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Till alla uppgifter skall fullstéindiga l6sningar ldmnas. Resonemang, ekvations-
16sningar och utriikningar far inte vara sd knapphéndiga att de blir svéra att
folja. En uppgift per blad, skriv endast pa en sida.

Betyg siitts efter hur vil lirandemaélen &r uppfyllda. Riktvarde fér betygen
dr: A 22p, B 18p, C 14p, D 10p, E 9p.

1. (a) Ge den formella definitionen av pastaendet ”grénsvirdet av f(z) &r
lika med L niir  gar mot a”, det vill séga, definiera vad uttrycket

il_r)r(ll f(z) = L betyder. (1p)

(b) Genom att endast anvéinda den formella definitionen av grénsvérde,
visa att 1

}:1—+mlcc—2 =1 (2p)

2. (a) Ge den formella definitionen av pastdendet ”funktionen f(z) &r kon-
tinuerlig i punkten z = a”. (1p)

(b) For vilka virden pé k &r funktionen

f($)={m+l z<l1 (z €R)

(z—k)? z>1
kontinuerlig i punkten z = 17 (2p)
3. Lat 32 12
o)==

och avgér om foljande gransvirden existerar. Hitta gransvéardet i de fall
ett grénsvirde existerar.

(a) lim f(z) (1p)
(b) lim f(z) (1p)
(c) lim f(z) (1p)

4. En rektangulir reklamtavla skall utgéras av 100 m? yta med tryck, 2 m
marginal i éver- och underkant samt 4 m marginal lings med sidorna.
Hitta de yttre sidlingderna pa reklamtavlan som gor den totala arean
minimal. (3p)




5. Lat a < b. Visa att derivatan av f(z) = (z — a)™(x — b)" forsvinner i
nagon punkt ¢ i intervallet (a,b) om m och n &r positiva heltal. (3p)

6. Betrakta funktionen f(z) =sinz.

(a)
(b)

7. (a)

(b)

Bestdm det generella uttrycket av Taylors formel fér f i punkten a =
0 med Lagranges restterm. (1p)

Bestdm en tillréckligt stor ordning n sddan att motsvarande Taylor-
polynom ger en approximering av sinus for 1 radian som har 5 kor-
rekta decimaler. Approximera sin1 genom att anvinda Taylorpoly-
nomet av denna ordning. (2p)

Los initialvédrdesproblemet
2/ =y, y(0)=1. (2p)

Anvind den forbittrade Euler-metoden med h = 1 for att approx-
imera vérdet y(2) av losningen till ekvationen ovan. Kom ihag att
iterationerna som anvinds i den férbéttrade Euler-metoden for att
approximera l6sningen till ekvationen ¢ = F(z,y), y(z¢) = yo, 4r
pa formen

Tptl = Tp + h,
Un+1 :yn'{-hF(z’nay’n): (1p)
Yntl =Yn +h- (F(:L’n, yn) + F(xn-l-la un+1))/2'

Approximera integralen

3 2
/ ze ¥ dx
1

genom att anvinda Trapetsregeln for h = 0,25. Kom ihag att Tra-
petsregeln for n steg ges av

7o =t (2804 o) f(aa) 4t flonny + 152,

dirzj=a20+j-h, 0<j<nm. (1p)

Ar integralen
oo 2
/ ze * dx
1

konvergent eller divergent? Bestdm dess virde om den &r konvergent
eller forklara varfor den divergerar. (2p)
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1. (a) Give the formal definition of the statement “the limit of f(z) is
equal to L as x approaches a,” that is, define what the expression
lim f(z) = L means. (1p)

T—a

(b) Using only the formal definition of limits, show that

1
lim = 1. (2p)

z—=1x — 2

2. (a) Give the formal definition of the statement “the function f(z) is
continuous at the point z = a.” (1p)

(b) For which values of k is the function

f<x>={“1 TS ew

(x—k)? z>1

continuous at the point z = 17 (2p)

5 bet 23— 32% + 2z

fl@)=—g———5
and determine whether the following limits exist. If a limit exists, find its

value.

(a) lim f(z) (1p)
(b) Iim f(x) (1p)
(c) mlgx;o f(z) (1p)

4. A rectangular billboard is to be made with 100 m? of printed area and
with margins of 2 m at the top and bottom and 4 m on each side. Find the
outside dimensions of the billboard if its total area is to be a minimum.

