Lab 1: Accessing Configuration Registers

Developed by : Muhammad Amir Yousaf

Revised by : Muhammad Imran

Date :2014-10-02

Course : ET032G, Elektroteknik GR (A), Mikrodatorteknik at Mittuniversitetet, Sweden.
Goal:

The goal of this lab is to have an in depth understanding of the architecture of modern
microcontrollers and validation of concepts with the help of simulators. XMEGA family of
microcontrollers is selected for this purpose. The microcontroller XMEGA B1 128 has various flexible
and configurable peripherals to interface with external electronic devices. You will use C language for
writing a program to access its configuration registers and to implement simple computational tasks.
The exercises motivate to consult the datasheet, manual and tutorials provided at the manufacturer
web page in order to get insight of device.

Platform used:
Development Kit: XMEGA Xplained B1

Programming environment: AVR Studio 6.2

Preparation for Exercises:

Various text and video tutorials are available in order to get basic understanding of tools required for
performing these lab exercises. The link for download is given here

http://www.atmel.com/devices/ATXMEGA128B1.aspx?tab=documents

In preparatory, you will run a simple program to understand the basics of AtmelStudio and XMEGA
Xplained B1. Follow the steps to run a preparatory task

1. Start AtmelStudio 6.2, go to File in menu bar, click on New Project to create a new project
with name labs_preparatory

2. Select GCC C Executable Project (for tasks without ASF) or GCC C ASF Board Project (for tasks
with ASF). You would have window as shown in following figure.

http://www.atmel.com/devices/atxmega128b1.aspx
http://www.atmel.com/devices/ATXMEGA128B1.aspx?tab=documents

Select Device Family in drop menu as AVR XMEGA, 8-bit and choose ATxmegal28B1
Paste the provided C code in the file labs_preparatory.c and click build (F7) . s and

you would see the build results in Output window which shows the status and location of
output file. You can find errors and warning in this window.

Code: read the comments with code
unsigned char* const PORTA_DIR_REG= (unsigned char*)0x600;
unsigned char* const PORTA_OUT_REG= (unsigned char*)ex604;

int main()

{
*PORTA_DIR_REG = OxFF;
for (unsigned char counter = 0; ;)

{
*PORTA_OUT_REG = counter++;

if(counter >= 10)
counter = 0;

}

Comments for the above code:

PORTA direction and out registers’ addresses are mapped onto PORTA_DIR_REG and
PORTA_OUT_REG respectively. PORTA_DIR_REG has been assigned 1s (OxFF) in order to
make all pins as output. For more details, read the following text from manual. (see page
124, 133/410 in XMEGA B MANUAL)

“Each port has one data direction (DIR) register and one data output value (OUT) register
that are used for port pin control. The data input value (IN) register is used for reading the
port pins. Direction of the pin is decided by the DIRn bit in the DIR register. If DIRn is written
to one, pin n is configured as an output pin. If DIRn is written to zero, pin n is configured as
an input pin”.

Right click on the project folder in the solution explorer, go to toolchain tab and set complier
optimization level —00.

In the Tool tab, select debugger as Simulator and save the project.

Now press the Start debugging and break |Del;:lug .| and run the program in
different steps

1E=(z=2

Tl
W
Il

You will see the counter values in the OUT — Data Output Value register having address
0x604. Familiarize yourself with code, datasheet and manual in order to use it in Lab tasks.
General Purpose |0 ports can be accessed and configured through the registers mapped in |0

memory (see Appendix). You can enable the 10 view by clicking on this button 1EWHE,
10 View
== | Filter: | - £

Name Valu
e eneral Furpose U (LPIU)

[# MQ I/0 Port Configuration (PORTB)
[# MO I/0 Port Configuration (PORTC)
[# W8 I/0 Port Configuration (PORTD)

Mame Address Value Bits
110 DIR 6600 0FF DDODEEEE
1o DIRSET 0601 0FF DEDEEEER
1o DIRCLR 0602 0xFF DEDEDEER
o DIRTGL 0603 0FF DEBDEDEER
1o ouT 0604 005 OJOOO00O@Om

W QUTSET 0605 005 DJOO00O@Om

G mm- e e e e -

Task 1:

In this task, you will use AVR Studio 6 Editor and AVR Simulator. Modify the preparatory program
such that it takes input from PINO of PORT B and then increment the counter values which are
assigned to PORT A as output. This program needs to be written without AVR Software Framework
(asf.h). Take snapshots for report. You can give inputs to pins by clicking on the square space as
shown in the figure.

o] 0bb0E)l DEEDEBDEDE

Task 2:

XMEGA has three 16 bit timer/counters that can be configured to produce time delays. Use a Real
time counter to generate one second delay and modify the counter to count the time’s ticks. You
may use AVR Software Framework (ASF) to make the program but you should have an
understanding.

Is it possible to verify one second delay with AVR Simulator in AVR Studio 6? Motivate?A video
tutorial of ASF is given here: Atmel Software Framework, Getting Started

Switch the Optimization to level 00 and O1 and note the difference.

