
AVR32 UC3B Hands-on 01:
Using Low-Level Drivers of the UC3B

Software Framework

Prerequisites
• Hands-On

- AVR32 Studio Hands-On 01
• Knowledge Requirements

- Basic understanding of microcontrollers
- Basic knowledge of the C language
- Basic knowledge of Integrated Development Tools

• PC Platform
- Windows® 2000, Windows® XP, Windows® Vista

• Software Requirements
- AVR32 Studio V2
- AVR32 GNU Tool-chain

• Hardware
- UC3B Evaluation Kit EVK1101
- JTAGICE mkII

• Estimated Completion Time
- 90 minutes

Introduction
The purpose of this hands-on is to use the AVR32 Studio and the Software
Framework to create a custom application.

The following items will be reviewed:

• AVR32 Studio & GNU tool chain

 Adding peripheral driver from the Software Driver

 Compile

 Debug

• Software Framework

 Power Management driver

 GPIO driver

 Timer/Counter driver

 Interrupt driver

 PWM driver

32-bit
Microcontrollers

Rev. Training UC3-0002

Document Overview
The hands-on is split into several different assignments. Each assignment is further
divided into individual sections to simplify understanding.

Throughout this document you will find some special icons. These icons are used to
identify different sections of assignments and ease complexity.

• Information
Delivers contextual information about a specific topic

• Tip
Highlights useful tips and techniques

• To do
Highlights objectives to be completed in italicized text

• Result
Highlights the expected result of an assignment step

• Warning
Indicates important information

Abbreviations
• HID Human Interface Device

• ISP In System Programming

2 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

Table of Contents

Prerequisites...1

Introduction...1

Document Overview...2

Abbreviations..2

Table of Contents...3

Software Requirement...5

Development tools..5

Software Framework...5

Hardware Requirement..6

Evaluation Kit..6

Emulator...6

Hands-On...7

Objectives...7

The UC3 Software Framework...7

Setup..7
Hands-on prerequisite..7
AVR32 Studio...8

Hands-On - Assignment 1..12

Objectives...12

UC3B General Purpose Input/Output Controller (GPIO)...12

Software Framework GPIO Driver..12

Exercises..13
A1 – Step 0...14
A1 – Step 1...15
A1 – Step 2...15
A1 – Step 3...15
A1 – Step 4...16

Summary..16

Hands-On - Assignment 2..17

Objectives...17

UC3B Power Manager (PM)...17

Software Framework PM Driver..17

Exercises..18
A2 – Step 0...18
A2 – Step 1...18

Summary..18

Hands-On - Assignment 3..19

Objectives...19

3

UC3B Timer/Counter..19

Software Framework TC Driver..20

UC3B Interrupt Controller...20

Software Framework INTC Driver...21

Exercises..21
A3 – Step 0...21
A3 – Step 1...22
A3 – Step 2...23
A3 – Step 3...24

Summary..25

Hands-On - Assignment 4..26

Objectives...26

UC3B Pulse Width Modulation..26

Software Framework PWM Driver..26

Exercises..27
A4 – Step 0...27
A4 – Step 1...27
A4 – Step 2...28

Summary..29

Hands-On Summary...29

Resources...30

Atmel Technical Support Resources..30

4 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

Software Requirement

Development tools

• AVR32 Studio
As stated in the Prerequisites section, the installation of the AVR32 Studio as well as
the GNU tool-chain must be done prior to the beginning of this hands-on session.

Software Framework

• AVR32 Software Framework
The UC3 Software Framework is part of the AVR32 Studio installation and does not
require any specific installation.

5

Hardware Requirement

Evaluation Kit

• EVK1101

The EVK1101 is the AVR32 UC3B product series evaluation kit.

• This hands-on will utilize the UC3B EVK1101 board exclusively. However, it can be
easily modified to support the UC3A EVK1100 board.

Emulator

• JTAGICE mkII

The JTAGICE mkII is the programmer and emulator tool for all AVR
Microcontrollers, including the UC3 product family.

6 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

Hands-On

Objectives

The goal of this hands-on exercise is to develop a step-by-step application that
makes LEDs blink using different methods.

