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Figure 4-15
Energy band dia-

gram of a semi-

conductor in an
alectrie fiald € ()

An important result of Eqs. (4-23) is that rni'nority carri.ers can conFribute
significantly to the current through diffusion. Slnce the drift terms are pro-
portional to carrier concentration, minority carriers seldprn provide much drift
current. On the other hand, diffusion current is proporthnal to the gradzen{ of
concentration. For example, in n-type material the minority hole concentration
p may be many orders of magnitude smaller than the elect.ron.conce‘l.l.tratlo?
n, but the gradient dp/dx may be significant. As a result: rrl.lnorlty..ca.nler‘ cur-
rents through diffusion can sometimes be as large as ma.]or%ty carrier curt egts,

In discussing the motion of carriers in an electric fleld2 we should in-
dicate the influence of the field on the energies of. elec‘trons in the band di-
agrams. Assuming an electric field €(x) in the x—dlre(.:tlon, we can dra‘w the
energy bands as in Fig. 4-15, to include the .chang'e in Potenﬂal energy of
electrons in the field. Since electrons drift in a d1recf10n opposue tq the
field, we expect the potential energy for electrops to increase In the c.href:-
tion of the field, as in Fig. 4-15. The electrostatic poteqt}al V'(x) varies in

the opposite direction, since it is defined in terms of positive charges and_ is
therefore related to the electron potential energy E(x) displayed in the fig-
ure by V(x) = E(x)/(—q).

From the definition of electric field,

av(x) (4-25)
dx

2(x)=—

we can relate €(x) to the electron potential energy in the band d‘1agram by
choosing some reference in the band for the electrostatic potent1gl. We are
interested only in the spatial variation V'(x) for Eg. (4—25): Choosing E; as a
convenient reference, we can relate the electric field to this reference by

) __d[ E|_1dk A
S ™ (=i 1 3
L
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Therefore, the variation of band energies with €(x) as drawn in Fig, 4-15
is correct. The direction of the slope in the bands relative to € is simple to re-
member: Since the diagram indicates electron energies, we know the slope in
the bands must be such that electrons drift “downhill” in the field. Therefore, €
points “uphill” in the band diagram.

At equilibrium, no net current flows in a semiconductor. Thus any fluc-
tuation which would begin a diffusion current also sets up an electric field
which redistributes carriers by drift. An examination of the requirements for
equilibrium indicates that the diffusion coefficient and mobility must be re-
lated. Setting Eq. (4-23b) equal to zero for equilibrium, we have

D, 1 dp(x)
Ex)=—"2L—= 4-27
(x) o O e (4-27)
Using Eq. (3-25b) for p(x),
D, 1 (dE, dE
R QO e D¢
&) T kT(dx dx) (4-25)

The equilibrium Fermi level does not vary with x, and the derivative of
E; is given by Eq. (4-26). Thus Eq. (4-28) reduces to

D kT
Z. K (4-29)
L q

This result is obtained for either carrier type. This important equation
is called the Einstein relation. It allows us to calculate either D or p from a
measurement of the other. Table 4-1 lists typical values of D and . for sev-
eral semiconductors at room temperature. It is clear from these values that
Dl =0.026 V.

An important result of the balance of drift and diffusion at equilibri-
um is that built-in fields accompany gradients in E; [see Eq. (4-26)]. Such
gradients in the bands at equilibrium (E constant) can arise when the band
gap varies due to changes in alloy composition. More commonly, built-in
fields result from doping gradients. For example, a donor distribution N,(x)

causes a gradient in ny(x), which must be balanced by a built-in electric
field €(x).

Table 4-1  Diffusion coefficient and mobility of electrons and holes for intrinsic
semiconductors at 300 K. Note: Use Fig. 3-23 for doped semiconductors.