(3p)




5. Let a < b. Show that the derivative of f(z) = (z — a)™(x — b)" vanishes
at some point c in the interval (a, b) if m and n are positive integers. (3p)

6. Consider the function f(z) =sinz.

(a)
(b)

Find the general form of Taylor’s formula for f at the point a = 0
with Lagrange remainder. (1p)

Find a sufficiently large order n for which the corresponding Taylor
polynomial approximation will give the sine of 1 radian correct to
5 decimal places. Approximate sin 1 by using the Taylor polynomial
of this order. (2p)

Solve the initial value problem
2 ==y, y(0)=1 (2p)

Use Euler’s Improved Method with A = 1 in order to approximate
the value y(2) of the solution to the equation above. Recall that the
iterations used in Euler’s Improved Method for approximating the
solution the equation v/ = F(z,y), y(zo) = yo, are of the form

Tntl = Tp + Ry
Unt1 = Yn + I F(Tn, Yn), (1p)
Ynt+l = Yn+h- (F(xny Yn) + F(Znt1, Un+1))/2*

Approximate the integral

3
)
/xe’”dw
1

by use of the Trapezoid Rule with h = 0.25. Recall that the Trape-
zoid rule for n steps is given by

2= (280 g ) ) + 1220)

where z; = 2o +j - h, 0<j <n. (1p)

o0 2
/ ze ¥ dx
1

convergent or divergent? Find its value if it is convergent or explain
why it diverges. (2p)

Is the integral
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1.

(a) Give the formal definition of the statement “the limit of f(z) is
equal to L as = approaches a,” that is, define what the expression

%12(11 f(z) = L means.

(b) Using only the formal definition of limits, show that

lim !
:z;l—>1 r—2

=-1.

Solution. a) For any real number € > 0 there exists a real number 6 > 0
such that

O0<|z—al<o = |f(z) — L] <e.
b) We need to demonstrate that for any real number £ > 0 there exists a
real number § > 0 such that

1
—5 —(=1)

O<|z—1l<d = <e.

Since we have division by x — 2 in the above, we have to assure that
x # 2. Suppose that we require § < 1/2. Then |z — 1| < § < 1/2 implies
1/2 < z < 3/2, which guarantees = # 2. Let us now examine the absolute
value on the right-hand side of the implication above. Assuming that
0<|z—1]<d<1/2, we get

1 1 1 z—2
— (== |— +1|=
T —2 ( )‘ ‘x-2+‘ m—2+x——2’
z—1 1 1
S i) JESRE TS 5. .
50—2‘ S R vy R A T

Observe that 1/2 < z < 3/2 implies —3/2 < z — 2 < —1/2, and therefore
1/2 < |z — 2| < 3/2. This gives

1
m~2_(~1)

1
<5j;fﬂ<5a‘

If we choose § equal to the smallest of the two numbers /2 and 1/2, so
that § < &/2 and 6 < 1/2, then we get

1

r—2

- (—1)’ <2§<e.
This proves that if § is equal to the smallest of the two numbers €/2 and
1/2, then the implication

1
T — 2

O<lz—-1l<$é =

- (ﬁl)‘ <e

holds true.




2.

(a) Give the formal definition of the statement “the function f(z) is
continuous at the point z = a.”

(b) For which values of k is the function

z+1 z <1
f(x):{(:c—k)2 a1 OB

continuous at the point = 17
Solution. a) lim f(z) = f(a)
T—a
b) We wish to find the values of k for which

lim f(z) = f(1) = (1 - k).

Recall that the limit lim f(z) exists if and only if lim f(z) = lm f(x).
-1 z—1— z—1+
Let us determine these one-sided limits. For z < 1 we have f(z) =z +1
and therefore
ml_lHl__f(:L‘) = ml_gr{l_m—l— l=1+1=2.
For z > 1 we have f(z) = (z — k)? and therefore
lim f(z) = lim (z — k) = (1 - k)% = f(1).

1+ 1+

Since lim f(z) = f(1), it is enough to show that
z—1+

lim f(z) = lim f(x).

T—1— z—14

By the above, this means that we are looking for the values of k£ such that
2= (1—-k)?. We get

(1-k?=2 <= 1-k=+V2

which gives the two solutions k = 1 + /2. We conclude that the func-
tion f(z) is continuous at the point = = 1 if and only if k = 1 £ /2.




3. Let 5 )
z® — 3z + 2z
and determine whether the following limits exist. If a limit exists, find its
value.

(=) lim f(2)
(b) lim f(2)
(©) lim f(z)

Solution. First we observe that f is a rational function. Thus, f is
continuous at each point of the real line where its denominator is non-
Z€ro.

