

Mid Sweden University Revised: 2013-11-12

Magnus Eriksson

Assignment 2 in Simulation of Telesystems
Laboratory exercise:
Introduction to Simulink and Communications Blockset

You are expected to conclude exercise 1-7 within a week, and the rest within

two weeks.

Presentation: You do not have to send the lab report to the supervisor, but

should demonstrate it during supervision seminars. Save or print out plots and

code, and be prepared to demonstrate that the code works and explain the

principles. Also write down all command-line Matlab commands and answers to

the questions.

Preparation

Do the Matlab introduction exercise. The answers to these are partially

presented during a lecture.

1. Help commands

Start the Matlab program. Test the Matlab help commands: Help, helpwin, doc,

lookfor, whatsnew. Shortly describe the difference between them. Get

acquainted with the help text structure. Hint: Write helpwin help for help on the

help command.

2. Toolboxes and Simulink libraries

Inform yourself on what Matlab toolboxes and Simulink libraries that are

installed, by means of the command ver and the help texts. Which of the

toolboxes and libraries do you expect that you will meet during this course, or

may gain your interest? (Nowadays Mathworks do not use the word blockset

any more. For example Communications toolbox previously only consisted of

.m-files, and Communications blockset of SImulink blocks and models.

Nowadays both or part of the product Communication Systems Toolbox).

3. Simulink examples

Run the Matlab command doc. Search for Communications systems toolbox

examples. Browse through the example, and look especially under the headline

Simulink examples. Run at least one of the Simulink models by clicking on

Start simulation (the “play” icon). Note that some of the examples are matlab

scripts and functions (i.e. .m-files) rather than Simulink models.

Several of the Simulink blocks in each model are subsystems that contain other

blocks. Try to see the content of some subsystems. Some subsystems can be

opened by double-clicking at the arrow. Others may be opened by clicking on

the arrow icon on its symbol. You may also browse among the subsystems by

choosing View -> Model browser options. Finally you may find the helptext

for a subsystem from the background menu.

Which model did you try? Which subsystem did you open?

4. Freeware Simulink models

Download, install and try at least one user contributed Simulink model related to

a communication systems standard from the “Matlab Central File Exchange”.

See http://www.mathworks.com/matlabcentral/ -> “File exchange”. Search for

example for “wireless”, “communication” or “network”. Be prepared to

demonstrate the model to the whole group of students. Note that some models

require an old version of Matlab, for example version R2010.

Presentation: Which model did you try? Did it work without errors?

Demonstrate it to the supervisor.

5. Create a simple Matlab function

Create a simple Matlab function (i.e. an .m file where the first line starts by the

word function). The function should take an input argument, calculate

something, and reply by an output argument. Save the function file, and call it

from the command prompt by setting it in a function expression.

Hint: Use the Matlab commands edit and function. Read their help texts. You

may for example start our from some existing Matlab function by writing

mkdir h:\matlab

cd h:\matlab
edit myfunction.m.

A typical Matlab function starts with

 function y=function_name(x1, x2)

http://www.mathworks.com/matlabcentral/

 % This is a function with two input parameters

 % and one output parameter

 …

 y = … ;

or:
 function [y1, y2]=function_name(x)

 % This is a function with one input parameter

 % and two output parameter

Add a help text for your function after a % character on the second line, below

the function declaration. Thus it would be possible to apply the help command

on your function by writing help function_name.

Save the file.

Printout or write down your function.

Make a function call, for example:

 myfunction(2)+myfunction(3)

Presentation: Print out or write down your function, your function call and its

result.

6. Create a simple Simulink model

Create a simple Simulink model, by writing the Matlab command simulink in

the command window, and choosing the menu alternative File -> New ->

Model. Drag blocks from the Simulink Library Browser, and drop them into

your model. Your model should at least include one source block, e.g. a signal

generator, and one sink, for example a measurement instrument. Connect the

source and sink blocks with wires by holding the mouse over a block connector,

and dragging it to a connector on another block.

Run the simulation.

You may save your model by means of the menu File -> Save.

If you create a large Simulink model, it may be practical to organize it into a

hierarchy of several subsystems. Create a subsystem by marking several blocks

(hold down the Shift button while clicking on each of the blocks), clicking with

the right mouse button on the group of blocks, and choosing Create Subsystem

on the background menu.

Open the preferences of your model by choosing the menu alternative

Simulation -> Configuration parameters -> Solver. Here you may set the

duration time of each simulation. Enter inf (infinite) in the end time field if you

want the simulation to run until your click on the stop icon.