D, (cm?/s) D, (cm?/s) W (cm?/V-s) 1 [cm?/V-s)
Ge 100 50 3900 1900
Si 35 12.5 1350 480
GaAs 220 10 8500 400
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4.4.3 Diffusion and Recombination; The Confinuity Equation

In the discussion of diffusion of excess carriers, we have thus far neglected the
important effects of recombination. These effects must be included in a de-
scription of conduction processes, however, since recombination can cause a
variation in the carrier distribution. For example, consider a differential length
Ax of a semiconductor sample with area A in the yz-plane (Fig. 4-16). The
hole current density leaving the volume, / (x + Ax),can be larger or small-
er than the current density entering, J,(x), depending on the generation and
recombination of carriers taking place within the volume. The net increase in
hole concentration per unit time, p/dt, is the difference between the hole flux
per unit volume entering and leaving, minus the recombination rate. We can
convert hole current density to hole particle flux density by dividing J, by q.
The current densities are already expressed per unit area; thus dividing J,,(x)/q
by Ax gives the number of carriers per unit volume entering AxA per unit
time, and (1/g)J,(x + Ax)/Ax is the number leaving per unit volume and time:

ap 1 J(x) = J(x+Ax) dp (4-30)
et s} _ -/ p S 23
ot xox+Ax q AX Tp
Rate of ~_ increase of hole concentra- recombination
hole buildup tion in 8xA per unit time rate

As Ax approaches zero, we can write the current change in derivative form:

op(x,0) _9dp _ L, o (4-31a)
ot ot q dx T E

The expression (4-31a) is called the continuity equation for holes. For

electrons we can write
odn 1 aJ dn

o - — (4-31b)
()t q ax Tn

Figure 4-16

Current entering

and leaving a
Jp(x + A0 volume AxA.

Area, A cm?

Excess Carriers in Semiconductors

When the current is carried strictly by diffusion (negligible drift), we can

replace the currents in Egs. (4-31) by the expressi iffusi
pressions for diff rent;
for example, for electron diffusion we have wiom eutent

. adn
J = — 3
”(dlff.) qD, P (4-32)

Substituting this i _ : o
b cloctrons, g this into Eq. (4-31b) we obtain the diffusion equation

adn _ 9%n_ dn |

ot - n axz T—”‘ (4 j\\i)
and similarly for holes,

ap P

T (4-33b)

n

. These gqugtions are useful in solving transient problems of diffusion
w1Fh recombination. For example, a pulse of electrons in a semiconductor
(Fllg. i—lff)l splreacls out by diffusion and disappears by recombination. To
solve for the electron distribution in time, n(x, r), we would begin wi i
fusion equation, Eq. (4-33a). o0 ould begin with the dit

4.4.4 Steady State Carrier Injection; Diffusion Length

In many problems a steady state distribution of excess carriers is maintained

such that the time derivatives in E g
that t gs. (4-33) are zero. In the st
the diffusion equations become steadystate case

== | (4-34a)

(4-34b)

(steady state)

gslie;e IL” Eth\/f D,},;r,,lis called the electron diffusion length and L, is the dif-
n length for holes. We no longer need partial derivati i i

on len; atives

variation is zero for steady state. SR i
: thhe physical significance of the diffusion length can be understood
iI::ts y an.e.xample. Let' us assume that excess holes are somehow injected
N (t')_a sernl.-mf'mlte semiconductor bar at x = 0, and the steady state hole in-
]8 c( 1‘011 maintains a cgqstant excess hole concentration at the injection point
p(x = 0) = Ap. The injected holes diffuse along the bar, recombining with
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Figure 4-17
Injection of holes

p() = po + Ape /L at x =0, giving a

steady state hole
distribution p(x)
and a resulting
diffusion current

density J,(x).

a characteristic lifetime 7,. In steady state we expect the distribution of ex-
cess holes to decay to zero for large values of x, because of the recombina-
tion (Fig. 4-17). For this problem we use the steady state diffusion equation
for holes, Eq. (4-34b). The solution to this equation has the form

dp(x) = Cyet/tr + Coe ™ (4-35)

We can evaluate C; and C, from the boundary conditions. Since recom-
bination must reduce p(x) to zero for large values of x,8p = 0 atx = e and
therefore C; = 0. Similarly, the condition 5p = Ap at x = 0 gives C, = Ap,and

the solution is
sp(x) = Ape™/* (4-36)

The injected excess hole concentration dies out exponentially in x due
to recombination, and the diffusion length L, represents the distance at which
the excess hole distribution is reduced to 1/ of its value at the point of in-
jection. We can show that L, is the average distance a hole diffuses before re-
combining. To calculate an average diffusion length, we must obtain an
expression for the probability that an injected hole recombines in a particu-
lar interval dx. The probability that a hole injected at x = 0 survives to x
without recombination is 8p(x)/Ap = exp(—x/L,), the ratio of the steady
state concentrations at x and 0. On the other hand, the probability that a hole
at x will recombine in the subsequent interval dx is

sp(x) — dp(x + dx) _ — (d3p(x)/dx)dx _
8p(x) dp(x) .

