Fig. 3-22 indicates, the approximate temperature
dependencies are 72 for lattice scattering and 72 for impurity scattering.
Since the scattering probability of Eq. (3-32) is inversely proportional to the

MCollective vibrations of atoms in the crystal are called phonons. Thus lattice scattering is also known as
phonon scattering.
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that we are in the ohmic regime. From Fig. 3-23, for this doping, the
My = 700 cm?/V-s.

o = qung = 1.6 X 1072 x 700 X 10" = 11.2(Qcm)™ = p!

p = 0.0893 () -cm

R = pL/A = 0.0893 X 0.1/107° = 8.93 X 10°Q

I =VIR =10/(8.93 X 10°) = 1.12mA

3.4.4 High-Field Effects

One assumption implied in the derivation of Eq. (3-39) was that Ohm’s law
is valid in the carrier drift processes. That is, it was assumed that the drift cur-
rent is proportional to the electric field and that the proportionality constant
(o) is not a function of field €. This assumption is valid over a wide range of
€. However, large electric fields (> 10°V/cm) can cause the drift velocity and
therefore the current J = —gnv, to exhibit a sublinear dependence on the
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the 10" jonized donors/cm® introduces a significant amount of impurity scat- > L i
tering. This effect is illustrated in Fig. 3-23, which shows the variation of mo- T T
aye . . . 2
bility with doping concentration at room temperature. 10 s 105 " o1 018 019
Impurity concentration (cm™3)
EXAMPLE 3-7 A Si bar 0.1 cm long and 100 ym? in cross-sectional area is doped with Figure 3-23
10" em™ phosphorus. Find the current at 300 K with 10 V applied. Variation of mobility with total doping impurity concentration (N, + N,) for Ge, Si, and GaAs at 300 K.
SOLUTION For this applied voltage, we see that the electric field is low enough
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Figure 3-24
Saturation of elec-
tron drift velocity
at high electric
fields for Si.

v, (cm/s)

1 L | 1
102 103 10* 10°
&(V/em)

electric field. This dependence of o upon € is an example of a hot carrier ef-
fect, which implies that the carrier drift velocity v, is comparable to the ther-
mal velocity vy,

In many cases an upper limit is reached for the carrier drift velocity in
a high field (Fig. 3-24). This limit occurs near the mean thermal velocity
(= 10" cm/s) and represents the point at which added energy imparted by the
field is transferred to the lattice rather than increasing the carrier velocity. The
result of this scattering limited velocity is a fairly constant current at high
tield. This behavior is typical of Si, Ge, and some other semiconductors. How-
ever, there are other important effects in some materials; for example, in
Chapter 10 we shall discuss a decrease in electron velocity at high fields for
GaAs and certain other materials, which results in negative conductivity and
current instabilities in the sample. Another important high-field effect is
avalanche multiplication, which we shall discuss in Section 5.4.2.

3.4.5 The Hall Effect

If a magnetic field is applied perpendicular to the direction in which holes
drift in a p-type bar, the path of the holes tends to be deflected (Fig. 3-25).
Using vector notation, the total force on a single hole due to the electric and
magnetic fields is

F=q(¢+vX%®) (3-46)
In the y-direction the force is
F,=q(€, - v,%,) (3-47)

The important result of Eq. (3-47) is that unless an electric field €, is
established along the width of the bar, each hole will experience a net force

I,
B,
Z ’
I Ce
S 1
,/ /
w / (-)
Ve B
y /
/ —‘—b I
/ \
X //
/ W .
/ x /
t i D [
4 /
1

(and therefore an acceleration) in the -y-direction due to the gv,%, product.
Therefore, to maintain a steady state flow of holes down the length of the bar,
the electric field €, must just balance the product v, %,

€, =V, B, (3-48)

so that the net force F, is zero. Physically, this electric field is set up when the
magnetic field shifts the hole distribution slightly in the -y-direction. Once
the electric field €, becomes as large as v, %, no net lateral force is experi-
enced by the holes as they drift along the bar. The establishment of the elec-
tric field € is known as the Hall effect, and the resulting voltage V 15 = €,w
is called the Hall voltage. If we use the expression derived in Eq. (3-37) for
the drift velocity (using +¢q and p, for holes), the field €, becomes

