
Lab 03 Tips and General Information

Course : ET032G, Elektroteknik GR (A), Mikrodatorteknik at Mittuniversitetet, Sweden.

Extracted by : Muhammad Imran, Mid Sweden University, Sweden.

Starting with a basic, about function prototype, function call and function declaration/definition since

I have used these terms in the lab instructions

Example of function calling and parameter passing

#include<stdio.h>

int add(int , int); // function prototype/declaration

int main()

 {

 Int num1, num2;

 value_return=add(num1, num2) // function call and getting return value

 printf(“addition=%d”, value_return);

 }

Int add(int var1, int var2) //function definition (Int add(int var1, int var2) is declarator and body is definition

{

 Int x,y, sum;

 sum=a+b;

 return sum

}

I/O memory and virtual port discussion

I/O memory and general purpose registers

The data memory space in Xmega AVR is divided into I/O registers, SRAM, and external RAM. In

addition, the EEPROM can be memory mapped in the data memory. All I/O status and control

registers reside in the lowest 4KB addresses of the data memory. This is referred to as the I/O

memory space. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD)

instructions.

The lowest 64 addresses of I/O memory can be accessed directly, or as the data space locations from

0x00 to 0x3F. The lowest 4 I/O memory addresses are reserved as general purpose I/O registers. These

registers can be used for storing global variables and flags, as they are directly bit-accessible using the

SBI, CBI, SBIS, and SBIC instructions. The rest is the extended I/O memory space, ranging from

0x0040 to 0x0FFF [1].

Xmega has 8/16 bit AVR RISC CPU and has 32x8-bit registers directly connected to ALU. The 32 x 8-

bit general purpose working registers all have single clock cycle access time allowing single-cycle

arithmetic logic unit operation between registers or between a register and an immediate.

The six registers R26-R31 have added function in addition to their general purpose usage. These six 32

registers, shown in Figure 1, can be used as three 16-bit address pointers for program and data space

addressing, enabling efficient address calculations. One of these register (Z-register) can also be use

as an address pointer to read from and/or write to flash program memory, signature rows and lock

bits.

Figure 1. CPU general purpose registers

Virtual port

Some instructions in the AVR® instruction set can only operate on addresses that are within the AVR

I/O space. Using these instructions instead of their data space equivalents is both faster and consumes

less program memory. All I/O port registers on the XMEGA have addresses outside the I/O space.

The solution to this is to use the virtual ports. Up to four of the I/O ports can be mapped into virtual

ports that have registers in the I/O space. The virtual ports make the DIR, OUT, IN and INTFLAGS

registers of the desired I/O port available in I/O space. The other, less used I/O port registers are still

available through the regular port module registers [2].

Virtual port registers allow the port registers to be mapped virtually in the bit-accessible I/O memory

space. When this is done, writing to the virtual port register will be the same as writing to the real

port register. This enables the use of I/O memory-specific instructions, such as bit-manipulation

instructions, on a port register that normally resides in the extended I/O memory space. There are

four virtual ports, and so four ports can be mapped at the same time. Virtual 0 and 1 mapping control

register is shows here.

PORTA to PORTR can be mapped in any of the four virtual ports. For example, I want to map PORTB

to virtual port 0.

VP0MAP PORT Description

0001 PORTB PORTB mapped to Virtual Port n

In c code you can write PORTCFG.VPCTRLA = 0x01;

References

[1]. Page (7-11) in the XMEGA-B manual

[2]. AVR1313: Using the XMEGA IO Pins and External Interrupts

[3]. Page (132, 140) in the XMEGA-B manual

[4].