Thus the total probability that a hole injected at x = 0 will recombine
in a given dx is the product of the two probabilities:

dx (4-37)

hi»—k

1 1 .
(6#"'/]“1')(2; dx) = z‘p e dx (4-38)

Excess Carriers in Semiconductors

Then, using the usual averaging techniques described by Eq. (2-21)
the average distance a hole diffuses before recombining is ’

) (4-39)

o e*,\'/L,,
(x) = j X dx =L
0 Lp
The steady state distribution of excess holes causes diffusion, and there-

fore a hole current, in the direction of decreasin i
, g concentration. F
Egs. (4-22b) and (4-36) we have e

d
J(x)=—¢qD = D dSp:q&
LP

—x D)
. by = 9P Ape™/tr = q 7= 8p(x) (4-40)

P

Smce. p(x) = py + dp(x), the space derivative involves only the excess
concentration. We notice that since dp(x) is proportional to its derivative for
an exponential distribution, the diffusion current at any x is just proportion-
al to the excess concentration dp at that position.

Although this example seems rather restricted, its usefulness will be-
come apparent in Chapter 5 in the discussion of p-n junctions. The injection
of mmonty carriers across a junction often leads to eiponential distributions
as in Eq. (4-36), with the resulting diffusion current of Eq. (4-40).
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EXAMPLE 4-5  In a very long p-type Si bar with cross-sectional area = 0.5 cm?*and N, =
10'7. cm.’3, we inject holes such that the steady state excess hole concen-
tration is 5 X 10'® cm ™ at x = 0. What is the steady state separation be-
tween. F, and E_ at x = 1000 A? What is the hole current there? How
much is the excess stored hole charge? Assume that p, = 500 cmZ/\}-s and

T 102,

SOLUTION p. =k

= ? pp = 0.0259 X 500 = 12.95 cm/s

L,=VD,r,=V1295x 107 = 36 x 10~5cm

X 1073
p=po+ Ape ™ =107 + 5 x 10'6¢ 36x10°7

17
gy L (m 1.379 X 10

; X 100 )-0.0259 = 0415eV

E.— F,=112¢eV + 0415eV = 0.965 eV

1.379 X 10Y7 = pelEFIT = (1,5 x 10'° cm~3)e B F/kT
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Figure 4-18

Drift and diffusion
of a hole pulse in
an n-ype bar: (a)
sample geometry;
(b) position and
shape of the pulse
for several times
during its drift
down the bar.

We can calculate the hole current from Eq. (4-40)

X

dp D, L
= - = =gA—(A
IP qADP dx q Lp( p)e
=5
=16 X 107 x 0.5 X _ 1295 X 5 % 10'6 8_3.61:()10‘5
. 1 Sgig s 1073
=109 X 10° A

Qp = qA(Ap)Lp
1.6 X 10712 (0.5)(5 X 10'6)(3.6 X 107°)
=144 x1077C

Il

4.4.5 The Haynes-Shockley Experiment

One of the classic semiconductor experiments is the demonstration of drift
and diffusion of minority carriers, first performed by J. R. Haynes and
W. Shockley in 1951 at the Bell Telephone Laboratories. The experiment al-
lows independent measurement of the minority carrier mobility w and dif-
fusion coefficient D. The basic principles of the Haynes-Shockley experiment
are as follows: A pulse of holes is created in an n-type bar (for example) that
contains an electric field (Fig. 4-18); as the pulse drifts in the field and spreads
out by diffusion, the excess hole concentration is monitored at some point
down the bar; the time required for the holes to drift a given distance in the
field gives a measure of the mobility; and the spreading of the pulse during
a given time is used to calculate the diffusion coefficient.