J. 1
. %z = RH‘],\'%z’ RH =
Py Py

e =

4 (3-49)

Thus the Hall field is proportional to the product of the current densi-
ty and the magnetic flux density. The proportionality constant R, = (gp,) ™
is called the Hall coefficient. A measurement of the Hall voltage for a known
current and magnetic field yields a value for the hole concentration p,

1 LB, (L/w)B, IR,
qRy  q€,  q(Vap/w) qtVap

Po = (3-50)

Since all of the quantities in the right-hand side of Eq. (3-50) can be
measured, the Hall effect can be used to give quite accurate values for car-
rier concentration.

Figure 3-25
The Hall effect.
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EXAMPLE 3-8

If a measurement of resistance R is made, the sample resistivity p can
be calculated:

Rwt  Vep/l,
pfl-m) = L L/wt

(3-51)

Since the conductivity o = 1/p is given by q,p,, the mobility is simply

the ratio of the Hall coefficient and the resistivity:
iy S (3-52)

Measurements of the Hall coefficient and the resistivity over a range of
temperatures yield plots of majority carrier concentration and mobility vs.
temperature. Such measurements are extremely useful in the analysis of semi-
conductor materials. Although the discussion here has been related to p-type
material, similar results are obtained for n-type material. A negative value
of g is used for electrons, and the Hall voltage V5 and Hall coefficient R; are
negative. In fact, measurement of the sign of the Hall voltage is a common
technique for determining if an unknown sample is p-type or n-type.

Referring to Fig. 3-25, consider a semiconductor bar with w = 0.1 mm,
t=10 um, and L = 5 mm. For % = 10 kg in the direction shown (1 kG =107
Wb/cm?) and a current of 1 mA, we have V3 = —2mV, Vep = 100 mV.
Find the type, concentration, and mobility of the majority carrier.

SOLUTION

3.5
INVARIANCE OF
THE FERMI LEVEL
AT EQUILIBRIUM

B, = 10~ Wb/cm?
From the sign of V5, we can see that the majority carriers are elec-
trons:

L, (1073)(1074
a(—Vag) 1.6 x 10°°(1073)(2 x 107)
R Vep/, 0.1/1073
T Liwt Liwt 050001 X 107
rAGRR 1
Copgny  (0.002)(1.6 X 107%)(3.125 x 107

ny = =3.125 X 10" em™3

= 0.002 - cm

p

= 10,000 cm?*(V - s) !

Hen

In this chapter we have discussed homogeneous semiconductors, without
variations in doping and without junctions between dissimilar materials. In
the following chapters we will be considering cases in which nonuniform
doping occurs in a given semiconductor, or junctions occur between differ-
ent semiconductors or a semiconductor and a metal. These cases are crucial

Energy Bands and Charge Carriers in Semiconductors

to the various types of electronic and optoelectronic devices made in semi-
conductors. In anticipation of those discussions, an important concept should
be established here regarding the demands of equilibrium. That concept can
be summarized by noting that no discontinuity or gradient can arise in the
equilibrium Fermi level Er.

To demonstrate this assertion, let us consider two materials in intimate
contact such that electrons can move between the two (Fig. 3-26). These may
be, for example, dissimilar semiconductors, n- and p-type regions, a metal and
a semiconductor, or simply two adjacent regions of a nonuniformly doped semi-
conductor. Each material is described by a Fermi-Dirac distribution function
and some distribution of available energy states that electrons can occupy.

There is no current, and therefore no net charge transport, at thermal
equilibrium. There is also no net transfer of energy. Therefore, for each en-
ergy E in Fig. 3-26 any transfer of electrons from material 1 to material 2
must be exactly balanced by the opposite transfer of electrons from 2 to 1.
We will let the density of states at energy E in material 1 be called Ny(E)
and in material 2 we will call it Ny(E). At energy E the rate of transfer of
electrons from 1 to 2 is proportional to the number of filled states at £ in ma-
terial 1 times the number of empty states at £ in material 2:

rate from 1 to 2 = N,(E)f,(E) - Ny(E)[1 — f,(E)]

where f(E) is the probability of a state being filled at £ in each material, i.e.,
the Fermi-Dirac distribution function given by Eq. (3-10). Similarly,

rate from 2 to 1 = N,(E)f,(E) - N,(E)[1 - f,(E)] (3
At equilibrium these must be equal:

