
Lab 3: Mixing Assembly and C codes

Revised by : Muhammad Imran (Developed by: Muhammad Amir Yousaf)

Date : 2014-11-18

Course : ET032G, Elektroteknik GR (A), Mikrodatorteknik at Mittuniversitetet, Sweden.

Often, C is a language of choice and assembly is included based on the requirements of the application.

AVR GCC compiler for Atmel XMEGA controllers offers a feature of ‘Inline Assembler’ that allows a

low level code in assembly language integration with high level C code in the same project.

This feature is useful in achieving:

o Optimizing time critical and the most performance-sensitive parts of an algorithm.

o Access to processor specific instructions.

o System calls.

With inline assembler high level language code is replaced by human written assembly code, allowing the
programmer to use the full extent of his ingenuity, without being limited by a compiler's higher-level
constructs.

Task 1:
In this task, you will see how c code is translated into assembly code which consists of mnemonics. These

mnemonics are abbreviation for instruction names, symbols for representing variable, registers and

constants.

The Disassembly window is only available when debugging. Enable it by

selecting Debug→Windows→Disassembly or Ctrl+Alt+D during a debugging session.

#include <avr/io.h>
#include <asf.h>
int main (void)
{
 board_init();
 PORTB.DIR=0xFF;
 while(1)
 {
 PORTB.OUT = 0xA0;

 }
}

In the above code PORTB.DIR=0xFF; is translated into assembly code (with no compiler
optimization);

LDI R24,0x20 Load immediate
LDI R25,0x06 Load immediate
SER R18 Set Register
MOVW R30,R24 Copy register pair
STD Z+0,R18 Store indirect with displacement

Each instruction requires certain amount of memory, cycles and use an addressing mode. See the

XMEGA Instruction Set Nomenclature file and identify.

a. Number of bytes required for the above C code?

b. Number of clock cycles required for the code?

Xmega_instruction_set.pdf

c. Types of addressing modes are used and

d. The OPCODE and OPERANTS?

Task 2:
In this task, you will mix C code with assembly code in the same AVRGCC project using the Studio IDE.
A detailed document can be accessed online. The assembly code is written with .S extension in order allow
the compiler to call assembler and linker as required. Commonly, the “main” is written in C code so that
linker is aware of where to start but there is no special requirements for doing this. You can write
subroutine named “main” and declared to be global (using the “.global” directive) will also produce a
module named “main”.

1. Keeping in view the above description, write a C code that intends to call the assembly language
routine. The C code is required to have function prototype declared as external in order to call
assembly language routine. For example

extern unsigned char my_assembly_fct (unsigned char, unsigned int);

The C code passes two unsinged character variables (Var1, Var2), one (Var1) with constant value
and the other (Var2) with incremental values to the assembly subroutine (addition_routine).

2. After writing the C code, write sub-routine in an assembly file with extension .S and it should be

called from a C code written in step1. The assembly language routine needs to be declared as
global in the assembly code in order to make it visible to the C compiler. This is done using the
using the “.global” directive:

.global my_assembly_fct

The language subroutine performs

 addition,

 clear the upper odd number register since addition results fits in 8 bits in this case

 return the value and control from subroutine

Note! Arguments in a fixed argument list are assigned, from left to right, to registers r25 through r8. All
arguments use an even number of registers. This results in char arguments consuming two registers.
Return values use the registers r25 through r18, depending on the size of the return value.

3. The return value in a third variable (Var3) is displayed on LCD. You can add delay function to see

counter values on the LCD.

Write in the report, when it is good to mix the assembly code with C. List some applications with such
requirements.

Task 3:
(a) Write an inline assembly code which uses virtual port O to turn on LEDs in the same fashion as

Task1. In functionality, this code is exactly same as the code in Task1.

 Calculate now the number of bytes and cycles required for this code and compare it with Task1

 values.

(b) Increment the counter and use it to blink LEDs with some delay

TIPS for task3

The format for using inline assembly is given here with two commands. You need to replace the
OPCODE, register and operands with suitable commands, registers and values. Note that register is also
an operand but for sake of simplicity I wrote register.

mixing_assembly_c_code.pdf

asm volatile("OPCODE register, operands" "\n\t"
 "OPCODE operands, register" "\n\t"
);

Page 140/410 and page 394/410 of the XMEGA B MANUAL provides the details on how to map a port

associated with LED to virtual port.

Reference documents

Using XMEGA IOs

Atmel AT1886: Mixing Assembly and C with AVRGCC

XMEGA B Manual.

Appendix: Virtual Ports

Virtual Ports allow mapping of PORTS into IO memory space. Using instructions to access IO memory
space instead of data space is both faster and consumes less program memory.

In AVR XMEGA128B1 we have 16KB data memory with 4KB IO memory which carries the status and
configuration registers for peripherals and module including the CPU.

All data space can be accessed by the Load (LD/LDS/LDD) and Store (ST/STS/STD) instructions
which are used to transfer data between the 32 registers in register file and the data memory. Such
instructions are categorized in ‘Direct Data Addressing’ instructions.

http://www.atmel.com/Images/doc8050.pdf
http://www.atmel.com/Images/doc42055.pdf

XMEGA controllers offer instructions with another addressing mode called ‘IO Direct Addressing’ that
allow faster access the IO Memory with less program memory consumption. The address space in such
instructions is only 6 bit i.e. they can only access up to first 64 bytes IO memory. Examples of such
instructions are IN, OUT instructions.
Virtual Port registers allow IO port registers to be mapped virtually in first 64 bytes and hence make it
possible to access these registers by fast and efficient ‘IO Direct Addressing’ instructions. There are four
virtual ports, and so four ports can be mapped at the same time.

