

APPLICATION NOTE

Atmel AT1886: Mixing Assembly and C with AVRGCC

8-bit Atmel Microcontrollers

Features

• Easily mix C and assembly source in Atmel® Studio 6
• C can call assembly routines
• Assembly can call C functions

• Passes variables and pointers between C and assembly

• Allows C and assembly to share global variables

Introduction

This application note describes how to mix both C and assembly code in an
AVRGCC project using Studio 6 IDE. This application note is written from the
perspective that C is the language of choice and assembly language is included in
situations where it is either necessary or convenient.

Studio 6 (and previous versions) will allow you to work with both assembly language
and C files in the same project. The question is how does the software engineer
organize the assembly code and C code? How are parameters, variables, and similar
passed between the assembly code and the C code?

42055B−AVR−11/2012

http://www.atmel.com/Microsite/atmel_studio6/default.aspx�
http://www.atmel.com/Microsite/atmel_studio6/default.aspx�
http://www.atmel.com/Microsite/atmel_studio6/default.aspx�
http://www.atmel.com/Microsite/atmel_studio6/default.aspx�
http://www.atmel.com/Microsite/atmel_studio6/default.aspx�

Atmel AT1886: Mixing Assembly and C with AVRGCC [APPLICATION NOTE]
42055B−AVR−11/2012

2

Table of Contents

1. Pre-requisites ... 3

2. Project organization ... 3

3. Function visibility .. 3

4. Variables .. 4

5. Register usage ... 4

6. Parameter passing ... 5

7. How to build and run the demo .. 5

8. Required hardware .. 5

9. Hardware setup .. 5

10. Procedure .. 6

11. References ... 6

12. Revision history .. 7

Atmel AT1886: Mixing Assembly and C with AVRGCC [APPLICATION NOTE]
42055B−AVR−11/2012

3

1. Pre-requisites
The solution discussed in this document requires basic familiarity with the following skills and technologies. Please refer
to Chapter 11 References to learn more.

• Atmel Studio 6

• Atmel debugger JTAGICE mkII or JTAGICE 3

• Atmel STK®600 Starter Kit

2. Project organization
There are no special requirements for organizing the project. Files identified as header files, whether C code or
assembly, will be placed in the Header files folder of the project. Files identified as source files will be placed in the
Source files folder of the project.

Although not strictly required, all assembly language source files should have an”.S” extension. This will allow the C
compiler frontend to automatically call the assembler and linker as needed. In addition, the C preprocessor will be
invoked automatically allowing the user of symbolic constants.

One of the source files will need to produce a “main” module for the linker so that the linker knows where to start the
application. The most common is a C code file with a function called “main”. However, an assembly file with a
subroutine named “main” and declared to be global (using the “.global” directive) will also produce a module named
“main”.

Combining C and assembly in a single project raises several questions depending on the needs of the application.
These questions might include:

• How can an assembly routine be made visible to the C compiler such that a C function can call the assembly
routine?

• Similarly, can a C function be made visible to an assembly routine such that the assembly routine can call the
C function?

• How are variables passed to the assembly code?

• How are variables passed to the C function?

• Can the assembly code and C use the same global variables?

3. Function visibility
A C language function needs to be declared as external in the assembly code in order to be “seen” by the assembler:

.extern my_C_function

An assembly language routine needs to be declared as global in the assembly code in order to be visible to the C
compiler. This is done using the using the “.global” directive:

.global my_assembly_fct

In addition, a C file that intends to call the assembly language routine will need to have a function prototype declaring
the assembly language routine to be external:

extern unsigned char my_assembly_fct (unsigned char, unsigned int);

http://www.atmel.com/Microsite/atmel_studio6/default.aspx�
http://www.atmel.com/tools/AVRJTAGICEMKII.aspx�
http://www.atmel.com/tools/JTAGICE3.aspx?tab=overview�
http://www.atmel.com/tools/STK600.aspx?tab=overview�
http://www.atmel.com/tools/STK600.aspx?tab=overview�
http://www.atmel.com/tools/STK600.aspx?tab=overview�

Atmel AT1886: Mixing Assembly and C with AVRGCC [APPLICATION NOTE]
42055B−AVR−11/2012

4

4. Variables
Both the C code and the assembly code can access variables independently. As a practical matter it is advisable to let
the C code manage the variables and pass parameters to the assembly code either by value or by reference. The
Chapters 5 Register usage and 6 Parameter passing describes how the registers sets are used by the C compiler and
how parameters are passed.