N(EMV(E) - Ny(E)1 = A(E)] = NE(E) - Ny(E)[1 = £(E)] (3 55)

Ep=—=—————————_ S
Material 1 Material 2
Density of states N, (E) NZ(E)
Fermi Distribution f;(E) wihB) R

10¢

Figure 3-26

Two materials in
intimate contact at
equilibrium. Since
the net motion of
electrons is zero,
the equilibrium
Fermi level must
be constant
throughout.
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Rearranging terms, we have, at energy E,

NifiN, = N\ fiN, f, = N, HNy = N, N (3-56)

which results in

F(E) = £(E), thatis, [L + elE=EAT)1 = [1 4 olE- BT

(3-57)

Therefore, we conclude that £ = Ep,. That is, there is no discontinu-

ity in the equilibrium Fermi level. More generally, we can state that the Fermj
level at equilibrium must be constant throughout materials in intimate con-
tact. One way of stating this is that no gradient exists in the Fermi level at
equilibrium:

1 1 ’
dE, s
dx ‘ (3-58)

We will make considerable use of this result in the chapters to follow,

SUMMARY

3

In a diamond lattice, each Si atom (with four valence electrons) is surrounded
by four Si atoms that form four covalent bonds consisting of shared electron
pairs, thereby forming an octer of electrons in the valence shell. In zinc blende
structures such as GaAs, electrons are partly shared (covalent bonding) and
partly transferred from Ga to As (ionic bonding).

In crystals, electronic wave functions overlap to give various linear combina-
tions of atomic orbitals (LCAO). Bonding or symmetric combinations of the
wave functions of valence-shell electrons form (almost) continuous allowed
bands of energies in the (almost) filled valence band, separated by an energy
gap from higher energy states in an (almost) empty conduction band that cor-
respond to the antibonding or antisymmetric LCAOs. Empty electronic states
in the valence band can be considered to be positively charged carriers
(holes), while filled states in the conduction band are negatively charged (con-
duction) electrons.

If the band gaps are large, we get insulators; if they are small (~1 eV), we get
semiconductors; and if they are zero, we get conductors (metals).

Simplified band diagrams plot electron energy in the conduction band (in-
creasing upwards) as a function of position. The band edge corresponds to po-
tential energy, and the distance from the band edge gives the kinetic energy.
Hole energies increase downward in the valence band.

Carrier energies can also be plotted as a function of wave vector k (proportional
to velocity or momentum) to give (E, k) band structures, which can be direct
(conduction band minimum directly above valence band maximum) or indirect.
The curvature of the (E,k) is inversely proportional to the effective mass nm* of
the carriers. The m* accounts for the interactions of the carriers with the peri-
odic crystal potential.

3.6

3.8

Energy Bands and Charge Carriers in Semiconductors

In a pure semiconductor, we have an intrinsic concentration of electrons (or
holes), i1;, that result from thermal generation-recombination between the va-
lence and conduction band (or bond breaking). If we replace some Si atoms
(with four valence electrons) with donor impurities with five valence electrons,
they donate conduction electrons, n (= N,;*); similarly, acceptors create holes p-

The number of electrons, i, is the integral with respect to energy from the bot-
tom to the top of the conduction band of the product of the available density of
states (DOS) and the Fermi-Dirac (FD) distribution function. For parabolic band
structures, we get a parabolic DOS. The FD function is the average occupancy
of an electronic state. The electron concentration 7 can also be expressed as the
product of an effective DOS at the band edge and the FD occupancy at E,, and
similarly for holes p. The np product in equilibrium is constant (1;%).

Electrons in a solid execute random Brownian motion with an average kinet-
ic energy related to the thermal energy k7. In an electric field, electrons drift
(on top of the random motion) with a velocity equal to mobility times field in
the ohmic regime and saturation velocity at high fields. The drift current is pro-
portional to carrier concentration times drift velocity. Negatively charged elec-
trons drift opposite to the electric field, and the current is opposite to the
motion. Positively charged holes drift in the direction of the electric field, and
the current goes in the same direction as the hole flow.

