
Lab 1: Accessing Configuration Registers
Developed by : Muhammad Amir Yousaf

Revised by : Muhammad Imran

Date : 2014-10-02

Course : ET032G, Elektroteknik GR (A), Mikrodatorteknik at Mittuniversitetet, Sweden.

Goal:
The goal of this lab is to have an in depth understanding of the architecture of modern

microcontrollers and validation of concepts with the help of simulators. XMEGA family of

microcontrollers is selected for this purpose. The microcontroller XMEGA B1 128 has various flexible

and configurable peripherals to interface with external electronic devices. You will use C language for

writing a program to access its configuration registers and to implement simple computational tasks.

The exercises motivate to consult the datasheet, manual and tutorials provided at the manufacturer

web page in order to get insight of device.

Platform used:
Development Kit: XMEGA Xplained B1

Programming environment: AVR Studio 6.2

Preparation for Exercises:
Various text and video tutorials are available in order to get basic understanding of tools required for

performing these lab exercises. The link for download is given here

http://www.atmel.com/devices/ATXMEGA128B1.aspx?tab=documents

In preparatory, you will run a simple program to understand the basics of AtmelStudio and XMEGA

Xplained B1. Follow the steps to run a preparatory task

1. Start AtmelStudio 6.2, go to File in menu bar, click on New Project to create a new project

with name labs_preparatory

2. Select GCC C Executable Project (for tasks without ASF) or GCC C ASF Board Project (for tasks

with ASF). You would have window as shown in following figure.

http://www.atmel.com/devices/atxmega128b1.aspx
http://www.atmel.com/devices/ATXMEGA128B1.aspx?tab=documents

3. Select Device Family in drop menu as AVR XMEGA, 8-bit and choose ATxmega128B1

4. Paste the provided C code in the file labs_preparatory.c and click build (F7) and

you would see the build results in Output window which shows the status and location of

output file. You can find errors and warning in this window.

Code: read the comments with code
unsigned char* const PORTA_DIR_REG= (unsigned char*)0x600;
unsigned char* const PORTA_OUT_REG= (unsigned char*)0x604;

int main()
{
 *PORTA_DIR_REG = 0xFF;
 for (unsigned char counter = 0; ;)
 {
 *PORTA_OUT_REG = counter++;
 if(counter >= 10)
 counter = 0;
 }
}

Comments for the above code:
PORTA direction and out registers’ addresses are mapped onto PORTA_DIR_REG and
PORTA_OUT_REG respectively. PORTA_DIR_REG has been assigned 1s (0xFF) in order to
make all pins as output. For more details, read the following text from manual. (see page
124, 133/410 in XMEGA B MANUAL)
“Each port has one data direction (DIR) register and one data output value (OUT) register
that are used for port pin control. The data input value (IN) register is used for reading the
port pins. Direction of the pin is decided by the DIRn bit in the DIR register. If DIRn is written
to one, pin n is configured as an output pin. If DIRn is written to zero, pin n is configured as
an input pin”.

5. Right click on the project folder in the solution explorer, go to toolchain tab and set complier

optimization level –O0.

6. In the Tool tab, select debugger as Simulator and save the project.

7. Now press the Start debugging and break and run the program in

different steps

8. You will see the counter values in the OUT – Data Output Value register having address

0x604. Familiarize yourself with code, datasheet and manual in order to use it in Lab tasks.

General Purpose IO ports can be accessed and configured through the registers mapped in IO

memory (see Appendix). You can enable the IO view by clicking on this button

Task 1:
In this task, you will use AVR Studio 6 Editor and AVR Simulator. Modify the preparatory program

such that it takes input from PIN0 of PORT B and then increment the counter values which are

assigned to PORT A as output. This program needs to be written without AVR Software Framework

(asf.h). Take snapshots for report. You can give inputs to pins by clicking on the square space as

shown in the figure.

Task 2:
 XMEGA has three 16 bit timer/counters that can be configured to produce time delays. Use a Real

time counter to generate one second delay and modify the counter to count the time’s ticks. You

may use AVR Software Framework (ASF) to make the program but you should have an

understanding.

Is it possible to verify one second delay with AVR Simulator in AVR Studio 6? Motivate?A video

tutorial of ASF is given here: Atmel Software Framework, Getting Started

Switch the Optimization to level O0 and O1 and note the difference.

Tasks3:
In this task and next coming tasks, you can use the ASF. The example code in preparatory can be

translated into following lines of code

#include <asf.h>
int main(void)
{
 char counter=0;
 PORTA.DIR=0xFF;
 while(1)
 {
 PORTA.OUT=counter++;
 if(counter >= 10)
 counter = 0;
 }
}

 Identify the difference and write in report. Modify the above code to take input from a PIN0 of

PORT B and reset the counter when a positive edge is detected. Assign the counter values to PORT C.

TIPS: For sensing rising edge you will need to use PINnCTRL – Pin n Configuration Register,

INT1MASK – Interrupt 1 Mask register, and INTFLAGS – Interrupt Flag register. (see page 136-138 in
XMEGA B MANUAL)

Task 4:
This task involves a real microcontroller instead of software simulator. XMEGA B1 Xplained board has

four LEDs i.e. LED0 to LED3. Display some flash pattern over them. You can program more than one

pattern replacing each other after regular interval time (using timer/counter). See appendix to know

about the programming of the device.

http://www.youtube.com/watch?v=r9UFzNEC62E&list=PLA64AEADB04D8968F&index=8

TIPS:

 LEDS are connected to PINS of PORTB and you can find the information in Table 4-5. J3 I/O
expansion header of user guide “Atmel AVR1912: Atmel XMEGA-B1 Xplained Hardware User
Guide”. The LEDS and other peripherals can be found in the header file
xmega_b1_xplained.h.

 If you are using delay functions such as delay_ms from delay.h , add the relevant modules in
ASF wizard as shown in following figure. Make sure that you have selected the right project
and add the dependent modules.

Appendix

Programming the device
You can program the device with your application in two ways

 1. Programming via Atmel AVR Studio 5 and Atmel AVR tools.

 2. Programming via the DFU boot loader.

But in the labs, you will program the device visa DFU boot loader. For this purpose DFU programming

software FLIP has already been installed in the lab computer. Therefore, go to Start-> FLIP 3.4.7 and

open it. Select the device according to instruction in the XMEGA-B1 getting started Guide (section

5.2.2). It is important that FLIP uses USB interface to program the ATxmega128B1 but the boot loader

has to be evoked by shorting pin 6 on J1 to GND if it hasn’t been done already.

http://www.atmel.com/Images/doc8439.pdf