It is possible for both assembly and C to access the same global variable. Such a variable would need to be a global
variable in the C code and declared as external in the assembly code. Consider a variable “my_value” intended to be
global. In the C code it would be declared, outside of any function, like any other variable:

unsigned char my_value;

In the assembly it would be coded:

.extern my_value

5. Register usage
Writing assembly language routines to mix with C code requires knowledge of how the compiler uses the registers:

• r0 is a temporary register and can be used by compiler generated code. If you write assembly code that uses
this register and calls a C function, you will need to save and restore this register since the compiler might use
it

• r1 is assumed by the compiler to always contain zero. Assembly code that uses this register should clear the
register before returning to or calling any compiler generated code

• r2-r17, r28, r29 are “call-saved” registers meaning that calling C functions should leave these registers
unaltered. An assembly language routine called from C that uses these registers will need to save and restore
the contents of any of these registers it uses

• r18-r27, r30, r31 are “call-used” registers meaning that the registers are available for any code to use.
Assembly code that calls a C function will need to save any of these registers used by the assembly code
since compiler generated code will not save any of these registers that it uses

Table 5-1 summarizes the register interfaces between C and assembly.

Table 5-1. Summary of the register interfaces between C and assembly.

Register Description Assembly code called from C Assembly code that calls C code

r0 Temporary Save and restore if using Save and restore if using

r1 Always zero Must clear before returning Must clear before calling

r2-r17

“call-saved” Save and restore if using Can freely use r28

r29

r18-r27

“call-used” Can freely use Save and restore if using r0

r31

Atmel AT1886: Mixing Assembly and C with AVRGCC [APPLICATION NOTE]
42055B−AVR−11/2012

5

6. Parameter passing
Arguments in a fixed argument list are assigned, from left to right, to registers r25 through r8. All arguments use an
even number of registers. This results in char arguments consuming two registers. Additional arguments beyond that
which will fit in the registers are passed on the stack.

Arguments in a variable argument list are pushed on the stack in right to left order. Char arguments consume two bytes.

Return values use the registers r25 through r18, depending on the size of the return value. The relationship between the
register and the byte order is shown in Table 6-1:

Table 6-1. Relationship between the register and the byte order.

Register r19 r18 r21 r20 r23 r22 r25 r24

Byte order b7 b6 b5 b4 b3 b2b b1 b0

7. How to build and run the demo
The demo code includes simple functions to illustrate calling assembly language routines from within C and to pass
parameters between the two languages. In addition, an assembly language interrupt service routine is included.

The code begins by calling the “change_clock” assembly language routine which changes the clock prescaler passing
to the routine a new prescaler value.

The code then calls an assembly language routine to add two passed parameters together returning to C the result of
the addition.

The code then initializes Timer 0 to produce a periodic interrupt and then the code stays in a “while” loop. An assembly
language interrupt service routine toggles Port D, bit zero when an interrupt occurs.