Li\;h\l pulw =]

() |

(b)

Excess Carriers in Semiconductors

In Fig. 4-18 a pulse of excess carriers is created by a light flash at some
pointx = 0 in an n-type semiconductor (1 > p,). We assume that the excess
carriers have a negligible effect on the electron concentration but change
the hole concentration significantly. The excess holes drift in the direction
of the electric field and eventually reach the point x = L, where they are
monitored. By measuring the drift time 7,, we can calculate the drift veloci-
ty Va and, therefore, the hole mobility:

L
v, =— (4-41)
[d
= (4-42)
H‘p_% -

Thus the hole mobility can be calculated directly from a measurement of the
drift time for the pulse as it moves down the bar. In contrast with the Hall ef-
fect (Section 3.4.5), which can be used with resistivity to obtain the majori-
ty carrier mobility, the Haynes-Shockley experiment is used to measure the
minority carrier mobility.

As the pulse drifts in the € field it also spreads out by diffusion. By mea-
suring the spread in the pulse, we can calculate D,,. To predict the distribution
of holes in the pulse as a function of time, let us first reexamine the case of dif-
fusion of a pulse without drift, neglecting recombination (Fig. 4-12). The equation
which the hole distribution must satisfy is the time-dependent diffusion equation,
Eq. (4-33b). For the case of negligible recombination (1, long compared with the
times involved in the diffusion), we can write the diffusion equation as

adp(x, 1) 9%p(x, 1)

o Do (4-43)

The function which satisfies this equation is called a gaussian distribution,

AP 2
dp(x, t :[—}e‘-‘“/“’v’ (4-44)
ple )= | vy

where AP is the number of holes per unit area created over a negligibly small
distance at t = 0. The factor in brackets indicates that the peak value of the
pulse (at x = 0) decreases with time, and the exponential factor predicts the
spread of the pulse in the positive and negative x-directions (Fig. 4-19). If we
designate the peak value of the pulse as 8p at any time (say t,), we can use
Eq. (4-44) to calculate D, from the value of p at some point x. The most con-
venient choice is the point Ax/2, at which dp is down by 1/e of its peak value
dp. At this point we can write

e 182\) — Sﬁef(Ar/2)2/4Dpr‘, (4 _45)

D =

(4-46)
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Figure 4-19 5p
i & AP
Calculation of D, Fpae———
from the shape of 2Va D,y
the dp distribution //
after time ;. No // .

drift or recombi-
nation is included.

Figure 4-20

The Haynes—
Shockley experi-
ment: (a) circuit
schematic; (b) typ-
ical trace on the
oscilloscope

—~Ax/2 0 Ax/2

Since Ax cannot be measured directly, we use an experimental setup
such as Fig, 4-20, which allows us to display the pulse on an oscilloscope as the
carriers pass under a detector. As we shall see in Chapter 5, a forward-biased
p-n junction serves as an excellent injector of minority carriers, and a reverse-
biased junction serves as a detector. The measured quantity in Fig.4-20 is the
pulse width Ar displayed on the oscilloscope in time. It is related to Ax by the
drift velocity, as the pulse drifts past the detector point (2)

(4-47)

L
Ax =Atv,=Ar—
ly

Pulse

gen.

(a)

A

Ale = 0.368 A

(R)

Excess Carriers in Semiconductors

An n-type Ge sample is used in the Haynes-Shockley experiment shown
in Fig. 4-20. The length of the sample is 1 cm, and the probes (1) and (2)
are separated by 0.95 cm. The battery voltage E; is 2 V. A pulse arrives at
point (2) 0.25 ms after injection at (1); the width of the pulse Atis 117 ps.
Calculate the hole mobility and diffusion coefficient, and check the re-
sults against the Einstein relation.

EXAMPLE 4-6
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v, 0.95/(0.25 x 1073
= /( o1 ):19OOCm2/(V-s)

SN

I % 0.95) R4

- 2
16(0.25) X 100 = A4 om’/s
D, 494
Ll by it apg
p, 1900 q

4.4.6 Gradients in the Quasi-Fermi Levels

In Section 3.5 we saw that equilibrium implies no gradient in the Fermi level
Ey. In contrast, any combination of drift and diffusion implies a gradient in
the steady state quasi-Fermi level.