Carrier mobility is determined by scattering, caused by deviations from a peri-
odic lattice potential, such as lattice vibrations (phonons) or ionized impurities.
Carrier mobility and concentration can be obtained by the Hall effect and re-
sistivity measurements.

3.1

Calculate the approximate donor binding energy for GaAs (e, = 13.2, m,, =
0.067 my).

Calculate values for the Fermi function f(C) at 300 K and plot vs. energy in eV
as in Fig. 3-14. Choose Er = 1 eV and make the calculated points closer to-
gether near the Fermi level to obtain a smooth curve. Notice that f(E) varies
quite rapidly within a few kT of Ep. Show that the probability that a state AE
above Ly is occupied is the same as the probability that the state AE below Ej.
is empty.

An unknown semiconductor has E, = 1.1eV and N, = N,. It is doped with
10" cm ™ donors, where the donor level is 0.2 eV below E.. Given that Eis 0.25
eV below E,, calculate 1; and the concentration of electrons and holes in the
semiconductor at 300 K.

At room temperature, an unknown indirect band gap, intrinsic, cubic semicon-
ductor has the following band structure: There are 6 X minima along the (100)
directions. If m(I") = 0.065m, m73(X) = 0.30 m, (for each of the X minima)
and % = 0.47my, at what temperature is the number of electrons in the I' mini-
ma and the X minima equal if the I" to X energy separation is 0.35 eV, and the
bandgap is 1.7 eV (m, = free electron mass)?

PROBLEMS
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3.6

3.7

w
o <]

3.9

3.10

Since the effective mass of electrons in a conduction band decreases with in-
creasing curvature of the band according to Eq. (3-3), comment on the elec-
tron effective mass in the I' valley of GaAs compared with the indirect X or I,
valleys. (See Fig. 3-10.) How is this effective mass difference reflected in the
electron mobility for GaAs and GaP shown in Appendix III? From Fig. 3-10,
what would you expect to happen to the conductivity of GaAs if I'-valley elec-
trons drifting in an electric field were suddenly promoted to the L valley?

Calculate the band gap of Si from Eq. (3-23) and the plot of #; vs. 1000/T
(Fig. 3-17). Hint: The slope cannot be measured directly from a semilogarith-
mic plot; read the values from two points on the plot and take the natural log-
arithm as needed for the solution.

(a) A Sisample is doped with 10'® cm™ boron atoms and a certain number of
shallow donors. The Fermi level is 0.36 eV above E; at 300 K. What is the
donor concentration N,?

(b) A Sisample contains 10' cm™ In acceptor atoms and a certain number of
shallow donors. The In acceptor level is 0.16 eV above E,, and Efis 0.26 eV
above E, at 300 K. How many (cm™) In atoms are un-ionized (i.e., neutral)?

Show that Eq. (3-25) results from Egs. (3-15) and (3-19). If 1y = 10'® cm 3,

where is the Fermi level relative to E;in Si at 300 K?

Derive an expression relating the intrinsic level E; to the center of the band

gap E,/2. Calculate the displacement of E; from E,/2 for Si at 300 K, assum-

ing the effective mass values for electrons and holes are 1.1m, and 0.56m,,
respectively.

A semiconductor device requires n-type material; it is to be operated at 400 K.

Would Si doped with 10" atoms/cm® of arsenic be useful in this application?

Could Ge doped with 10' cm™ antimony be used?

A new semiconductor has N, = 10 cm™, N, = 5X 10" cm™, and E, =2 eV. If

it is doped with 10'7 donors (fully ionized), calculate the electron, hole, and in-

trinsic carrier concentrations at 627°C. Sketch the simplified band diagram,
showing the position of Ep.

(a) Show that the minimum conductivity of a semiconductor sample occurs
when ng = n,V'p,,/ . Hint: begin with Eq. (3-43) and apply Eq. (3-24).

(b) What is the expression for the minimum conductivity o,,;,?

(c) Calculate o, for Si at 300 K and compare with the intrinsic conductivity.

(a) A Sibar 0.1 pm long and 100 pm? in cross-sectional area is doped with
10" cm™* phosphorus. Find the current at 300 K with 10 V applied.
Repeat for a Si bar 1 pm long.

