Revision

- Read through the whole course once
- Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself
- Do all assignments again
- Do the specimen examination paper
- If you have more time, do some more exercises: A number of old exam papers with solutions are available in pdf-format via the course website, and you can also find more exercises from the book.

Block 1 - Sets and counting

- Sets
 - Sets and subsets. The powerset of a set. Use of binary strings to count and list subsets.
 - Using rules of inclusion and Venn diagrams to represent sets.
 - Complement, union, intersection and difference of sets. Representation of these operations in Venn diagrams.
 - Laws of set operations. Associative laws, distributive laws, De Morgan's laws. Verifying these using Venn diagrams.
 - Partitions of sets.
 - Cartesian product of sets.
 - The sets \mathbb{N} , \mathbb{Z} and \mathbb{Q} .
- Counting.
 - Cardinality of sets.
 - The addition principle.
 - The multiplication principle.
 - The principle of inclusion-exclusion for 2 and 3 sets.
 - Permutations
 - Combinations. Binomial coefficients.

Block 2 - Sequences, strings and summation notation

- Sequences
 - Definition by initial term and recurrence relation
 - Definition by general term
 - Proof by induction that a sequence defined by initial term and recurrence relation has a given general term (cf. Block 5)
 - Solution of linear homogeneous recurrence relations (cf. Block 5)
- Strings
 - In particular binary strings and their connection with subsets (cf. Block 1).
 - The null string λ .
 - Concatenation of strings.
- Sums and products
 - Expressing sums in \sum -notation.
 - Rules of arithmetic for \sum -notation.
 - Changing the variable in \sum -notation
 - Expressing products in \prod -notation.

• The sum
$$\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$$

Main Topics in Block 2 (cont.)

- Number bases
 - The Division Algorithm.
 - Principle of place value.
 - Conversion between bases, in particular hexadecimal, octal, binary and decimal systems.

Block 3 - Integers and Divisibility

- Integers
 - Multiples and factors, what it means for numbers to be multiples and factors of each other. The notation b|a.
 - Definition of composites, units and primes.
 - Some divisibility rules
 - A simple primality test
 - Factorisation. Statement of the Fundamental Theorem of Arithmetic.
- Greatest common divisor of two integers a and b.
 - Euclid's Algorithm.
 - Using Euclids Algorithm to express gcd(a, b) as a linear combination of a and b.
 - The set of linear combinations of a and b is the same as the set of all multiples of gcd(a, b).

Block 4 - Modular Arithmetic, Relations and functions

- How to use a directed graph (digraph) to represent a relation on a finite set.
- Properties of relations
 - Symmetric relations
 - Antisymmetric relations
 - Transitive relations
 - Reflexive relations
 - Equivalence relations and equivalence classes
 - Partial orders
- The congruence $(\mod n)$ relation
 - Ways of defining congruence (mod n).
 - Rules of arithmetic for congruences.
 - Congruence classes.
 - Finding all solutions to congruences $ax \equiv b \pmod{n}$.

Main Topics in Block 4 (cont.)

- \mathbb{Z}_n the set of congruence classes modulo n
 - Defining addition \oplus and multiplication \odot for \mathbb{Z}_n .
 - Computing multiplication and addition tables for \mathbb{Z}_n .
 - Rules of arithmetic for \mathbb{Z}_n .
 - Definition of zero-divisors and multiplicative inverses.
 - $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if gcd(a, n) = 1.
 - Using Euclid's Algorithm to find the multiplicative inverse of $[a]_n$ in \mathbb{Z}_n if gcd(a, n) = 1.
 - Finding all solutions to equations $[a] \odot [x] = [b]$ in \mathbb{Z}_n .

• Functions

- Definition of a function
- Domain and range
- Injections (functions that are 1-1)
- Surjections (functions that are onto)
- Bijections (1-1 correspondences).
- Composition of functions
- Inverse function.
- A function has an inverse if and only if it is 1-1 and onto.

Block 5 - Logic and Proof

- Logic
 - Propositions.
 - Combining statements using NOT, AND and OR.
 - Conditional and Biconditional Statements. Necessary and Sufficient conditions.
 - Truth tables for p AND q, p OR q and $p \Rightarrow q$.
 - The contrapositive of a proposition.
 - \bullet The quantifiers \forall and \exists
- Methods of Proof
 - Direct proof
 - Proof by contradiction
 - Proving \iff by proving \Rightarrow and \Leftarrow .
 - Proof by counterexample
 - Proof by induction
- More about sequences
 - Proof by induction that a sequence defined by initial term and recurrence relation has a given general term (cf. Block 2)
 - Solution of linear homogeneous recurrence relations (cf. Block 2)

Block 6 - Graph Theory

Main Topics in Block 6

- Graphs, simple graphs, loops, multiple edges
- Digraphs, arcs
- Subgraphs
- The degree of a vertex.
- The Handshaking Lemma.
- Paths, simple paths, cycles and simple cycles
- Connected graphs. Components.
- Complement of a graph
- Special types of graphs
 - Regular graphs
 - Complete graphs K_n
 - Bipartite graphs
 - Complete bipartite graphs $K_{m,n}$
 - Trees
- Adjacency matrices
- Incidence matrices
- Graph Isomorphisms

9–MA014G Revision

Main Topics in Block 6 (cont.)

- Trees
 - Definition: A tree is a connected graph without cycles
 - In a tree there is a unique (simple) path between any pair of vertices
 - A tree on n vertices has n-1 edges
 - Rooted trees and the terminology surrounding them
 - Spanning trees
 - Breadth-First-Search (BFS) spanning trees
 - Depth-First-Search (DFS) spanning trees
 - Minimal/Maximum weight spanning trees (MSTs) for weighted graphs
- Eulerian and Hamiltonian Graphs
 - A graph has an Euler cycle if and only if all vertices have even degree
 - Know how to find an Euler cycle in a small graph.
 - Know a necessary condition for a graph to have a Hamiltonian cycle.

Main Topics in Block 6 (cont.)

- Weighted Graphs
 - Dijkstra's Algorithm for finding the shortest path between two given vertices.
 - Kruskal's or Prim's algorithm for finding an MST
- Traveling Salesman Problem
 - Shortest route is not necessarily a Hamiltonian cycle unless the graph satisfies the triangle inequality.
 - Often an exact solution is too expensive to find, so an approximated solution may be preferable.
 - Nearest neighbour approximations to the solution.