
muhammad.imran@miun.se

Background subtraction by using scaling technique.

Design for Background subtraction model by using FLASH

col_sub : integer := 640; --- cols total means 640 (640x400)

mem_limit : integer :=640; --- same as col 640

 mem_limit_ram : integer :=4095; --- 1 less than depth 4095

fram_back_sub : integer :=2; --- after how many frames background needs to be stored

fram_cam_sub : integer :=3; --- no need for this after how many frames came frame needs to be forward

fram_limit_sub : integer :=3; --- limit for frame count, after this reset to fram_cam_sub

 width_sub : integer:=14; --- 14-- data size increase because of the summation for averaging.

depth_sub : integer:=81; --- 81-- col/8+1 --- for 8x8 8 elements of a row can scaled to one

addr_sub : integer:=7; --- 7-- how many bits to represent the depth in this 81

width_ram_sub : integer:=8; --- 8 --For grayscale, after averging resultant value is 8 bits

depth_ram_sub : integer:=4095; --- 4095-- how many total locations (640/8)(400*/8)= 4000 bytes

addr_ram_sub : integer:=12 --- 12-- how many bits to represent the depth in this 40000

In FLASH, we need to write 15 pages since we have (640/8 x400/8)=4000 which requires 4000/256= 15

pages. Presently clock frequency is 27 MHz but can be changes to a maximum of FLASH supported. Test

bench has 18.5 ns for a clock period of 37 ns.

Flash erasing

For Flash erasing from sector—page location 410100 use spi_top_module_erase.bit and then press push

button BTCN F5.

Note! FLASH writing only after each power up cycle. In middle, no control for writing.Power off is

needed.

muhammad.imran@miun.se

RTL simulation signals without flash

RTL simulation signals with flash

muhammad.imran@miun.se

RTL simulation signals with FLASH writing once

Please remember that during each background write in FLASH, the internal memory (BRAMs used for

stored background) cannot be accessed for any other purposes.

In particular to our design, add_rd_ram should not be accessed from other processes during

flash_addr_end_o is 00 and 01 (the red marked portion). This is because the FLASH writing speed is slow.

See FLASH we are using: Numonyx's N25Q128 datasheet:

As soon as flash_addr_end_o is 10, the BRAMs can be accessed for subtraction operation for next wake

up and sleep cycles. flash_addr_end_o shows that FLASH writing status.

muhammad.imran@miun.se

Memory contents

FLASH reading with commands from PC

muhammad.imran@miun.se

See the contents from emulated FLASH storing in BRAMs. 1, 127 32.

muhammad.imran@miun.se

Finally subtraction operation

Verification with MATLAB script

For verification of VHDL simulation, following MATLAB script can be run to generate images which can be

compared with images produced by RTL simulation.

Image file name

background_subtraction_v1.m

input images

p_back.bmp, p_objets

MATLAB script

%%%% Image scaling/ Zoom out and Zoom in
%%%%Backgorund image subtraction
clc;
clear all;
wind_col=1;
sum=0;
cols=640;
rows=400;
avg=0;
row_new=1;

muhammad.imran@miun.se

min_img=zeros((rows/8),(cols/8));
zoom_img=zeros(rows,cols);
im_orig=imread('p_back.bmp');
% im1 = im2double(im_orig);
 im1=uint16(im_orig);
 min_img=uint16(min_img);
% im1=im_orig;

figure(1)
imshow(im_orig)

% sum=typecast(sum,'uint16');
% min_img=typecast(min_img,'uint16');

wind_size=8;
wind_row=1;
for row=1:rows,
 col_new=1;
 sum=0;
 avg=0;
 wind_col=1;
 for col=1:cols,
 if wind_col<=wind_size
 sum=sum+im1(row,col);
% avg=sum/wind_col;
 wind_col=wind_col+1;
 end;
 if wind_col==(wind_size+1)
 min_img(row_new, col_new)=min_img(row_new, col_new)+sum;
 if wind_row==8
 min_img(row_new, col_new)=floor((min_img(row_new,

col_new))/(wind_size*wind_size));
 end
 sum=0;
 wind_col=1;
 col_new=col_new+1;
 end;

 end;
 wind_row=wind_row+1;
 if wind_row==(wind_size+1)
 row_new=row_new+1;
 wind_row=1;
 end;
end;

min_img=uint8(min_img);
img_nearest = imresize(min_img, [rows cols], 'nearest');
img_info = sprintf('img_gen.bmp');
imwrite(img_nearest,img_info);
figure(3)
imshow(img_nearest)
title('Nearest Neigh. Image')

muhammad.imran@miun.se

%%%%checking for subtraction%%%%
im_ob=imread('p_objets.bmp');
im_back=imread('img_gen.bmp');
im_diff=im_ob-im_back;
imwrite(im_diff,'img_diff.bmp');
figure(4)
imshow(im_diff)
title('im_diff Image')