(b) How long does it take an average electron to drift 1 pm in pure Si at an
electric field of 100 V/cm? Repeat for 10° V/cm.

- (a) A Sisample is doped with 10! boron atoms/cm® What is the electron con-

centration n, at 300 K? What is the resistivity?

(b) A Ge sample is doped with 3 X 10'® Sb atoms/cm?. Using the requirements
of space charge neutrality, calculate the electron concentration rq at 300 K.

3.15

3.16

3.18

3.19

Energy Bands and Charge Carriers in Semiconductors

For a Si conductor of length 5 pm, doped n-type at 10 cm™, calculate the cur-
rent density for an applied voltage of 2.5 V across its length. How about for a volt-
age of 2500 V? The electron and hole mobilities are 1500 cm?/V-s and 500 cm?/V-s,
respectively, in the ohmic region for electric fields below 10* V/cm. For higher
fields, electrons and holes have a saturation velocity of 107 cm/s.

In a long semiconductor bar (Eg =2 €V), conduction band electrons come in
from the left in the positive x direction with a kinetic energy of 3 eV. They move
from location A to B to C to D. Between A and B, the electric field is zero; be-
tween locations B and C, there is a linearly varying voltage increase of 4 V; be-
tween C and D, the field is again zero. Assuming no scattering, sketch a
simplified band diagram describing the motion of these electrons. Assuming
that these electrons can be described as plane waves, with a free-electron mass,
write down the wave function of the electrons at D. Leave your result in terms
of an arbitrary normalization constant.

Assume that a conduction electron in Si (p,, = 1350 cm?/V-s) has a thermal
energy of kT, related to its mean thermal velocity by E,, = (mgv,,?)/2. This
electron is placed in an electric field of 100 V/cm. Show that the drift velocity
of the electron in this case is small compared with its thermal velocity. Repeat
for a field of 10* V/cm, using the same value of p,,. Comment on the actual mo-
bility effects at this higher value of the field.

Use Eq. (3-45) to calculate and plot the mobility vs. temperature .(T) from 10 K
to 500 K for Si doped with N, = 10", 10", and 10'"® donors cm 3. Consider the
mobility to be determined by impurity and phonon (lattice) scattering. Impu-
rity scattering limited mobility can be described by

T

W =329 X 1015 -
N;(mﬁ/mo)l/{ln(l +z) — m}

where

z=1.3 X 108, T%(mz/my)(N3) ™
Assume that the ionized impurity concentration N is equal to N, at all tem-
peratures.
The conductivity effective mass 12 for Siis 0.26 m,. Acoustic phonon (lattice)
scattering limited mobility can be described by
Pae = 118 X 1073¢,(mz/my) T3 E ,0) 2

where the stiffness (c;) is given by
¢; = 1.9 X 10" dyne cm ™ for Si

and the conduction band acoustic deformation potential (E ) is
E,-=95¢eV for Si

Rework Prob. 3.18 considering carrier freeze-out onto donors at low 7. That
is, consider
Nt = L
41 + exp(E,/kT)
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as the ionized impurity concentration. Consider the donor ionization energy
(E,) to be 45 meV for Si.

3.20° Hall measurements are made on a p-type semiconductor bar 500 pm wide and
20 pm thick. The Hall contacts A and B are displaced 2 pm with respect to
each other in the direction of current flow of 3 mA. The voltage between 4
and B with a magnetic field of 10 kG (1kG = 10~° Wb/cm?) pointing out of the
plane of the sample is 3.2 mV. When the magnetic field direction is reversed the
voltage changes to —2.8 mV. What is the hole concentration and mobility?

3.21 In soldering wires to a sample such as that shown in Fig. 3-25, it is difficult to
align the Hall probes A and B precisely. If B is displaced slightly down the
length of the bar from A, an erroneous Hall voltage results. Show that the true
Hall voltage V; can be obtained from two measurements of V,, 5, with the mag-
netic field first in the +z-direction and then in the —z-direction.