Tasks3:

In this task and next coming tasks, you can use the ASF. The example code in preparatory can be
translated into following lines of code

#include <asf.h>

int main(void)

{
char counter=0;
PORTA.DIR=0OXFF;
while(1)

{
PORTA.OUT=counter++;

if(counter >= 10)
counter = 9;
¥
¥

Identify the difference and write in report. Modify the above code to take input from a PINO of
PORT B and reset the counter when a positive edge is detected. Assign the counter values to PORT C.

TIPS: For sensing rising edge you will need to use PINNCTRL — Pin n Configuration Register,
INTIMASK — Interrupt 1 Mask register, and INTFLAGS — Interrupt Flag register. (see page 136-138 in
XMEGA B MANUAL)

Task 4:

This task involves a real microcontroller instead of software simulator. XMEGA B1 Xplained board has
four LEDs i.e. LEDO to LED3. Display some flash pattern over them. You can program more than one
pattern replacing each other after regular interval time (using timer/counter). See appendix to know
about the programming of the device.

http://www.youtube.com/watch?v=r9UFzNEC62E&list=PLA64AEADB04D8968F&index=8

TIPS:

LEDS are connected to PINS of PORTB and you can find the information in Table 4-5. J3 I/O
expansion header of user guide “Atmel AVR1912: Atmel XMEGA-B1 Xplained Hardware User
Guide”. The LEDS and other peripherals can be found in the header file

xmega_b1_ xplained.h.

If you are using delay functions such as delay_ms from delay.h , add the relevant modules in

ASF wizard as shown in following figure. Make sure that you have selected the right project
and add the dependent modules.

delayh led toggle eamplec sysclkc PRI 1ob 01 tosks03 2.c Iab_preparatory 01.c lab_preparatory 02.c
Project: Device: ATxmega128B1
Extensions Version

Available Modules Selected Modules
Ertensions: | Atmel ASFBA7.0) | Show: Al - Tl Generic board support (drive)

— R I System Clock Control (service)
I+ I ST7565R LCD controller (component)

1 W Standard serial /O (stdio) (driver)

1+ WTC - Timer Counter (driver)

1+ B TWI - Two-Wire Interface (Common AP]) (service)
W8 TWI - Two-wire Interface (driver) (lonen =

f n

1B Delay routines (service)
1 GPIO - General purpose Input/Output (service]
1 [OPORT - Input/Output Port Controller (driver)

<0

Info Actions Details

AC - Analog Comparator

m

Appendix
31. Peripheral Module Address Map

The address maps show the base address for each peripheral and module in XMEGA. All penipherals and modules are
not present in all XMEGA devices, refer to device data sheet for the peripherals module address map for a specific

device.

| BaseAddress | Name | Descripon | Fage
0xD000 GPIO General Purpose 10 Registers page 42
0xD010 VPORTD Virtual Port 0 page 132
0xD014 VPORT1 Virtual Port 1
0xD018 VPORT2 Virtual Port 2
0xD01C VPORT3 Virtual Port 3
0xD030 CPU CPU page 19
Ox0040 CLK Clock Control page 96
0xD048 SLEEP Sleep Controller page 101
DxD0S0 osC Oscillator Conirol page 96
0xDOE0 DFLLRC32M DFLL for the 32 MHz Internal RC Oscillator page 96
0xDOG8 DFLLRC2M DFLL for the 2 MHz RC Oscillator
0x0070 PR Power Reduction page 98
0xDO78 RST Reset Controller page 109
0xD0B0 WDT Watch-Dog Timer page 114
0xD0S0 MCU MCU Contral page 42
Ox00AD PMIC Programmable Multilevel Interrupt Controller page 122
0x00B0 PORTCFG Port Configuration page 146
0xD0CO AES AES Module page 292
0x0100 OMA DMA Controller page 62
0x0180 EVSYS Event System page 74
0x01C0 NYM Mon Volatile Memory (NVM) Coniroller page 46
0x0200 ADCA Analog to Digital Converter on port & page 344
0x0240 ADCB Analog to Digital Converter on port B
D380 ACA Analog Comparator pair on port A page 353
D390 ACB Analog Comparator pair on port B
Dx0400 RTC Real Time Counter page 205
Ox0480 TWIC Two Wire Interface on port C page 254
Ox04C0 uUsB Universal Serial Bus Interface page 281
0xD&00 PORTA Port A page 146
0xDE20 PORTB Port B
0xDE40 PORTC Port C
Ox0660 PORTD Port D
Ox0680 PORTE Port E
0xD6CO PORTG Port G
0x0760 PORTM Port M
0x07ED PORTR Port R

Programming the device

You can program the device with your application in two ways

e 1. Programming via Atmel AVR Studio 5 and Atmel AVR tools.
e 2. Programming via the DFU boot loader.

But in the labs, you will program the device visa DFU boot loader. For this purpose DFU programming
software FLIP has already been installed in the lab computer. Therefore, go to Start-> FLIP 3.4.7 and
open it. Select the device according to instruction in the XMEGA-B1 getting started Guide (section
5.2.2). It is important that FLIP uses USB interface to program the ATxmegal28B1 but the boot loader
has to be evoked by shorting pin 6 on J1 to GND if it hasn’t been done already.

http://www.atmel.com/Images/doc8439.pdf

