Lab 01

Developed by: Muhammad Imran and Peng Cheng
Date : 2015-02-06
Course : Programming Embedded Systems (ET014G) Mid Sweden University, Sweden.

This lab has three tasks which will enable you to develop understanding of the AVR32 tools
i.e., EVK1100 evaluation kit, its software tools including AVR32 studio and framework.
Task1 is preparatory task and is required to be done before coming to lab.

Task 1

How to find pin mapping between microprocessor and evaluation board:

In the EVK1100 evaluation board’s schematic, you can find different peripherals such as
LEDs, push buttons, potentiometer, LDR, etc. These peripherals are connected to
microcontroller through GPIOs. In order to use these peripherals, you have to map the pin of
the microprocessor to the required peripheral because some pins are multiplexed for three
different functions, discussed in later section.

Example: if you want to turn on LEDO (It is LED1 on physical layout of the board), you can
find in the schematic that it is PIN27 which connects LEDO (Figure 1), through port PB to the
microcontroller PIN 15 of the package (Figure 3). PIN27 is also shared with expansion header
J26 (Figure 2). The GPIO number for this pin is 59.

In AVR studio, you can find this mapping in “evk1100.h”
e #define LEDO_GPIO AVR32_PIN_PB27

And its low level mapping on actual hardware can be seen in "uc3a0512.h”
e #define AVR32_PIN_PB27 59

Finding port and Pin configuration

Each GPIO line can be assigned to one of 3 peripheral functions; A, B or C as shown in
Table 1 and each GPIO line has a unique number ports PA, PB, PC and PX which
corresponds to the GPIO pins. For simplicity, the GPIO pins are grouped in different ports.
However, the numbering on ports is not directly translated to GPIO numbering. You can use
the following formula to find the port and pin number or easy way is to see the AVR
datasheet (Table 1) for the pin mapping. NOTE : 32 in the formula corresponds to the fact
that "The pins are managed as 32-bit ports" (section 21.5 in datasheet)

Port = flOOf((GP|O number) / 32), example: floor((59)/32) = 1 (Note: 0 corresponds to A, 1 to B, and so on)
Pin = GPIO number mod 32, example: 59 mod 32 = 27

For example for LEDO

Component PIN GPIO PIN GPIO port/PIN
LEDO pPB27 GPIO 59 1/27

Table 1. (Table 12.9 in datasheet) GP1O controller function multiplexing

TQFP100 VQFP144 PIN GPIO Pin Function A | Function B Function C

9 14 PB26 GPIO 58 TC-B1 USART1 - RI

10 15 pPB27 GPIO 59 TC -A2 PWM — PWM [4]

http://www.atmel.com/Images/EVK1100_SCHEMATICS_REVD.pdf

PB[31

45 s

PBZ7

2x20 FEMALE HEADER

Figure 2. 2x20 header.

em
Pe20 SOED2
E ED3
Figure 1. LEDS
JZB
] VCC3IGND
| 2 1
PBO RM[}—DF?ND' P O O 3 OVCC%BI > PE[31..0] >
Ioxs!
PB2 68 l5ol s PB3 514 RX1
et e
: PBa 1900y pRy =D PBI31.0] i RXER
5 loxe! P HMDIO
33 g :g 09 1; 3% ; SDCKEMDO1
PB14 1210 97 PB15 CASMDO3
oo C 0
! 20 19 RXDV
PB[31..01<>) pois GNDY 55 'o¥e! T OVCC3p, 7 /—(<>>PB[31,0]
00 VCC3IGND
3?23 2 oo 3%}5? /] MSEOO
26 25 SE
oo
PB22 28 27 PB23 PWM_0/EVTIn
PB[31.0] oo PB[31..0
[31..01< Pa2d 20 15 o 29 B2 SR 21/20 PWH_2MCKO
2002 U1_DCD
PCI5.0] <C3 Pba) % oo = PRat PG50 U1_DTR
O O pes 38 [5[ar PCs /N -
GND—40 1o o139 ovees