In this hands-on you will:

 Use the Drivers modules of the Software Framework

 Develop and debug the application with the AVR32 Studio

The UC3 Software Framework

The Software Framework consists of AVR32 UC3 microcontroller drivers, software
services and demonstration applications.

Each software module is provided with full source code, examples, rich html
documentation and ready-to-use projects for the IAR EWAVR32 and GNU GCC
compilers.

The below diagram shows the Software Framework architecture along with an
example based on the EVK1101 control panel application.

Setup

Hands-on prerequisite

By completing the “AVR32 Studio Hands-On 01” you have learned how to:

• Create a workspace

• Create a project

• Create the target

• Setup the evaluation Kit

• Setup the JTAGICE mkII

• Compile and Debug

7

Training UC3-0002

ADC Driver

AT32UC3B0256 on
EVK1101

Accelerometer Driver

USB Stack
File System

Control Panel
with USB HID
Class

AVR32 Studio

Project Creation

You will now create a new project using the “Project Creation From Template” wizard
and import a new main file that contains the skeleton code for this hands-on.

• To avoid confusion with multiple projects within the same workspace, it is
recommended to close all the open projects by doing the following:

 right click on the project name

 select the “Close Project” item

• Create the project:

• In the “Project Explorer” view click right to select the “New / AVR32 C Project
From Template” item

• The “New AVR32 C Project” wizard opens

• Fill in the Project Name as “training1”

 Select the target MCU: UC3B0256ES

• Expand the “Executable” folder and select the project template depending on the
selected MCU:

 Start EVK1101 application

• Click “Finish”

8 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

• Your project with expanded folders looks like this:

Below is some information about the Software Framework files included in the project:

trampoline.x
this file contains assembly code that allows to bypass the boot loader location
and place the user’s code above the boot loader location.

evk1101.h
this file contains definitions and services related to the features of the
EVK1101 board

led.h
led.c
these files are the LED component driver of the EVK1101

board.h
this file includes the appropriate board header file according to the defined
board

mrepeat.h
preprocessor.h
stringz.h
tpaste.h
these files contain some preprocessor macro-function utilities

compiler.h
this file defines commonly used types and macros

conf_isp.h
this file contains the external configuration of the ISP

• AVR32 Studio – Software Framework
Note that the Software Framework source and header files are all located inside the
SOFTWARE_FRAMEWORK folder.

9

Training UC3-0002

• Add the new main file:

• In the “Project Explorer” view, right click on the “src” folder and select the
“Import…” item:

• The “Import” wizard opens:

• Expand the “General Folder” and select the “File System” Item

• Click “Next”

• Browse to the location where you unzipped the training package and select the
“Atmel\AVR32 UC3 Training\Hands-On\AVR32 UC3B\01\setup” folder

• Select the “main.c” file

• Click “Finish”

• Click “Yes” to overwrite the existing “main.c” file

• Your project is now ready to run.

• AVR32 Studio – Project Explorer View
If you mistakenly imported the file in the wrong project folder, you can move it to the
“src” folder using drag and drop.

10 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

Add the Tasks View

You will now open the “Tasks” view in order to have access to the TODO hands-on
bookmarks. Double clicking on a TODO bookmark will take you to the corresponding
entry in the main file.

• Open the Tasks view:

• Select the “Show Views/Other…” item of the Windows menu.

• Expand the General folder.

• Select the “Tasks” item and click OK.

• You are now ready to run the first assignment of this hands-on.

• AVR32 Studio – Quick Access
Another way to open the “Tasks” view is to use the AVR32 Studio “Quick Access
Navigation” pop-up by doing the following:

• Press CTRL+3 to open the pop-up and type “tasks” to see all the related items
linked to this keyword.

• Click on the “Views – Tasks” item to open the “Tasks” view.

11

Hands-On - Assignment 1

Objectives

The goal of this assignment is to set-up some I/O ports in output and input modes to
respectively drive the board LEDS and monitor the board push buttons.

In this Assignment you will:

• Use the GPIO driver module of the Software Framework

• Compile and debug the application with the AVR32 Studio

UC3B General Purpose Input/Output Controller (GPIO)

The General Purpose Input/Output manages the I/O pins of the microcontroller. Each
I/O line may be dedicated as a general-purpose I/O or be assigned to a function of an
embedded peripheral. This assures effective optimization of the pins of a product.

