
Lab 02

Developed by: Muhammad Imran and Peng Cheng

Date : 2015-02-26

Course : Programming Embedded Systems (ET014G) Mid Sweden University, Sweden.

This lab has two tasks. Task1 is preparatory and will help you in debugging the complex

designs of the labs.

Task 1

Debugging is essential in any coding project in order to make a robust system. Each software

has aiding tool for making the debugging process easier. In this lab, you can use the AVR

studio debugging functionality.

1. You can add this functionality while selecting driver, components and services. An

example can be seen in Figure 1.

2. Add header file #include "print_funcs.h" in the main program and then use the

different functions in your code from this file.

Figure 1. Adding debug function

3. For using the debug functionality you can attach the board to computer with a serial

cable and use any RS232 terminal to see the messages.

How to get terminal software:

Which software: Anyone!

For example a putty or termite can be downloaded from

http://www.putty.org/

http://www.compuphase.com/software_termite.htm

The terminal can configured with setting shown in Figure 2. Use USART_1 for the debugging

process. The port can be set according to your computer.

Figure 2. Terminal setting.

The following program controls the LEDs with push buttons by using interrupt handling

method. Modify the program for the following mentioned functionality.

When nothing is pressed, LED1 is on and a corresponding status message of LED1 is

displayed on the terminal. When a push button1 is pressed, LED1 is off, LED2 is on and

status message of LED2 is displayed on the terminal.

Make sure to add the drivers of GPIO and INTC.

/**

 Name : main.c

 Author : Imran

 Copyright : Not really

 Description : EVK1100 template

 **/

// Include Files

#include "board.h"

#include "gpio.h"

//#include "intc.h"

#include "avr32/io.h"

__attribute__((__interrupt__))

static void int_handler (void)

{

 if(gpio_get_pin_interrupt_flag(GPIO_PUSH_BUTTON_0))

 {

 LED_On(LED1);

 LED_Off(LED0);

 gpio_clear_pin_interrupt_flag(GPIO_PUSH_BUTTON_0);

 }

}

int main(void) {

 /* TODO: replace this comment with your code */

 gpio_enable_pin_interrupt(GPIO_PUSH_BUTTON_0 , GPIO_PIN_CHANGE);

 INTC_init_interrupts ();

// "In every port there are four interrupt lines connected to the interrupt

// controller. Every eigth interrupts in the port are ored together to form an

http://www.putty.org/
http://www.compuphase.com/software_termite.htm

// interrupt line."

// AVR32_INTC_INT0 is for the interrupt priority level.

// Every eight interrupts in the port are stored together to form an interrupt line. That

// means each interrupt line can handles

// 8 pins. GPIO 0-7 ((PA0-PA07)) are handled by AVR32_GPIO_IRQ_0 and GPIO 104-109 (PX36-PX11)

// by AVR32_GPIO_IRQ_13.

// Simple way is to use formula "AVR32_GPIO_IRQ_0 + (GPIO to be registered/8)".

// in the formular AVR32_GPIO_IRQ_0 will act as a base address and (GPIO to be registered/8)

// will point to the specific line

// for Pushbutton 0 (PX16- GPIO 88) you can use the formula to have 75 address or use

AVR32_GPIO_IRQ_11 which is assigned 75 in uc3a0512.h

 INTC_register_interrupt(&int_handler, (AVR32_GPIO_IRQ_0+88/8),

AVR32_INTC_INT0);

 Enable_global_interrupt ();

 while (1)

 {

 LED_On(LED0);

 }

 return 0;

}

Task2

On your computer, download and install this HxD freeware hex editor and disk editor from:

http://mh-nexus.de/en/hxd/

Read the contents of SD card by using by a menu open disk. Remember to open it as

administrator.

For EVK1100:

For this lab, consult SD/MMC card example and SDRAM example. SD/MMC card example

shows how to read from SD/MMC to internal RAM by using PDCA. In this lab, we do the

opposite by writing to the SD card and involve external SDRAM.

Initialize the whole microprocessor into the fastest clock speed possible.

You can use power manger driver for setting the frequency. Specifically the function

pm_configure_clocks() will help you in setting the frequency.
While setting frequency for peripheral bus A, considers errata on Page 813 in the datasheet which describes

the limitation of PBA clock. Following function gives the some further help.
pm_freq_param_t System_Clock = {

 .cpu_f = CPU_HZ,

 .pba_f = PBA_HZ,

 .osc0_f = FOSC0,

 .osc0_startup = OSC0_STARTUP

 };

Initialize the sdramc module in order to access the external 32MB SDRAM.
volatile unsigned char *sdram = SDRAM; //SDRAM address

// Initialize the external SDRAM chip.

sdramc_init(FOSC0);

print_dbg("SDRAM initialized\n");

//for detail, see SDRAM example

Within HSB bus matrix, set EBI slave to have default master as PDCA.

“the 4-bit FIXED_DEFMSTR field selects a fixed default master provided

that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user

interface description”. Page 133

// Setting EBI slave to have fixed default master

AVR32_HMATRIX.SCFG[AVR32_HMATRIX_SLAVE_EBI].defmstr_type =

AVR32_HMATRIX_DEFMSTR_TYPE_FIXED_DEFAULT;

Setting EBI slave to have PDCA as a master

AVR32_HMATRIX.SCFG[AVR32_HMATRIX_SLAVE_EBI].fixed_defmstr =

AVR32_HMATRIX_MASTER_PDCA;

Initialize the PDCA with SPI TX mode and SPI modules in order to access the external 2GB

SD card that is provided by us.

 See example SD/MMC card example

Pre-write the following dummy data into the whole 32MB SDRAM: Data byte sequence start

from 0x00 increment to 0xFF and repeat again.

Using PDCA to read the whole 32MB SDRAM and write the data into the SD card.

For PDCA configuration, consult” SD/MMC card example”. For writing to SD/MMC card, use the

function sd_mmc_spi_ram_2_mem from “sd_mmc_spi_mem.c” or sd_mmc_spi_write_sector_from_ram

from “sd_mmc_spi.c”. Both functions write one MMC sector (512 bytes) from a ram buffer.

The SD card can be accessed 512 byte (or one block) at a time.

After this is done, power off the EVK1100 and show the SD card content using the HxD

editor.

Drivers:

DRIVERS/PM

DRIVERS/EBI/SDRAMC

COMPONENTS/MEMORY/SDRAM/

DRIVERS/HMATRIX

DRIVERS/PDCA

DRIVERS/SPI

COMPONENTS/MEMORY/SD_MMC/SD_MMC_SPI/

 References:

1. AVR32UC3A Datasheet Rev.K

2. EVK1100_Schematics_RevC

Useful Tip:

Quick references to datasheet and schematic can be found

http://www.avrfreaks.net/wiki/index.php/Documentation:EVK1100/Hardware_Reference

http://www.avrfreaks.net/wiki/index.php/Documentation:EVK1100/Hardware_Reference