We can use the results of Eqs. (4-23), (4-26), and (4-29) to demon-
strate the power of the concept of quasi-Fermi levels in semiconductors [see
Eq. (4-15)]. If we take the general case of nonequilibrium electron concen-
tration with drift and diffusion, we must write the total electron current as

dn(x
1,0) = qu () + gD, (4-43)
where the gradient in electron concentration is

dn(x) d vy N(x) (dF, dE,
— 2 = — [P BIKT] = nlz) (— - (4-49)

dx dx kT \ dx dx

Using the Einstein relation, the total electron current becomes

dF, dE,
J,(x) = qu,n(x)é(x) + p,n(x) {—” - —’] (4-50)

dx  dx

But Eq. (4-26) indicates that the subtractive term in the brackets is just
qé(x), giving a direct cancellation of gu,n(x)€(x) and leaving

dF,
J(x) = E)——= -5
() = w,n(x) = (4-51)

SOLUTION
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Thus, the processes of electron drift and diffusion are summed up by the
spatial variation of the quasi-Fermi level. The same derivation can be made
for holes, and we can write the current due to drift and diffusion in the form

of a modified Ohm’s law

109 = au) 8D _ 6, () HBID 4
J,(x) = qup(x) ——d(lj;;,/q) =0,(x) ———d(?\,/Q) (4-52b)

Therefore, any drift, diffusion, or combination of the two in a semi-
conductor results in currents proportional to the gradients of the two quasi-
Fermi levels. Conversely, a lack of current implies constant quasi-Fermi levels.
One can use a hydrostatic analogy for quasi-Fermi levels and identify it as
water pressure in a system. Just as water flows from a high-pressure region
to a low-pressure region, until in equilibrium the water pressure is the same
everywhere, similarly electrons flow from a high- to low-electron quasi-Fermi
level region, until we get a flat Fermi level in equilibrium. Quasi-Fermi lev-
els are sometimes also known as electrochemical potentials because, as we
just saw, the driving force for carriers is governed partly by gradients of elec-
trical potential (or electric field), which determines drift, and partly by gra-
dients of carrier concentration (which is related to a thermodynamic concept
called chemical potential), giving rise to diffusion.

4.1 Excess carriers, above the equilibrium values contributed by doping, may be cre-
ated optically (or by electrical biasing in devices). Generation-recombination
(G-R) of electron-hole pairs (EHPs) can occur by absorption of the photons
with energy greater than the band gap, balanced by direct or indirect recom-
bination.

4.2 G-R processes can be mediated by traps, especially deep traps near midgap.
Band-to-band or trap-assisted G-R processes lead to an average lifetime for the
excess carriers. Carrier lifetime multiplied by the optical generation rate es-
tablishes a steady state excess population of carriers. The square root of carri-
er lifetime multiplied by the diffusion coefficient determines the diffusion
length.

4.3 In equilibrium, we have a constant Fermi level. In nonequilibrium with excess
carriers, Fermi levels are generalized to separate quasi-Fermi levels for elec-
trons and holes. The quasi-Fermi level splitting is a measure of the departure
from equilibrium. Minority carrier quasi-Fermi levels change more than ma-
jority carrier quasi-Fermi levels because the relative change of minority carri-
ers is larger. Gradients in the quasi-Fermi level determine the net drift-diffusion

current.

in Semiconductors

= s C -
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4.4 Diffusion flux measures the flow of carriers from high- to low-concentration

4.3

44

4.6

4.7

regions and is given by the diffusivity times the concentration gradient. The di-
rection of diffusion current is opposite to the flux for the negative electrons, but
in the same direction for the positive holes. Carrier diffusivity is related to mo-
bility by the thermal voltage kT/q (Einstein relation).

> When carriers move in a semiconductor due to drift or diffusion, the time-

dependent carrier concentrations at different points is given by the carrier con-
tinuity equation, which says that if more carriers flow into a point than flow
out, the concentration will increase as a function of time and vice versa. G-R
processes also affect carrier concentrations.

With Erlocated 0.4 eV above the valence band in a Si sample, what charge
state would you expect for most Ga atoms in the sample? What would be the
predominant charge state of Zn? Au? Note: By charge state we mean neutral,
singly positive, doubly negative, etc.

> A Si sample with 10'%cm® donors is optically excited such that 10"/cm?

electron-hole pairs are generated per second uniformly in the sample. The laser
causes the sample to heat up to 450 K. Find the quasi-Fermi levels and the
change in conductivity of the sample upon shining the light. Electron and hole
lifetimes are both 10 ps. D, = 12 cm/s; D,, = 36 cm*/s; n; = 10" cm > at 450 K.
What is the change in conductivity upon shining light?