Each I/O line of the GPIO features:

 Configurable pin-change, rising-edge or falling-edge interrupts on any I/O line

 A glitch filter providing rejection of pulses shorter than one clock cycle

 Open Drain mode enabling sharing of an I/O line between the MCU and
external components

 Programmable internal pull-up resistor

 Input visibility and output control

 Multiplexing of up to three peripheral functions per I/O line
The following figure illustrates the GPIO block diagram.

Software Framework GPIO Driver

The GPIO driver is split between two files that define a useful set of functions for the
GPIO controller:

12 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

gpio.c
gpio.h

Below is an abstract of some functions of the Software Framework used during this
hands-on:

• gpio_enable_module_pin(…)
enables an alternate function of a GPIO pin

• gpio_enable_gpio_pin(…)
enables the GPIO module to control the pin

• gpio_set_gpio_pin(…)
drives a GPIO pin value to 1

• gpio_clr_gpio_pin(…)
drives a GPIO pin value to 0

• gpio_tgl_gpio_pin(…)
toggles a GPIO pin value

• gpio_get_pin_value(…)
returns the pin value

• AVR32 Studio – AVR32 Header files
Expanding any header files inside the Project Explorer view (by clicking the + widget
in front of its name) shows all the definitions and declarations of the module.

Exercises

• Software Framework
The GPIOs of the UC3B are defined in the UC3B header files as follow:

• Port A: AVR32_PIN_PAxx with xx from 00 to 31

• Port B: AVR32_PIN_PBxx with xx from 00 to 11

This corresponds to a total of 44 GPIO pins.

• EVK1101
The LEDs are connected as:

• LED0: PA07

• LED1: PA08

• LED2: PA21

• LED3: PA22

The Push Buttons are connected as:

• BP0: PB02

• PB1: PB03

• Joystick Center: PA13

• Joystick Up: PB07

• Joystick Down: PB08

• Joystick Right: PB06

• Joystick Left: PB09

13

Training UC3-0002

A1 – Step 0

Before compiling you need to add the GPIO driver to the project. This is easily done
by using the Software Framework “Add/Remove Driver” wizard.

• Add the GPIO driver:

• In the “Framework” Menu, select the “Add/Remove Driver(s)” item

• The Driver Import wizard opens:

• Select the “General Purpose I/O Controller” driver

• Click “Finish”

• The GPIO files “gpio.c” and “gpio.h” are now part of the project inside the
SOFTWARE_FRAMEWORK/DRIVERS/GPIO folder:

• AVR32 Studio – Software Framework plug-in

Note the padlock present on the imported files icon: . These files are locked as
derived from the Software Framework. However you still have the ability to modify
them by acknowledging the warning pop-up when trying to edit:

14 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

• Software Framework – Driver Header File
The “gpio.h” header file must then be included in the main file to declare the function
prototypes.

• Add the following line to the include section of “main.c”:

#include "gpio.h"

A1 – Step 1

You will now turn on the LED1.

• EVK1101 – LED Driving
The LEDs are turned on by driving a low level on the output pin.

• Clear the LED1 GPIO:

• Go to the TODO A1-Step 1 bookmark

• Replace the A1 Step 1.1 comment by:

 gpio_clr_gpio_pin(…);
This function takes one argument:

 the GPIO pin number: AVR32_PIN_P….

• Compile and debug this step

• The LED1 turns on.

A1 – Step 2

You will now turn off the LED0.

• EVK1101 – LED Driving
The LEDs are turned off by driving a high level on the output pin.

• Set the LED0 GPIO:

• Go to the TODO A1-Step 2 bookmark

• Replace the A1 Step 2.1 comment by:

 gpio_set_gpio_pin(…);
This function takes one argument:

 the GPIO pin number: AVR32_PIN_P….

• Compile and debug this step

• The LED0 turns off after 1s due to the software delay.

A1 – Step 3

You will now make LED2 blink using a software loop.

• Toggle the LED2 GPIO.

• Go to the TODO A1-Step 3 bookmark

15

• Replace the A1 Step 3.1 comment by:

 gpio_tgl_gpio_pin(…);
This function takes one argument:

 the GPIO pin number: AVR32_PIN_P….