514 PCS
VCC3IGND

PA[30..0]¢(5

PAD 25
— A
PAz an | AL
PAZ 32 | pas
GCEEET v
LU H Sy
PAE a1 | %
AL 43 by
= 45 1 pag
- 21 pag
PAID 48 | palg
Ji 20 pan
2 PAT2
= NG
e an
AE 5l oais
PAIE 58 I pagg
A £ par7
- PA1R
A9 84 lppg
T
AT 73 | oany
AZ s |oni)
PAZ 75 lpana
PAZI TE lppoy
Pz T {paos
Sie—12 pAZE
A2 T0 |\ ppoy
PAZ 80 lpase
= PAD
PG5 1< -

RESETR((— 23 |

VDDANA . 81

ADVREF 82
AGND g3 | ADVAEF 2

VDODCORE_1

VDOPLL

SrucsooreegoaBoenmas s
nonnooononoodnnAdnAananR pyg L PX0
coofodooofooooonooocoad > PX1
PX1 S
px2 -4 =
pxa [HL EX3
Py 2 PX
X5 24 2
pxg 25—
px7 (il °
Pxg
PXS g
PXi0 P —p
PX11 S
PX 12 ﬁ <
PX13 i
T e —c
Px15 22 E
Px16 B —PXIE
PXT7 G2 T
PX18 i
T ot
PX20 —
pxz1 P9 o
Pxoo AL — DX
PX23 24 =
px24 2L —
PX2% o1 Pz
S e
px2g -2 -
g 107 __Pxzo
PX30 110 PX30
pxal (12 PCl
Pxaz 114 P gf
PX33 Fia
pyas |20 F
pXa5 135 35
Pxag I PXE
pxa7 (40 EX3r
pxas &2 PXE
Pxag [144 PX36
120 JTAGO
Tk Mag—TAGT
TDl 131 JIAGZ
TMs (28 JTAGE
-
=1 o'olde'a'd'alad
(=] ZZEZEZEZEEZE=ZZE
> aguoaooaOaa

AT32UC3AD512-0ESAL 9 ﬁﬁaﬁ

TPT1

TesTeA

4]
VDDGORE | _1ag

VDDOUT,, |

Figure 3. Microcontroller

PB
e o
o 0O
c 0
o 0
o 0O
© 0O
o O
© O
o O
e o
o O
o 0
o 0
o 0O
© O
0 O
® O
e o
o O
e O

> PX[20..0]

o MTAGI2. 0

TX_CLK

™o

MSEO

RX1

MDC
MOOO/'SDCK
MDOO/_RAS
MDO4SOWE

MDOS SDA1O
PWIW_6
EVIoPWM1
PWM_3
U1_DSR

Ut _RI

PWM 5

PCi

=) Show to the lab demonstrator following sub-tasks,
How many ports does AT32UC3A0512 has?

Names:

Which port and PIN does GPIO 61 corresponds to?. PORT

PIN

What are three functions that GPIO 61 can be associated to.

(1)
(2)
(3)

Task 2
You have developed understanding of using the datasheet and schematic of the board and
microcontroller. Next, step is to use the software for programming the microcontroller.

Start AVR32 studio

In the lab computer, AVR studio is located in
C:\Program Files\Atmel\AVR Tools\AVR32 Studio.

Click on the windows start button and locate AVR32 studio under the Program menu.
The first time you start the program you might need to select a location of you
workspace.

If not, click on the File menu and select switch workspace. Select a location for you
workspace and create folder at that location called workspace (important)

Create new project by opening File/New/Project/AVR32 Project from template as

shown in Figure 5Figure 4. Give authors information and click finish.

& COT Project = |23

New AVR C Project
Create C project of selected type

Project name: ab01
V| Use default location
C\atmel\Workspace_AT32UC3_ET014G\lab01
default

Toolchains:

32-bit AVR/GNU C/C++ Toolchain

Praject type:

(= Executable
@ Empty Project
@ Start STKL000 application
@ Start EVK1100 application
@ Start EVK1105 application
@ Start EVK11045
@ Start EVKI104 a)
@ Start EVKL101 application
@ Start UC3L_EK application
@ Start STKG00 RCU3LO application
® DRIVERS/TC/EXAMPLE4_UC3L
(&= Static Library
i

7] Show project types and toolchains only if they are supported on the platform

&

J{

Finish | [Cancal

Figure 4. Project template

Go to the menu bar and click Framework as shown in Figure 5 for selecting required
drivers/components/service from the framework. The drivers’ window is shown in
Figure 6. Similarly select components and services and click finish.