Construct a semilogarithmic plot such as Fig. 4-7 for Si doped with 2 X 10"
donors/cm® and having 4 X 10" EHP/cm® created uniformly at ¢ = 0. Assume
that 7, =7, =5 ps.

Calculate the recombination coefficient «, for the low-level excitation described
in Prob. 4.3. Assume that this value of a, applies when the GaAs sample is uni-
formly exposed to a steady state optical generation rate g,, = 10" EHP/cm?®-s.
Find the steady state excess carrier concentration An = Ap.

An intrinsic Si sample is doped with donors from one side such that N,
= Nyexp(—ax). (a) Find an expression for the built-in electric field at equilib-
rium over the range for which N, > n;. (b) Evaluate the field when a = 1
(rm) . (c) Sketch a band diagram such as in Fig. 4-15 and indicate the direc-
tion of the field.

A Si sample with 10"/cm? donors is uniformly optically excited at room tem-
perature such that 10"/cm? electron-hole pairs are generated per second. Find
the separation of the quasi-Fermi levels and the change of conductivity upon
shining the light. Electron and hole lifetimes are both 10 ps. D, = 12 cm?s.

An n-type Si sample with N, = 1015 cm™ is steadily illuminated such that
op = 10" EHP/en’-s. If 7, = 7, = s for this excitation, calculate the separation in
the quasi-Fermi levels, (£, — F,). Draw a band diagram such as Fig. 4-11.

PROBLEMS
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4.9

4.10

4.13

4.14

4.15

3 For a 2-cm-long doped Si bar (N, = 10'® cm™) with a cross-sectional area = 0.05

cm?, what is the current if we apply 10V across it? If we generate 10 electron-
hole pairs per second per cm® uniformly in the bar and the lifetime 7, = 7, =
10~*s, what is the new current? Assume the low-level a, doesn’t change for
high-level injection. If the voltage is then increased to 100,000 V, what is the
new current? Assume ., = 500 cm?/V-s, but you must choose the appropriate

value for electrons.

Design and sketch a photoconductor using a 5-pm-thick film of CdS, assuming
thatt, =7,=10"%sand N, = 10" cm . The dark resistance (with g, = 0) should
be 10 M, and the device must fit in a square 0.5 cm on a side; therefore, some
sort of folded or zigzag pattern is in order. With an excitation of g,, = 10%
EHP/cm?®-s, what is the resistance change?

A 100-mW laser beam with wavelength N = 6328 A is focused onto a GaAs
sample 100 pm thick. The absorption coefficient at this wavelength is 3 X 10*
em~ L. Find the number of photons emitted per second by radiative recombi-
nation in the GaAs, assuming perfect quantum efficiency. What power is de-
livered to the sample as heat?

Assume that a photoconductor in the shape of a bar of length L and area A has
a constant voltage V applied, and it is illuminated such that g, EHP/cm®-s are
generated uniformly throughout. If p,, > p.,, we can assume the optically in-
duced change in current A/ is dominated by the mobility ., and lifetime 7, for
electrons. Show that Al = gALg,,,/7, for this photoconductor, where 7, is the
transit time of electrons drifting down the length of the bar.

For the steady state minority hole distribution shown in Fig. 4-17, find the ex-
pression for the hole quasi-Fermi level position E; — F,(x) while p(x) > p,
(i.e., while F), is below Ep). On a band diagram, draw the variation of F7,(x). Be
careful —when the minority carriers are few (e.g., when 8p is 1;), F,, still has a
long way to go to reach E.

In an n-type semiconductor bar, there is an increase in electron concentration
from left to right and an electric field pointing to the left. With a suitable sketch,
indicate the directions of the electron drift and diffusion current flow and ex-
plain why. If we double the electron concentration everywhere, what happens
to the diffusion current and the drift current? If we add a constant concentra-
tion of electrons everywhere, what happens to the drift and diffusion currents?
Explain your answers with appropriate equations.

The current required to feed the hole injection at x = 0 in Fig. 4-17 is obtained
by evaluating Eq. (4-40) at x = 0. The result is 7,(x = 0) = gAD,Ap/L,,. Show that
this current can be calculated by integrating the charge stored in the steady
state hole distribution dp(x) and then dividing by the average hole lifetime T,
Explain why this approach gives /,(x = 0).