• Compile and debug this step

• Press now PB0

• What happens to LED2? Why?

• The LED2 blinks at a period of 6s based on the software loop.

A1 – Step 4

You will now turn the LED0 on or off depending on the push-button state PB0:

 PB0 pressed: LED on

 PB0 released: LED off

• EVK1101 – Push-button State
Push buttons drive a low level on the pin when pressed.

• Read PB0 and reflect its state on LED0 GPIO:

• Go to the TODO A1-Step 4 bookmark

• Fill in the A1 Step 4.1 and A1 Step 4.3 comment of the test operators
if () and while () using:

 gpio_get_pin_value(…);
This function takes one argument:

 the GPIO pin number: AVR32_PIN_P….

• Replace the A1 Step 4.2 and A1 Step 4.4 comment by some previously
used GPIO functions

• Compile and debug this step

• The LED0 turns on when PB0 is pressed and turns off when PB0 is released.

• EVK1101
All GPIOs connected to push buttons and joystick have external 10KΩ pull-up
resistor. These pull-ups could be replaced by the GPIO internal pull-up using:

• gpio_enable_pin_pull_up(AVR32_PIN_PY_xx);

Summary

The above exercise illustrates how to:

• Use a pin in GPIO mode

• Control the GPIO in output mode

• Read a GPIO pin in input mode

16 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

Hands-On - Assignment 2

Objectives

The goal of this assignment is to set-up the crystal oscillator in order to speed-up the
CPU execution as well as the peripheral clocks.

In this Assignment you will:

• Use the PM driver module of the Software Framework

• Compile and debug the application with the AVR32 Studio

UC3B Power Manager (PM)

The Power Manager (PM) controls the oscillators, PLLs, clock generation, BOD, and
reset circuitry. The PM also contains advanced power-saving features, allowing the
user to optimize the power consumption for an application.

The following figure illustrates the TC block diagram.

Clock generation is divided into two groups: synchronous and generic clocks. The
generic clocks are highly tunable asynchronous clocks suitable for peripherals that
required specific frequencies, such as timers and communication modules.

The synchronous clocks are divided into three domains: one for the CPU and High
Speed Bus (HSB), one for modules on the Peripheral Bus A (PBA), and one for
modules on the Peripheral Bus B (PBB). The three clock domains can run at different
speeds, so the user can save power by running peripherals at a relatively low clock,
while maintaining a high CPU performance.

Software Framework PM Driver

The PM driver is split between two files that define a useful set of functions for the PM
controller:

pm.c
pm.h

Below is an abstract of a function of the Software Framework used during this hands-
on exercise:

17

• pm_switch_to_osc0(…)
enables the crystal oscillator 0 and switches the main clock to oscillator 0.

Exercises

A2 – Step 0

Before starting this assignment, you need to add the PM driver to the project using
the Software Framework “Driver Import” wizard as done in step 0 of assignment 1.

• Add the PM driver:

• Add the PM driver using the Software Framework “Driver Import” wizard

• Do not forget to include the PM header file in “main.c” by adding the following line:

#include "pm.h"

A2 – Step 1

You will now switch the main clock to the external oscillator 0.

• AVR32 UC3B
By default the UC3 devices start on the internal 115KHz RC oscillator. In order to run
at higher frequency, the 12MHz external crystal oscillator must be selected by
software.

• Switch to oscillator 0:

• Go to the TODO A2-Step 1 bookmark

• Replace the A2 Step 1 comment by:

 pm_switch_to_osc0(…,…,…);
This function takes three arguments:

 &AVR32_PM is the address of the Power Manager peripheral module

 FOSC0 is the oscillator frequency in Hz

 OSC0_STARTUP is the startup time in RC oscillator periods

• Compile and debug this step

• The LED2 now blinks 10 times faster than previously; exactly 12,000/115.

• AVR32 Studio – C Indexer
In order to go to the declaration of any C objects (e.g. constant, function, variable,
files…) just put the cursor on the word and press F3.

• AVR32 UC3B
Note that running above 33 MHz requires a wait state on the Flash memory access.
This is done using the call to the function flashc_set_wait_state(…) of the
FLASHC driver.