1.5

0.5

a) Observe that the denominator is non-zero for z = 0. Thus f(z) is

continuous at = 0 and we get

0°-3-024+2-0 _
02-0-2

lim f(z) = /(0) =
b) Observe that the denominator is zero for z = 2. In fact, we may write
the denominator as
-z —2=(z+1)(z—2).
Moreover, the nominator is zero for z = 2 and
23 =322 4+ 22 = x(2® — 3z +2) = 2(z — 1)(z — 2).
This means that, for z # 2, we have

:m3—3m2—|—2x_w(az-l)(w—2) _z(z—1)

f(x) 2 _r—9 (z+1)(z —2) oz +1




Since the right-hand side above is continuous at x = 2 we get

. o om(@—1) 22-1) 2
i flo) =lim =~ == =3

c) For = # 0 we have

f(z) = z® —3z2+2z  x3(1—3/z% +2/z3) o 1-3/z? —2/z3
Tox2—2-2  22(1-1/x—2/22) 7 1-1/z—2/x2’

Consider the fraction at the right-hand side. Observe that nominator and
denominator both tend to 1 as  — co. This means that the fraction on
the right-hand side tends to 1 as & — co. Thus, as £ — oo it seems that
f(z) tends to co. Let us prove this in detail.

Recall that
23 1 (#) = 00
if and only if for any real number M there exists another real number N

such that
>N = f(z)>M.

Since the fraction on the right-hand side above tends to 1 there is a real

number R such that
1-3/z%2-2/2% 1

> —

1-1/z—2/z2 = 2
whenever x > R. Let N be a positive number such that N > 2M and N >
R. Let us now prove that this number NV satisfies the implication above.

If £ > N we have z > 2M and = > R. Therefore,

1-3/x? —2/z3
1-1/z —2/z?

flx)== >2M~%:M.

This proves that f(z) > M whenever z > N and proves that

lim f(z) = co.

T—00




4. A rectangular billboard is to be made with 100 m? of printed area and
with margins of 2 m at the top and bottom and 4 m on each side. Find the
outside dimensions of the billboard if its total area is to be a minimum.

Solution. Let H denote the total height of the billboard and W its total
width (both in meters). Since we require margins of 2 m at the top and
bottom and 4 m on both sides, the height of the printed area is (H —4) m
and width of the printed area is (W — 8) m. Observe that the height and
width of the printed area must be positive numbers, which means that we
must have H > 4 and W > 8.

Since the printed area is 100 m? we must have
(H — 4)(W —8) =100
The equality above gives

100
W -8
Observe that we do not have to worry about dividing by zero since W > 8.
Let A denote the total area of the bilboard. Then A = HW and we have

H=4+

100
:H — _— .
A w (4+W_8>W

Our task is to find which value of W gives the smallest area A, that is,
we wish to minimize the function

f(W):(4+ 100 >W

W -8
on the interval (8, c0).

The function f does not have any singular points on the interval (8, co).
Let us find its critical points (points where the derivative of f is equal to
zero). We have
100 100
s Tttw s
___loow 4 4W —8)2  100(W — 8)
Wzt o) T Tw—sp
_ —100W + 4(W — 8)% + 100(W — 8)
- (W —8)?

flw) =

Thus, f/(W) = 0 if and only if
—100W + 4(W — 8)? + 100(W — 8) = 0.
Observe that
— 100W + 4(W — 8)% -+ 100(W — 8)
= —100W + 4(W — 8)2 + 100W — 800
= 4(W — 8)% — 800




Therefore, we get

FW)=0 —100W + 4(W — 8)% + 100(W — 8) =0
4(W —8)2 —800 =0

4(W — 8)? = 800

(W —8)2 = 200

W —8 = +v/200

W =8+ +v200

L A

Recall that we require W > 8, therefore we conclude that /(W) = 0 if
and only if W = 8 4+ +/200.

This means that f/(W) = 0 if and only if 4(W — 8)? = 800. This means
that there is only one critical point and it is

W =8+ v200.

Since

i SO oo wd O o

we are assured that the function f attains its minimum at the critical
point.

We have showed that the total area A of the billboard is minimal for
W = 8 4+ +/200. Thus, we conclude that

W =8++v200~22.1m

100 100
H=44 —"=4+——==4+v50=111m
W -8 /200

and

A=HW = (4+ v50)(8 + v/200) ~ 245 m?.

275}
270;
265}
260}
255}

250F

2451

15 20 25 30 35




5. Let a < b. Show that the derivative of f(z) = (z — a)™(z — b)" vanishes
at some point ¢ in the interval (a,b) if m and n are positive integers.

Solution. Below you will find two solutions of this problem, the first based
on using Rolle’s Theorem and the second relying only on straight-forward
calculations. The advantage of the second solution is that we find the
value of c.