3.22 A sample of Si is doped with 10'7 phosphorus atoms/cm®, What would you ex-
pect to measure for its resistivity? What Hall voltage would you expect in a
sample 100 pm thick if 7, = 1 mA and B, = 1kG = 10> Wb/cm??
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SELF QuIZ

Question 1
(a) The following three diagrams show three different energy bands of some hy-
pothetical crystalline materials (energy varies vertically). The only difference
between the three materials is the assumed Fermi level energy Ey. Character-
ize each material as a metal, an insulator, or a semiconductor.

(b) Assuming you can see through one and only one of the materials of part (a) above,
which one would it most likely be? Material 1/ Material 2 / Material 3

Energy Bands and Charge Carriers in Semiconductors

Material 1 Material 2 Material 3
band 3 band 3 band 3
S —¥p
band 2 band 2 band 2
Ep
Ep
band 1 band 1 band 1

Question 2 ‘
Consider the following conduction band energy E vs. wave vector k, dispersion relation.

(a) Which energy valley has the greater effective mass in the x-direction m, (cir-
cle one)? TI'-valley / X-valley

(b) Consider two electrons, one each located at the positions of the heavy crosses.
Which has the greater velocity magnitude (circle one)? The one in the I'-valley /
The one in the X-valley

[-valley I E

X-valley
I E,
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Question 3

These questions refer to the band structures of Si and GaAs shown in Fig. 3-10.

(a) Which material appears to have the lowest (conduction band) electron effec-
tive mass, Si or GaAs?

(b) Which of these would you expect to produce photons (light) more efficiently
through electron-hole recombination?

(c) Consistent with your answer to part (b) and making use of Appendix ITI, what
would you expect the energy of the emitted photons to be? What would be
their wavelength in pm? Would these be visible, infrared, or ultraviolet?

(d) How many equivalent conduction band minima do we have for Si? GaAs?

Question 4

Refer to Fig. 3-10, which shows the E vs. k dispersion relations for gallium arsenide
(GaAs) and for silicon (Si) along the [111] and [100] directions, showing both va-
lence and conduction bands.

(a) Neglecting differences in electron scattering rates in the two materials, would
you expect Si or GaAs to have the greatest electron mobility w,?

(b) Ifaconstant force were applied in the [100] direction for a short period of time
on an electron initially located at the conduction band minimum of each semi-
conductor and if scattering were neglected, would the magnitude of change in
k in Si be greater, equal to, or smaller than the magnitude of the change in k in
GaAs for the same force F?

greater/equal/smaller

Question 5

(a) The equilibrium band diagram for a doped direct gap semiconductor is shown
below. Is it n-type, p-type, or unknown? Circle one below.

n-type/p-type/not enough information provide

Donorlevel Ej — =——————— — — — — conduction band edge E,

intrinsic Fermi level E;

Acceptor level E, Fermi level Eg

valence band edge E,

) | 1 r . C ~ AN ,
Energy Bands and Charge Carriers in Semiconduciors

(b) Based on the band diagram opposite (E;is in the middle of the gap), would you
expect that the conduction band density-of-states effective mass is greater than,
equal to, or smaller than the valence band effective mass? Circle one:

Greater than/equal/smaller than

(c) What, if any, of the following conditions by themselves could lead to the above
band diagram? Circle each correct answer.

(a) very high temperature
(b) very high acceptor doping

(c) very low acceptor doping

Question 6

A hypothetical semiconductor has an intrinsic carrier concentration of 1.0 X 10'%cm?
at 300 K, it has conduction and valence band effective densities of states N, and N,
both equal to 10"/cm’.
(a) What is the band gap E;?
(b) If the semiconductor is doped with N; = 1 X 10' donors/cm?, what are the
equilibrium electron and hole concentrations at 300K?

(c) If the same piece of semiconductor, already having N; = 1 X 106 donors/cm®,
is also doped with N, = 2 X 10'° acceptors/cm?’, what are the new equilibrium
electron and hole concentrations at 300 K?

(d) Consistent with your answer to part (c), what is the Fermi level position with
respect to the intrinsic Fermi level, E —E;?

Question 7

What is the difference between density of states and effective density of states, and why
is the latter such a useful concept?

Question 8
(a) Does mobility have any meaning at very high field? Why?

(b) How do you measure mobility and carrier concentration?
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