Summary

The above exercise illustrates how to:

• Start and select a new clock source as master clock

18 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

Hands-On - Assignment 3

Objectives

The goal of this assignment is to set-up the Timer/Counter with interrupt generation to
toggle a LED.

In this Assignment you will:

• Use the Timer/Counter (TC) driver module of the Software Framework

• Use the Interrupt Controller (INTC) driver module of the Software Framework

• Compile and debug the application with the AVR32 Studio

UC3B Timer/Counter

The Timer Counter (TC) includes three identical 16-bit Timer Counter channels.

Each channel has three external clock inputs, five internal clock inputs and two multi-
purpose input/output signals which can be configured by the user. Each channel
drives an internal interrupt signal which can be programmed to generate processor
interrupts.

The Timer/Counter block contains a wide range of functions including:

 Frequency Measurement

 Event Counting

 Interval Measurement

 Pulse Generation

 Delay Timing

 Pulse Width Modulation

 Up/down Capabilities

The following figure illustrates the TC block diagram.

19

Software Framework TC Driver

The TC driver is split between two files that define a useful set of functions for the
Timer/Counter:

tc.c
tc.h

Below is an abstract of some functions of the Software Framework used during this
hands-on exercise:

• tc_init_waveform(…)
initializes the timer in waveform mode using the configuration structure

• tc_write_rc(…)
sets the Register C (RC) of the Timer/Counter

• tc_start(…)
starts the Timer/Counter

• tc_configure_interrupts(…)
configures the timer interrupt sources

UC3B Interrupt Controller

The Interrupt Controller (INTC) collects interrupt requests from peripherals, prioritizes
them, and delivers an interrupt request and an autovector to the CPU. The AVR32
architecture supports 4 priority levels for regular, maskable interrupts, and a Non-
Maskable Interrupt (NMI).

When the CPU receives an interrupt request it checks if any other exceptions are
pending. If no exceptions of higher priority are pending, interrupt handling is initiated.

20 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

Clearing of the interrupt request is done by writing to registers in the corresponding
peripheral module, which then clears the corresponding NMIREQ/IREQ signal.

The following figure illustrates the INTC block diagram.

Software Framework INTC Driver

The INTC driver is split between three files that define a useful set of functions for the
Interrupt Controller:

intc.c
intc.h
exception.x: this file defines the UC3 vector table.

Below is an abstract of some functions of the Software Framework used during this
hands-on exercise:

• INTC_init_interrupts()
Initializes the hardware interrupt controller driver

• INTC_register_interrupt(…)
registers a peripheral interrupt handler and priority to the interrupt driver.

• GNU Tool Chain – Assembly files
Inside the AVR32 Software Framework, there are two kinds of assembly files:

file.s
This file is a pure assembly file that does not request preprocessing.

file.x
This file is an assembly file that requests preprocessing. For instance it includes a
C header file. This is the case of exception.x.

Exercises

A3 – Step 0

Before starting this assignment, you need to add the TC and INTC drivers to the
project.

21

• Add the TC and INTC driver:

• Add the TC and INTC drivers using the Software Framework “Driver Import”
wizard

• Do not forget to include the TC and INTC header files in “main.c” by adding the
following lines:

#include "tc.h"
#include "intc.h"

• Uncomment the TC configuration variables:

• Go to the TODO A3-Step 0 bookmark

• Uncomment the commented block of code as follow:

 Highlight some code inside the commented block

 Click right and select the “Source” ->”Remove Block Comment” item

A3 – Step 1

You will now initialize the timer as a counter in waveform mode. You will use the
channel 0 of the TC in waveform mode 2 without trigger: counter cleared by compare
match with the register C.

• Configure the timer:

• Go to the TODO A3-Step 1 bookmark

• Replace the A3 Step 1.1 comment by:

 tc_init_waveform(…,…);
This function takes two arguments:

 &AVR32_TC is the address of the Timer Counter peripheral module

 &WAVEFORM_OPT is the address of the variable that contains the
initialization structure

• Software Framework – TC configuration structure
The structure is named tc_waveform_opt_t and is defined in the “tc.h” file. It
contains all the timer configuration fields in waveform mode. The WAVEFORM_OPT
variable is declared and initialized as follows:

 // Options for timer waveform generation
 static const tc_waveform_opt_t WAVEFORM_OPT =
 {
 .channel = TC_CHANNEL0, // Channel selection.