The direction of the built-in electric field can be deduced without math by
sketching the result of a doping gradient on the band diagram. Starting with a
flat Fermi level at equilibrium, place ;near or far from Ej as the doping is

Excess Carriers in Semiconductors

varied for the two cases of a gradient in donor or acceptor doping as in Prob. 4.5.
Show the electric field direction in each case, based on Eq. (4-26). If a minor-
ity carrier is injected into the impurity gradient region, in what direction is it ac-
celerated in the two cases? This is an interesting effect that we will use later in
discussing bipolar transistors.

4.16 InProb. 4.5, the direction of the built-in electric field due to a gradient in dop-
ing was determined from Egs. (4-23) and (4-26). In this problem, you are asked
to explain qualitatively why the field must arise and find its direction. (a) Sketch
a donor doping distribution as in Prob. 4.5, and explain the field required to
keep the mobile electrons from diffusing down the gradient. Repeat for ac-
ceptors and holes. (b) Sketch a microscopic region of the doping distribution,
showing ionized donors and the resulting mobile electrons. Explain the origin
and direction of the field as the electrons attempt to diffuse toward lower con-
centrations. Repeat for acceptors and holes.

4.17 We wish to use the Haynes-Shockley experiment to calculate the hole lifetime
7, in an n-type sample. Assume that the peak voltage of the pulse displayed on
the oscilloscope screen is proportional to the hole concentration under the col-
lector terminal at time ¢, and that the displayed pulse can be approximated as
a gaussian, as in Eq. (4-44), which decays due to recombination by e /% The
electric field is varied and the following data are taken: For ¢, = 200 ps, the
peak is 20 mV; for #, = 50 s, the peak is 80 mV. What is 7,?
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READING LIST

Question 1

Consider a p-type semiconductor that has a band gap of 1.0 eV and a minority electron
lifetime of 0.1 s, and is uniformly illuminated by light having photon energy of 2.0 eV.

(a) What rate of uniform excess carrier generation is required to generate a uniform
electron concentration of 10'%cm??

SELF QUIZ
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(b) How much optical power per cm?® must be absorbed in order to create the ex-
cess carrier population of part (a)? (You may leave your answer in units of
eV/s-cm?.)

(c) If the carriers recombine via photon emission, approximately how much opti-
cal power per cm® will be generated? (You may leave your answer in units of
eV/s-cm®.)

Question 2
(a) What do we mean by “deep” versus “shallow” traps? Which are more harmful
for semiconductor devices and why? What is an example of a deep trap in Si?

(b) Are absorption lengths of slightly above band gap photons longer in Si or GaAs?
Why?

(c) Do absorption coefficients of photons increase or decrease with photon energy?
Why?

Question 3

Consider the following equilibrium band diagram for a portion of a semiconductor
sample with a built-in electric field €:

energy

position

(a) Sketch the Fermi level as a function of position through the indicated point, Ep,
across the width of the band diagram above.

(b) On the band diagram, sketch the direction of the electric field. Is the field con-
stant or position dependent?

(c) On the following graph, sketch and label both the electron and hole concentra-
tions as a function of position across the full width of the sample. Note that the
carrier concentration scale is logarithmic such that exponential variations in the
carrier concentration with position appear as straight lines. Note also that the
horizontal axis corresponds to the intrinsic carrier concentration of n;.

EXC@SS C(,H'HEIS in Semi(omJucioxs

log(n), log(p)

position

log(n;)

Question 4

(a) Indicate the directions of the hole and electron flux densities ¢ due to diffusion
and drift under these equilibrium conditions corresponding to the previous
Question 3.

(b) Indicate the directions of the hole and electron current densities j due to diffu-
sion and drift under these equilibrium conditions.

Question 5

(a) What are the relevant equations that must be solved in general for a semicon-
ductor device problem?

(b) In general how many components of conduction current can you have in a semi-
conductor device? What are they?

Question 6

(a) Consider a region in a semiconductor with an electric field directed toward the
right (=) and carrier concentrations increasing toward the left («-). Indicate the
directions of particle fluxes ¢ (circle one for each) and charge currents j due to
drift and diffusion within that region.

(b) Based on your answers to part (a), indicate the directions of the charge currents
j due to drift and diffusion within that region.
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