You may set the Sampling time of the system, i.e. the “clock frequency”, in the

box ”Fixed-step size”. If you write ”auto” in that field, the sampling time of the

blocks in the model is automatically adopted to the sampling time of the source

block.

In digital communication applications it is normally necessary to choose

sampling time type ”Fixed Step”, and ”Discrete (no continuous states)” solver.

In signal processing applications, for example simulation of analogue and digital

filters, it is often possible to reduce the simulation time by choosing other

settings. In those cases, Simulink may automatically choose longer step-time,

i.e. skip the simulation of some samples or clock-cycles, and interpolate the

these values after the simulation has been carried out. Still sufficient accuracy

will be achieved. Simulink is originally designed for efficient numerical solving

of differential equations and difference equations describing analogue and

digital filters, control systems, physical devices, etc. This facility can seldom be

utilized in digital communication protocols and algorithms, since these involve

highly non-linear functions and discrete events, and since the output signal of

these blocks can be described as non-continuous functions and cannot be

interpolated. However, Simulink is interesting for simulation of communication

applications anyway, since it may be utilized as a tool for graphical data-flow

oriented programming.

7. User defined functions

The set of blocks in the Simulink library should not be considered as a generic

programming language, supplying all conceivable demands. You often have to

design your own blocks by means of conventional programming. One common

approach is to utilize Matlab functions (.m functions).

Develop and call a Matlab function of your own from Simulink. The Matlab

function should somehow modify the signal.

Hint: Use the Simulink block MATLAB fcn, which you can find in Simulink

Library Browser -> Simulink -> User Defined Functions. Alternatively you

may use the Simulink block Function, and write the name of your own .m file in

it (except the .m file extension).

8. Automated Simulink calls

A common problem is that you want to compile a plot that shows the relation

between input parameters and simulation results, for example how the signal-to-

noise ratio (SNR) affects the bit-error rate (BER). The SNR is the x-axis and the

BER the y axis. Every ”point” in the plot corresponds to one Simulink

simulation run. Some ten points per curve may be required for a nice looking

plot. To start Simulink manually for each point may be time consuming. The

simulation series may be automated by means of a Matlab script that calls

Simulink repeatedly. Hint: You may use the command sim. Write “doc sim” for

further help, and see:

http://www.mathworks.se/help/simulink/ug/using-the-sim-command.html

a) Write a Matlab script that starts a Simulink simulation, for example an

existing communication system model. A recommendation is that you do not

use a Matlab function, i.e. the .m-file should not start with the keyword

”function”. The reason is that Simulink, as well as Matlab scripts, easily can

access variables in the so called Matlab base workspace, while Matlab functions

use local (in its own workspace) and global variables.

b) Send some calculation results from a Simulink model back to the Matlab

script. It is recommended that you start out from an existing communication

system, that you consider to study during your project. You may for example

start out from a calculation of the Bit Error Ratio. Hint: Use the Simulink block

Sinks -> To Workspace, or the command sim. The result is a so called Matlab

struct. To see what fields that are included in the structr x, write x. To see the

content of field y in the struct x, write x.y. The output signal often contains a

vector with one value for each sample. Sometimes you want to know the last

sample, for example the final bit error ratio, and in this case you may use the

Matlab function end. Sometimes you want to know the average av the sample

values, for example the average signal-to-noise ratio, and in that case you may

use the Matlab function mean. Illustrate this.

c) Use a Matlab script to control some parameter within a Simulink block, for

example the ”gain” of an amplifier, or the noise level of a channel model, and

consequently the SNR. If you start out from an existing model of a

communication system you may for example change the signal-to-noise ratio,

the modulation method (M in MQAM), the error correction code, etc. Hint: To

transfer parameters you may use the command set_param.

d) Test several cases of the controlled parameter by means of a loop. Plot the

controlled parameter on the x axis, and the simulation result (the estimated

parameter) on the y axis. If the y axis shows the BER, a logarithmic scale is

recommended, typically from 10
-5

 to 10
0
. If the x axis whos the SNR in dB, a

linear scale is recommended, while if it shows the SNR in times, a logarithmic

scale is recommended.