 .bswtrg = TC_EVT_EFFECT_NOOP, // Software trigger effect on TIOB
 .beevt = TC_EVT_EFFECT_NOOP, // External event effect on TIOB
 .bcpc = TC_EVT_EFFECT_NOOP, // RC compare effect on TIOB
 .bcpb = TC_EVT_EFFECT_NOOP, // RB compare effect on TIOB

 .aswtrg = TC_EVT_EFFECT_NOOP, // Software trigger effect on TIOA
 .aeevt = TC_EVT_EFFECT_NOOP, // External event effect on TIOA
 .acpc = TC_EVT_EFFECT_NOOP, // RC compare effect on TIOA
 .acpa = TC_EVT_EFFECT_NOOP, // RA compare effect on TIOA

 .wavsel = TC_WAVEFORM_SEL_UP_MODE_RC_TRIGGER,// Waveform mode
 .enetrg = FALSE, // External event trigger enable
 .eevt = 0, // External event selection
 .eevtedg = TC_SEL_NO_EDGE, // External event edge selection
 .cpcdis = FALSE, // Counter disable when RC compare.
 .cpcstop = FALSE, // Counter clock stopped with RC compare

 .burst = FALSE, // Burst signal selection
 .clki = FALSE, // Clock inversion
 .tcclks = TC_CLOCK_SOURCE_TC5 // Source clock

22 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

 };
All the initialization value options of the structure members are detailed in “tc.h”. For
instance, the TC_CLOCK_SOURCE_TC5 corresponds to the master clock divided by
128.

• Set the compare register value:

• Replace the A3 Step 1.2 comment by:

 tc_write_rc(…,…,…);
This function takes three arguments:

 &AVR32_TC is the address of the Timer Counter peripheral module

 TC_CHANNEL0 is the timer channel to set

 0xF000 is the compare value to load in Register C (RC)

The period calculation is performed as follows:

T= Tin x RC = (128 / 12E6) x 61440 = 1.5s

• Start the counter:

• Replace the A3 Step 1.3 comment by:

 tc_start(…,…);
This function takes two arguments:

 &AVR32_TC is the address of the Timer Counter peripheral module

 TC_CHANNEL0 is the timer channel to start

• Compile and debug this step

• The TC channel 0 is now initialized.

• UC3 – TC status
In order to see if the timer is running, monitor the RC Compare Status (CPCS) bit of
the TC/SR0 Status register. It will be set when a compare has occurred since the last
read of SR0:

Note that reading SR clears all the register bits.

A3 – Step 2

You will now code the timer Interrupt Service Routine. The LED3 will toggle at each
interrupt.

23

• Acknowledge the interrupt:

• Go to the TODO A3-Step 2 bookmark

• Replace the A3 Step 2.1 comment by:

 AVR32_TC.channel[TC_CHANNEL0].sr

• The interrupt source of the TC is cleared by reading the SR register. In this hands-on
we are using only one interrupt source: the Register C compare status, so we just
clear the SR without testing the interrupt source. It becomes necessary to test the SR
content bit by bit, if more than one interrupt source is enabled.

• Toggle the LED state:

• Replace the A3 Step 2.2 comment by one previously used GPIO function

• Compile this step

• GNU Tool-chain – GCC
An interrupt service routine is coded like a function but with the __interrupt__
attribute:

__attribute__((__interrupt__)) void tc_irq(void)
{
 /* TC Interrupt */
 …
}

A3 – Step 3

You will now setup the interrupt handler and install the TC interrupt.