8. Required hardware
• An Atmel STK600 starter kit

• STK600-ATmega2560 card (included with the STK600)

• An Atmel debugger (JTAGICE mkII, JTAGICE 3, Atmel AVR Dragon™, etc)

• Atmel Studio 6

• 10-pin IDC ribbon cable (included with the STK600)

9. Hardware setup
Make the following connections on the STK600 board:

• Mount the STK600-ATmega2560 card on the STK600

• Connect the 10-pin ribbon cable between the PORTD and LED headers

• Connect the debugger’s cable to the device’s JTAG header on the STK600

http://www.atmel.com/tools/STK600.aspx?tab=overview�
http://www.atmel.com/products/microcontrollers/avr/stk600_socket_selection.aspx#megaAVR�
http://www.atmel.com/tools/STK600.aspx?tab=overview�
http://www.atmel.com/tools/AVRJTAGICEMKII.aspx�
http://www.atmel.com/tools/JTAGICE3.aspx?tab=devices�
http://www.atmel.com/tools/AVRDRAGON.aspx�
http://www.atmel.com/Microsite/atmel_studio6/default.aspx�
http://www.atmel.com/tools/STK600.aspx?tab=overview�
http://www.atmel.com/tools/STK600.aspx?tab=overview�
http://www.atmel.com/products/microcontrollers/avr/stk600_socket_selection.aspx#megaAVR�
http://www.atmel.com/tools/STK600.aspx?tab=overview�
http://www.atmel.com/tools/STK600.aspx?tab=overview�

Atmel AT1886: Mixing Assembly and C with AVRGCC [APPLICATION NOTE]
42055B−AVR−11/2012

6

10. Procedure
1. Download the AT1886.zip file from www.atmel.com.
2. Unpack the files into a working directory.
3. Open the AVR1886.atsln project file with Atmel Studio 6.
4. Choose your debugger tool in the Studio box.
5. Specify the ATmega2560 as the target device.
6. Build the project.
7. Enter debug mode.
8. Run the application.
9. Add “val_1”, “val_2”, and “val_3” to the watch window.
10. Set a breakpoint on the “val_1 =” assignment in main.
11. In the Processor tab on the right, expand the registers view.
12. Click the run button. The code should execute the “change_clock” function and then break.
13. Use the single step function to step through the next instructions until you reach the “init_timer_0” function call.

You should be able to observe the parameter get passed via registers from C to the assembly routine
“add_two”.

14. Once you reach the “init timer_0” function, click the run button. This will initialize the timer using C and enable
a periodic interrupt from the timer. The interrupt service is in assembly. You should see the LED on PD.0 blink.

11. References
1. Atmel Studio 6 – www.atmel.com
2. Atmel AVR JTAGICE mkll – www.atmel.com
3. Atmel JTAGICE 3 – www.atmel.com
4. Atmel STK600 - www.atmel.com

http://www.atmel.com/�
http://www.atmel.com/Microsite/atmel_studio6/default.aspx�
http://www.atmel.com/Microsite/atmel_studio6/default.aspx�
http://www.atmel.com/�
http://www.atmel.com/tools/AVRJTAGICEMKII.aspx�
http://www.atmel.com/�
http://www.atmel.com/tools/JTAGICE3.aspx�
http://www.atmel.com/�
http://www.atmel.com/tools/STK600.aspx�
http://www.atmel.com/�

Atmel AT1886: Mixing Assembly and C with AVRGCC [APPLICATION NOTE]
42055B−AVR−11/2012

7

12. Revision history
Doc. Rev. Date Comments

42055B 11/2012 The document is renamed from AVR1886 to AT1886

42055A 11/2012 Initial document release

Atmel Corporation
1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Bldg.
1-6-4 Osaki, Shinagawa-ku
Tokyo 141-0032
JAPAN
Tel: (+81)(3) 6417-0300
Fax: (+81)(3) 6417-0370

© 2012 Atmel Corporation. All rights reserved. / Rev.: 42055B−AVR−11/2012

Atmel®, Atmel logo and combinations thereof, AVR®, Enabling Unlimited Possibilities®, STK®, and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Pre-requisites
	2. Project organization
	3. Function visibility
	4. Variables
	5. Register usage
	6. Parameter passing
	7. How to build and run the demo
	8. Required hardware
	9. Hardware setup
	10. Procedure
	11. References
	12. Revision history