1) Recall Rolle’s Theorem: Suppose that the function g is continuous on
the bounded interval [a,b] and that it is differentiable on the open inter-
val (a,b). If g(a) = g(b), then there exists a point ¢ in the interval (a,b)
such that ¢’(c) = 0.

Observe that the function f(z) = (z — a)™(z — b)" is continuous on
the interval [a,b] and it is differentiable on (a,b). Moreover, we have
f(a) = f(b) = 0. According to Rolle’s Theorem, there exists a point ¢ in
the interval (a,b) such that f/(¢) = 0. This finishes the proof.

2) Let us first calculate the derivative of f. We get

F(z) =m(z —a)™ (z —b)" + (z — a)™n(z — b)" !
= (z— a)m_l(x — b)”’1 (m(z —b)+n(z — a)),

where m —1 > 0 and n — 1 > 0. We wish to find ¢ such that a < ¢ <b
and f'(c) = 0. By the above, f'(c) = 0 for cin (a,b) if and only if

m{c—b)+n(c—a)=0.
Next, we determine the value of ¢ as follows: First we observe that
0 =m(c—b)+n(c—a)=mc—bm+nc—an= (m+n)c—an—bm
which means that we must have
(m+n)c=an+ bm.

Since m and n are positive integers we have m+mn > 0. Thus, the number

an + bm
m-+n

is well-defined. Using the fact that a < b we conclude that

_an—l—bm an+am

m-+n m-+n

and
__cm+bm < bn+bm

T m+n m—+n
This shows that there exists a number ¢ such that a < ¢ < band f'(¢) = 0.

b




6. Consider the function f(z) =sinz.

(a) Find the general form of Taylor’s formula for f at the point a = 0
with Lagrange remainder.

(b) Find a sufficiently large order n for which the corresponding Taylor
polynomial approximation will give the sine of 1 radian correct to
5 decimal places. Approximate sin1 by using the Taylor polynomial
of this order.

Solution. Recall Taylor’s Theorem (with a = 0): for each non-negative
integer n there is a real number ¢ between « and 0 such that

1" (n) (n+1)
f (0) 2. f n|(0) n Jzni 1(;) !

f@)=f(0) + f(0)z + =

i

where the last term on the right-hand side is the Lagrange remainder.
Taking derivatives of f(z) = sinz at the point z = 0, we get

n | f™(z) | f™(0)
0 sinx 0
1 cos T 1
2| —sinzx 0
3| —coszx -1
4 sinx 0
5| cosz 1
6 | —sinx 0
7| —cosx -1
8 sinx 0

Looking at the value of f(™ (0) we see that it is zero if n is an even integer
and =1 for odd n. If n is odd it may be expressed as n = 2m-+1, where m is
an integer. Observe that f(2™~1)(0) = (—1)™ for positive integers m. We
conclude that for non-negative integers n, which corresponds to n = 2m
(if n is even) and n = 2m — 1 (if n is odd) for non-negative integers m,
we have

n = 2m,

S
! )(O)‘{(—nm n=2m+1.

Thus, if n is an even non-negative integer and n = 2m we have

w3 25 a7 g2m—1 cosc
P I 1)™ _1\ym 2m+1
f@)=a—grtg—mt AV eyt et
and for n = 2m + 1 we have
1-3 {1:5 CL‘7 x2m+1 SinC
YT () 4 q)mtD) 2m+2
f@) =a—grtgr ot N Gt Y e ®




b) It is important to observe that the Taylor expansions of f about zero
above only differs in the remainder for n = 2m + 2 and n = 2m + 1.
Indeed, with order n = 2m + 2 we have

l's .Ts ZE7
f@=e-—g+g-7
2m-+41
(D T gy (mA) __CO8C | om43
T T e T YT

For x = 1 we get the same Taylor polynomial with order n = 2m + 1 and
n = 2m+2, but the remainder is guaranteed to be smaller as n = 2m+2.
How small must the order n be in order to guarantee correct decimals
to five places? We need to assure that the remainder is smaller than
0.5-1075.

Observe that, for order n = 2m + 2, we have control of the size of the
remained in the Taylor expansion as follows:

cosc 1
em+3)| = @m+3)
It follows that it is enough to choose n = 2m + 2 big enough so that
1
(2m +3)!
Observe that 8! = 40320 and 9! = 362 880, which requires m = 3. This
means that the Taylor polynomial of orden n = 2m + 2 = 8 is sufficient

in order to guarantee an approximation of sinl correct to five decimal
places.

(_1)m+1

<05-107° <= 200000 < (2m + 3)!