• Initialize the interrupt handler:

• Go to the TODO A3-Step 3 bookmark

• Replace the A3 Step 3.2 comment by:

 INTC_init_interrupts();

• Register the timer interrupt:

• Replace the A3 Step 3.3 comment by:

 INTC_register_interrupt(…,…,…);
This function takes three arguments:

 &tc_irq is the address of the TC interrupt service routine

 AVR32_TC_IRQ0 is the timer interrupt group number

 AVR32_INTC_INT0 is the Interrupt priority level to assign to the group

• Enable the timer interrupt:

• Replace the A3 Step 3.3 comment by:

 tc_configure_interrupts(…,…,…);
This function takes three arguments:

 &AVR32_TC is the address of the Timer Counter peripheral module

 TC_IRQ0 is the timer channel to start

 &TC_INTERRUPT is the address of the variable that contains the
initialization structure

24 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

• Software Framework – TC interrupt enable structure
The structure is named tc_interrupt_t and is defined in the “tc.h” file. It contains
all the timer initialization fields. The TC_INTERRUPT variable is declared and
initialized as follow:

 static const tc_interrupt_t TC_INTERRUPT =
 {
 .etrgs = 0,
 .ldrbs = 0,
 .ldras = 0,
 .cpcs = 1,
 .cpbs = 0,
 .cpas = 0,
 .lovrs = 0,
 .covfs = 0
 };

Only the compare Register C status interrupt source is enabled. All the initialization
value options of the structure members are detailed in “tc.h”.

• Compile and debug this step

• Press now PB0

• Compare LED2 and LED3 status

• The LED3 blinks every 3 seconds.

Summary

The above exercise illustrates how to:

• Setup a timer channel in time base mode

• Write an interrupt service routine

• Initialize the interrupt handler

• Register an interrupt service routine

• Enable one of the timer interrupt source

25

Hands-On - Assignment 4

Objectives

The goal of this assignment is to set-up PWM output to control LED brightness.

In this Assignment you will:

• Use the Pulse Width Modulation (PWM) driver module of the Software
Framework

• Compile and debug the application with the AVR32 Studio

UC3B Pulse Width Modulation

The Pulse Width Modulation (PWM) module contains seven independent PWM
channels. Each channel has a 20-bit counter and controls one square output
waveform. Characteristics of the output waveform such as period, duty-cycle, and
polarity are configurable.

Channels can be synchronized to generate non overlapped waveforms. All channels
integrate a double buffering to prevent glitches on the output waveform when
modifying the period or the duty-cycle.

Each of the seven PWM Channels contains:

 One 20-bit counter

 Independent enable/disable

 Independent clock selection

 Independent period and duty cycle

 Double buffering of period and duty cycle

 Programmable output waveform polarity

 Programmable center or left aligned output waveform

The following figure illustrates the block diagram for one PWM channel.

Software Framework PWM Driver

The PWM driver is split between two files that define a useful set of functions for the
PWM controller:

pwm.c
pwm.h

Below is a list of some functions in the Software Framework used during this hands-
on:

• pwm_init(…)
Initializes the PWM controller

26 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

• pwm_channel_init(…)
initializes a specified PWM channel with a configuration structure

• pwm_start_channels(…)
starts some PWM channels

• pwm_interrupt_update_channel(…)
updates channel register CPRDx or CDTYx

Exercises

A4 – Step 0

Before starting this assignment, you need to add the PWM driver to the project.

• Add the PWM driver:

• Add the PWM driver using the Software Framework “Driver Import” wizard

• Do not forget to include the PWM header file in “main.c” by adding the following line:

#include "pwm.h"

• Uncomment the PWM configuration variables:

• Go to the TODO A4-Step 0 bookmark

• Uncomment the commented block of code as follow:

 Highlight some code inside the commented block

 Click right and select the “Source” ->”Remove Block Comment” item

A4 – Step 1

You will now use a PWM channel to control the LED1 brightness. The PWM channel
1 is used as alternate of PA08 which is the LED1 GPIO.

• Configure the PWM controller:

• Go to the TODO A4-Step 1 bookmark

• Replace the A4 Step 1.1 comment by:

 pwm_init(…);
This function takes one argument:

 &pwm_opt is the address of the variable that contains the initialization
structure

• Software Framework – PWM initialization structure
The structure is named pwm_opt_t and is defined in “pwm.h”. It contains the entire
PWM controller clock configuration. The pwm_opt variable is declared and initialized
as follows:

 // PWM controller configuration.
 pwm_opt.diva = AVR32_PWM_DIVA_CLK_OFF;
 pwm_opt.divb = AVR32_PWM_DIVB_CLK_OFF;
 pwm_opt.prea = AVR32_PWM_PREA_MCK;
 pwm_opt.preb = AVR32_PWM_PREB_MCK;

All clocks are derived from the master clock. The initialization values of the structure
members are listed in the UC3B PWM controller header file.