Run Window Help

§ Select Drivers/Components/Services

Figure 5. Framework

o

@ " proj EREcE =<~

1/3 - Select Drivars

rersion 1.70) to the selected project.

| This s a seftware AP fer the Genesal Purpose Input/ Output registers

<Back Hest > Finish | [Cancel

Figure 6. Selecting drivers/components/services

e Now you add/write your required source code/header files in the main as

Figure 7.

N AV @DULISIC/MAIN.C - AVRIZ STUAID
File Edit Source Refactor Navigate Search Project Run Framework Window Help
el » is-EF-0-0- 7~ B itoro
[Project Explorer 52 9% ¥ =0
= UTILS -
@ readme.html
1 uc3softwareframework-releasenctes.pd
44 EVKL100 - APPLICATIONS - Control Panel Dem
S lab0L
B Software Libraries
[m! Includes
= src
(= SOFTWARE_FRAMEWORK
= ASM
(= BOARDS
(= COMPONENTS
(= DRIVERS
= CPU
(= FLASHC
(= GPIO
{fe| gpio.c
{fal gpic.h

Include Files
#include "board.h"

ﬁ #include "gpio.h"|

return 0;

mn

(= SERVICES
LS

Figure 7. Adding header files in main

B_ Problems I3 B Console| 2 Properties

shown in

=) \Write a program that sets the CPU frequency to 12 MHZ from OSCO. The program gets value
from push button0 and turn on LED6 by using polling method. The power manage drivers in

the framwork can be used to set the frequency.

You can find functions to LED and push buttons in “gpio.h” and “evk1100.h”.

Programming the device
Create new programming target as shown in Figure 8

Right click on the target and select properties
Select USB DFU programmer
Select Microcontroller UC3A0512

Connect the USB cable between the EVK1100 and the computer
In the AVR32 target window create a new target as shown in Figure 8

[£¢ Problems | B Console | =] Properties &2 + ¥ =08
[l New Target

«
General Detals A5 AVR Targets 1
Details Debugger/prograrnmer; | U5 DFU 7| Device: AT32UC3AD512 | Select... Mame |
Baithain Clock source: Internal RC oscillator - | Board: |EVK1100 = M AVR3Z Simulat..

Information

+ Connection

Figure 8. Target selection

Download the program to the processor

= E Mew Target

T

@] Error Log
Adapter

AVR32 Simulat..,
USB DFU

3
- — 0
Board M

AVR32 Simulat.. UC
EVK1100 uc

e The AVR32 is pre-programmed with a bootloader in order for your program to be

downloaded to the correct starting address.
e Set the main power switch to the USB position

e To activate the bootloader, Push and hold the Joystick
e While pushing the joystick, push and release the reset button

e Right click on the USB programming target
o Select program

Locate the .elf file in you Debug folder of you project as shown in Figure 9.

©)
o Mark all options and press OK
©)

Your program will know download to the AVR32

@ Program target
JTAGICE mkll
Program target

File path: MTROL-PANELVAT32UC3A0512_EVEI100NGCChuc3al512-ctripanel.elf
Offzet: (]

Length:
Options
| Verify memory after programming || Erase flash before programming
Unlock flash before erasing | Reset MCU after programming

| Start executing after programming

Browse...

_—
[owe. |

/| Entire file

@ oK i

Cancel

Figure 9. EIf file location

Task 3

=) \Writea C program which calculates the following numbers. Select suitable datatypes for these

numbers.
X = 12345678;
y = 87654321,

a=1234.5678;
b = 8765.4321,

Measurement start here
Z=X™*Y,
Measurement stop here

Measurement start here
c=a*b;
Measurement stop here

Now, measure their calculation speed by using the CPU cycle counter and use the
LCD display of the EVK1100 board to show the measured results.

Display the time in micro second after converting the CPU cycles with following
formula (you can see this formulas in cycle_counter.h).

fcpu_hz = 12000000;
time in us = (CPU cycles* 1000000 + fcpu_hz-1) / fcpu_hz;

The program needs to be analysed for the two cases:
Casel : (set optimization level to 0)
Case? : (set optimization level to 1)

Motivate from the ATMEL instruction manuals, what these optimizations are used for.