Hint: The sequence of input parameter values as well as simulation result values

should be saved into two vectors of equal length. Use for or while, and end, to

achieve a loop. Use the function num2str or int2str to convert the numerical

inparameter values to strings that you may use in the set_param function call.

http://www.mathworks.se/help/simulink/ug/using-the-sim-command.html

Use the commands plot or semilogy, title, xlabel and ylabel to create a nice

looking plot.

e) If the simulations take long time, it is practical to develop a separate Matlab

script for simulation, and a second script (or function) that presents the

simulation results in plots and tables. Develop a simulation script that saves the

input parameters as well as the simulation results to the disk by means of the

save command, successively during the simulation. Also develop a presentation

script, or function, that retrieves the data, by means of the load command, and

presents a plot.

There are several advantages with this approach:

 You may modify the graphical presentation without running the time

consuming simulations again.

 You may add some additional parameter values to the result, without

simulating the previous results once again.

 If the simulations are interrupted, for example by a system crash or a

power failure, the results may be partially saved to the disk, and you can

easily modify the script to continue where it was interrupted.

 You may run simulations on several computers in parallel. Each

computer runs a version of the simulation script, with different input

parameters. The results are stored into several files. The presentation

Matlab function compiles the result files into one file, and plots the

results.

f) Voluntary exercise: Demonstrate the parallelization mentioned above.

g) Voluntary exercise: Investigate the effect of two input parameters. A curve

is plotted in the same plot for every value of the second parameter.

Alternatively, you may compare two Simulink models, for example two

communication systems, and present the results in two curves in the same plot.

Use the function legend to add information to the plot that states what each

curve shows.

9. Control the simulation time and simulation accuracy
If the simulation time is too short, the plot may show a “jittery” curve due

random fluctuations originating from noise sources or randomized data sources.

The BER may be estimated as 0 allthough there are noise and interference, since

no bit errors occur during the short simulation. You may increase the simulation

time in the Simulink model settings.

a) Choose or develop a Simulink model that involves a random source.

Experiment on what is a sufficient simulation time to avoid “jittery” curves (i.e.

large differences for every new simulation), or to avoid that the BER becomes

zero although there are noise.

What model did you choose? Give a short example on sufficient simulation

time, for example to achieve BER>0 for a couple of SNR values.

b) Voluntary exercise: Develop a Matlab script that runs the same simulation

input parameter case several times (by means of an inner loop). It should store

the result from each inner loop iteration in a vector, which we may call y, and

calculate the average Y = mean(y). The script should automatically interrupt the

inner loop (by means of the break command) when a certain condition is

fulfilled, for example when the number of bit errors that have occurred is at least

3, or when the simulation time is above a certain number of seconds (by means

of the tic and toc functions).

c) Voluntary exercise: Further develop the above script to stop when the

accuracy is sufficiently high. The script should estimate the standard deviation S

of the above estimate Y, as S = std(y)/(sqrt(length(y)-1). The script should be

interrupted when S is below a certain threshold value T. Those familiar with

mathematical statistics may calculate the threshold value T for a certain

confidence interval of Y. For example, you may want a 80% confidence interval

of Y that is smaller than 5% of the y axis interval, i.e. the curve jitter amplitude

should be less than 1/20 of the height of the y axis. You may assume that the y

values have Gaussian distribution.

Sometimes the mean result of each Simulation run is different for each

simulation run, independently of the simulation time. Such a process is non-

ergodic, meaning that the time mean value (the average result from one

infinitely long simulation run) differs from the ensemble mean value (the

average result of all simulation runs for the same input parameter values). In this

case it is necessary to add an extra loop that simulates each input parameter case

several times, and calculate the average result, as above. The loop may be

interrupted when the standard deviation of the results is sufficiently low.

11. Voluntary exercise: Use the bertool command to repeatedly call a

Simulink model of a communication system, and plot the BER vs SNR.

10. Voluntary exercise: Discuss how the computational efficiency of your

Matlab code and Simulink model can be improved

Suggestions:

- Find a way to divide the simulation sequence into several jobs that can run

on several computers in parallel.

- The profile command may generate statistics on what Matlab command

lines, and what Simulink blocks, that consume most computational time.

You may try to optimize those lines or blocks.

- Analyze a time consuming sub-system, and replace it by a simplified model.

This may for example be a look-up table, a saved signal vector or data

sequence that is reused for every simulation run, or a channel model with a

certain bit-error ratio.

- Instead of simulating every combination of input parameters, a Monte Carlo

simulation may be used, which analyzes random combinations of the input

parameters.

- If you compare for example two algorithms, the same random sequence may

be used for each simulation. Thus, the relative performance will be more

accurate. One option is to reset the random generator to its initial state

before each simulation run, a second option is to save sequence into a file or

into a workspace array.

- Use Real-Time Workshop and some compiler software to compile a

Simulink model into executable code.