• Configure the PWM channel:

• Replace the A4 Step 1.2 comment by:

27

 pwm_channel_init(…,…);
This function takes two arguments:

 pwm_ch_id is the channel number: 1

 &pwm_channel is the address of the variable that contains the
configuration structure

• Software Framework – PWM channel configuration structure
The structure is named avr32_pwm_channel_t and is defined in the UC3B PWM
controller header file. It contains the entire PWM channel configuration fields. The
pwm_opt variable is declared and initialized as follows:

 // PWM controller configuration.
 pwm_channel.CMR.calg = PWM_MODE_LEFT_ALIGNED; // Channel mode
 pwm_channel.CMR.cpol = PWM_POLARITY_HIGH; // Channel polarity
 pwm_channel.CMR.cpd = PWM_UPDATE_DUTY; // Update type
 pwm_channel.CMR.cpre = AVR32_PWM_CPRE_MCK_DIV_32; // Channel prescaler
 pwm_channel.cdty = pwm_duty; // Channel duty cycle, should be < CPRD
 pwm_channel.cprd = 1875; // Channel period
 pwm_channel.cupd = pwm_duty; // Channel update, should be < CPRD

All the initialization value options of the structure members are detailed in the “pwm.h”
file.

• Start the PWM channel

• Replace the A4 Step 1.3 comment by:

 pwm_start_channels(…);
This function takes one arguments:

 1 << pwm_ch_id is a bit field where each bit correspond to a channel

• Enable the PWM function of the GPIO port:

• Replace the A4 Step 1.4 comment by:

 gpio_enable_module_pin(…,…);
This function takes two arguments:

 AVR32_PIN_PA08 is the LED1 GPIO port

 AVR32_PWM_PWM_0_0_FUNCTION is the PWM alternate function

• Compile and debug this step

• The LED1 output is dim.

A4 – Step 2

You will now modify the PWM duty cycle to control the LED1 brightness. This can be
accomplished by incrementing the CUPD member of the configuration variable
pwm_channel.

• Update the PWM duty cycle:

• Replace the A4 Step 2 comment by:

 pwm_interrupt_update_channel(…,…);

 pwm_ch_id is the channel number 1

 &pwm_channel is the address of the variable that contains the
configuration structure. Only the cupd member is used.

• The LED1 brightness slowly increases thanks to the PWM duty cycle modification.

28 AVR32 Hands-On
Training UC3-0002

AVR32 Hands-On

Summary

The above exercise illustrates how to:

• Assign an alternate function to a GPIO port pin

• Setup a PWM channel in fixed frequency and variable duty cycle mode

• Update the PWM duty cycle

Hands-On Summary
The training materials have provided:

• Knowledge of the AVR32 UC3 devices

• Development examples using:

 UC3 Software Framework

 AVR32 Studio V2

 The AVR32 GNU tool-chain

• Application debug using:

 The JTAGICE mkII emulator

 The EVK1101 board

29

Resources
Below is a list of web resources available for the AVR32 products:

• AVR32 Home
http://www.atmel.com/avr32/

• AVR32 Datasheets
http://www.atmel.com/dyn/products/datasheets.asp?family_id=682

• EVK1100 Evaluation Kit information
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4114

• EVK1101 Evaluation Kit information
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4175

• AVR32 Studio
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4116

• AVR32 GNU tool-chain
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118

Atmel Technical Support Resources

Atmel has several support channels available:

 Web portal: http://support.atmel.no/ All Atmel microcontrollers

 Email: avr@atmel.com All AVR products

 Email: avr32@atmel.com All AVR32 products

Please register on the web portal to gain access to the following services:

 Access to a rich FAQ database

 Easy submission of technical support requests

 History of all your past support requests

 Register to receive Atmel microcontrollers’ newsletters

30 AVR32 Hands-On
Training UC3-0002

mailto:avr32@atmel.com
mailto:avr@atmel.com
http://support.atmel.no/
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4116
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4175
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4114
http://www.atmel.com/dyn/products/datasheets.asp?family_id=682
http://www.atmel.com/avr32/