Using order n = 8 means that the polynomial

3 25 27
Ttmtm o
approximates sin 1 good enough with x = 1. We get
) 1 1 1
31n1~1—51+5—ﬁ:0.84147

using five decimal places.




7.

(a) Solve the initial value problem
2y = zy, y(0) = 1.

(b) Use Euler’s Improved Method with A = 1 in order to approximate
the value y(2) of the solution to the equation above. Recall that the
iterations used in Euler’s Improved Method for approximating the
solution the equation ¢ = F(z,y), y(zo) = yo, are of the form

Tpt1 = Tn + N,
Unt1 = Yn + b F(IIJn,Z/n),
Ynt1 = Yn + h (F(xm yn) + F(:En+1, un+l))/2'

Solution. a) This problem can be solved in at least two ways: 1) by use
of the fact that the equation is separable; 2) using an integrating factor.

1) The equation may be written as
"
y 2
Integrating both sides with respect to z, we get

T

y/ B 2
ln|y]=/§dx:/§dxzz+0, CeR.
Applying the exponential function we get
lyl — eln]y] — 6%2-+C _ 60612/4 _ D6x2/4’ D = ¢C > 0.

We conclude that all solutions to the equation 2y’ = zy are given by
y(z) = De®*/* where D is any real number. The initial condition y(0) = 1
gives

1 =y(0) = De® = D.
We conclude that the solution is given by y(z) = ev?/4,
2) The equation may be written as

’ xr
—Zy=0.
v -3

Thus, the integrating factor is given by

el —=/2de _ 6—12/4

Multiplying both sides of the equation by the integrating factor, the equa-
tion may be written as

& (1) e (- 2a) <o

10




Next, we integrate both sides of this equation with respect to z in order
to get

d
e—m2/4y - / - (e—x2/4y) dr = /odm =C, C €R,
i

and we conclude that y(z) = Ce**/t, C € R. Using the initial value
y(0) =1, we get

1=y(0)=Ce’ =C.
We conclude that the solution is given by y(z) = e /4,

b) The equation may be written as

Ty
yl = 7 =F(:13,y),

with initial values zp = 0 and yo = 1. With h =1 we get

T1=x9+h=0+1=1,
up =yo + h- Fzo,90) =1+ F(0,1) =1,

F F(xq, 04+1/2 5
g = o+ b L@0W FFEnw) ) 04125
2 2 4
and
To=21+h=14+1=2,
5 15
uz=y1+h'F(a:1,y1)=Z+F(1,5/4)=§,
. F(xl,y1)+F(a:2,uz)_5 5/8+15/8_40H5
y=yith 2 =1t 2 TwC Y

We conclude that the approximated value of y(2) is 5/2 = 2.5. In view of
7.a) we now that the exact value is given by y(2) = e' ~ 2.7182.

11




8.

(a) Approximate the integral

3 2
/ re ¥ dx
1

by use of the Trapezoid Rule with h = 0.25. Recall that the Trape-
zoid rule for n steps is given by

T, = (L5204 sty + )+ flonen) + 152,

where z; =z9+j-h, 0<7<n.
(b) Is the integral
/ ze " do
1

convergent or divergent? Find its value if it is convergent or explain
why it diverges.

Solution. a) Let f(z) = ze™® and set zp = 1, h = 0.25 and
Tp =2Tp—1+h=1z¢+nh n=12,3,...,8
Thus, we have
xo=1, 1 =125, x9=15, z3=175, x4=2,

x5 = 2.25, wzg=2.5, ;=275 and x5=3.
Calculating Ty, we get

2 2

zoe”o 2 2 2
=h ( 5 + 1€ 4 29€”2 4 23”3

2 2 2 2 rge”s
+xz4e"4 + x5 + 166 + 17”7 + 82 )

~ 0.18580365

Observe that the exact value of the integral we are approximating is

(e7! —e™?) ~ 0.18387802.

N
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0.35F

0.3F

0.25¢

0.2}

0.05F

b) According to the definition of indefinite integrals, we have

0 2 R 2
/ ze ¥ dr = lim ze T dx.
1

R—o0 1
Since )
2
F(z)=—~¢°
(@) =3¢
is such that ,
F'(z) = ze™,

the Fundamental The of Calculus gives

R
/ ze® dr = F(R)-F(1) =
1

(= o).

[NR

Observe that ,
lim e = 0,
R—o

which implies that

e . R 2 N _R? 1
ze ¥ dr = lim ze ¥ dr = lim — (e —e ) = —,
1 ) R—o0 Jq R—co 2e

We conclude that the integral is convergent and its value is 1/2e =
0.183940.
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