Optimization 0:
Optimization 1:
TIPS:

You will need these drivers, components and service in this lab

CPU cycle counter driver: CYCLE COUNTER”.
LCD display driver : DIP204”.
Power manager driver :PM-power manager

How to set optimization level

You can either set it using graphical way as shown in Figure 10 or changing it in the
config.mk file as shown in Figure 11.

g AVR - AT32UC3_project/1.7.0-AT32UC3/APPLICATIONS/labl_imran/main.c - AVR32 Studio

File Edit Source Refactor MNavigate Search—Beoicct _Buo L. T
=) Properties for labl_no_make
[mif S [@ w3 _no_t
filter text § . .
[7 Project Explorer 52 B G | pefiter Settings .

conf athh Resource
conf_explorerh
conf_lwip_threads.h

[
[
E % Build Variables
[
[

Builders
C/Ces Build Configuration: |Debug [Active] = | [Manage Configurations...

conf_sd_mme_spih
FreeRTOSConfigh
Iwipepts.h

Discovery Options

Environment T Tool Settings | # Build Steps Build Artifact Binary Parsers | @ Error Parsers | # MCU settings * | >

> &8 mainc ettipos o
Tool Chain Editor 53 32-bit AVR/GNU C Compiler Optimization Level Optimize (-0O1)

i [main.o - [none/be]

B
APPLICATIONS Resdme.tmi ;:’;:‘ gz::’::cﬁs E :;:L‘:T:‘“’ Other opfimizztion flags
e S)AR[)S. . Readme.htm Run/Debug Settings & Directories [] Enable fast floating-po gp:!m!ze mo:((;gazj]
» (= COMPONENTS B Optimization [7) Enable unsafe match o 2PtiMizE me:
» (= DRIVERS % "::b“_gg'”g [Enable fast math
5 (= SERVICES - Ml’:ﬁ';:‘:em [T] Generate position-independent code
b = UTILS = 7] Use assembler for pseudo instructions

% 32-bit AVR/GNU C Linker

@ readmehtml [7] Force double-word alignment

% General
= =
T udsoftuarefiamenor releasencty % Libraries [7]Put large immediates in constant poal E
4 % EVKI100 - APPLICATIONS - Control Panel 4)))
B software Libraries £ Miscellaneous [C] De not initialize GOT register before using
T3 % Shared Library Settings 7] Use section .rodata for read-only data
I 34, Binaries e -
Includes % Optimization
. % sre 1) 32-bit AVR/GNU Assembler
. (8 General
I = Debug

(2 Debugging

1 32-bit AVR/GNU Prepracessing Assembler
(2 General
(2 Debugging

4 15 labl_no_make
B Software Libraries
& %% Binaries
bl Includes
4 (8 sic
b (= SOFTWARE_FRAMEWORK
b [mainc
b (= Debug
3 LCD

Figure 10. Setting optimization level

| [mainc | [configmk |

4 hssewbler source files

ASSRCS =\
$ (SERV_PATH) /USB/CLASS/DFU/EXAMPLES/ISP/BOOT/ trampoline. S \
$ (FREERTOS_PORT_PATH) /exception.5

Library path
LIB_PATH = ¢ (UTIL PATH)/LIBS/NEWLIB_ADDONS/AT32UCR2/

Libraries to link with the project
LIBS = newlib_addons-at32ucr2-speed_opt

Linker script file if any
LINKER SCRIPT = & (UTIL_PATH)/LINKER SCRIPTS/AT32UC3A/0512/GCC/link uc3a0512.1lds

Options to request or suppress warnings: [-fsyntax-only] [-pedantic[-errors]] [-w] [-Wwarninc
4 For further details, refer to the chapter "GCC Command Options" of the GCC manual.

WARNINGS = -Wall

WARNINGS += -Wmissing-prototypes -Wstrict-prototypes -Wmissing-declarations \

-Wredundant-decls -Wnested-externs -Wundef

Options for debugging: [-g]...
% For further details, refer to the chapter "GCC Command Options” of the GCC manual.
DESUG = -g

Options that control optimization: [-O[0]1]12]3]s]]...
For further details, refer to the chapter "GCC Command Options" of the GCC manual.
OPTIMIZATION = -00 —ffunction-sections -fdata-sections -fno-strict-aliasing

4 Extra flags to use when preprocessing
CPP_EXTRA FLAGS =

Figure 11. Setting optimization level in config files

