MA014G

Algebra and Discrete Mathematics Suggested Solutions to Assignment 4

Question 1

- (a) (i) R is reflexive if $(a, a) \in R$ for all $a \in S$;
 - (ii) R is symmetric if whenever $(a, b) \in R$ then $(b, a) \in R$ also, for all $a, b \in S$;
 - (iii) R is transitive if whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$ also, for all $a, b, c \in S$;
 - (iv) R is anti-symmetric if whenever both $(a, b) \in R$ and $(b, a) \in R$ then a = b, for all $a, b \in S$.
- (b) R is the following relation on $S = \{a, b, c, d, e\}$.

$$R = \{(a, a), (b, b), (c, c), (e, e), (a, e), (e, c), (d, b), (c, d)\}$$

(i) It has the relation digraph

(ii) To make R symmetric you have to add the following set of pairs:

$$R = \{(e, a), (c, e), (d, c), (b, d)\}.$$

(iii) To make R reflexive, you have to add the following set of pairs:

$$\{(d,d)\}.$$

(iv) To make R transitive, first notice that you have to add (a,c) as $(a,e) \in R$ and $(e,c) \in R$. Next you have to add (a,d) as $(a,c) \in R$ and $(c,d) \in R$. Then you have to add (a,b) as $(a,d) \in R$ and $(d,b) \in R$. Similarly you have to add (e,d), (e,b) and (c,b). Hence the set of pairs which has to be added is

$$\{(a,c), (a,d), (a,b), (e,d), (e,b), (c,b)\}.$$

(v) The relationen R is anti-symmetric as the relation digraph has no 'double-arrows' between any pair of distinct points, i.e. $(x, y) \in R$ and $(y, x) \in R$ only when x = y.

1

Question 2

```
(a) R = \{(1000, 1000), (1000, 100), (1000, 10), (1000, 1), (100, 1000), (100, 100), (100, 10), (100, 1), (10, 1000), (10, 100), (10, 10), (10, 1), (1, 1000), (1, 100), (1, 10), (1, 1), (-1, -1), (-1, -10), (-1, -100), (-10, -1), (-10, -10), (-10, -100), (-100, -1), (-100, -10), (-100, -100)\}
```

(b) The relation digraph, of the relation R on $X = \{-100, -10, -1, 0, 1, 10, 100, 1000\}$ defined by $(x, y) \in R$ if xy > 0, is

(c) No, R is not an equivalence relation as $(0,0) \notin R$ so R is not reflexive.

${\bf Question} \ \, {\bf 3}$

(a) The multiplication table for \mathbb{Z}_{12} is:

\odot	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
[2]	[0]	[2]	[4]	[6]	[8]	[10]	[0]	[2]	[4]	[6]	[8]	[10]
[3]	[0]	[3]	[6]	[9]	[0]	[3]	[6]	[9]	[0]	[3]	[6]	[9]
[4]	[0]	[4]	[8]	[0]	[4]	[8]	[0]	[4]	[8]	[0]	[4]	[8]
[5]	[0]	[5]	[10]	[3]	[8]	[1]	[6]	[11]	[4]	[9]	[2]	[7]
[6]	[0]	[6]	[0]	[6]	[0]	[6]	[0]	[6]	[0]	[6]	[0]	[6]
[7]	[0]	[7]	[2]	[9]	[4]	[11]	[6]	[1]	[8]	[3]	[10]	[5]
[8]	[0]	[8]	[4]	[0]	[8]	[4]	[0]	[8]	[4]	[0]	[8]	[4]
[9]	[0]	[9]	[6]	[3]	[0]	[9]	[6]	[3]	[0]	[9]	[6]	[3]
[10]	[0]	[10]	[8]	[6]	[4]	[2]	[0]	[10]	[8]	[6]	[4]	[2]
[11]	[0]	[11]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

- (b) From the table in (a) you can see that the equation $[8] \odot [x] = [4]$ has the four solutions [x] = [2], [x] = [5], [x] = [8] and [x] = [11] in \mathbb{Z}_{12} .
- (c) From the table in (a) you can see that the equation $[8] \odot [x] = [2]$ has no solutions in \mathbb{Z}_{12} .

Uppgift 4

In Question 3 of Assignment 3 we found that gcd(3571, 1753) = 1 and that

$$1 = (-863) \cdot 3571 + (1758) \cdot 1753,$$

so the multiplicative inverse of [1753] $\in \mathbb{Z}_{3571}$ is [1758] and the equation has precisely one solution in \mathbb{Z}_{3571} , which you can find by multiplying the equation through by [1758] to get

$$[x] = [1758] \odot [3] = [5274] = [1703].$$

Uppgift 5

- (a) To solve the equation $[14] \odot [x] = [4]$ in \mathbb{Z}_{150} :
 - (i) gcd(14, 150) = 2, so there are two solutions in \mathbb{Z}_{150} and we need to solve the reduced equation $[7] \odot [x] = [2]$ in \mathbb{Z}_{75} .
 - (ii) Now the multiplicative inverse of [7] in \mathbb{Z}_{75} is [43] as $43 \times 7 = 301$. Hence the reduced equation has the solution

$$[x] = [43] \odot [2] = [86] = [11] \text{ in } \mathbb{Z}_{75},$$

(iii) and the original equation has the two solutions

$$[x] = [11]$$
 and $[x] = [86]$ in \mathbb{Z}_{150} .

- (b) To solve the equation $[14] \odot [x] = [4]$ in \mathbb{Z}_{151} :
 - (i) We use Euclid's algorithm to find gcd(14, 151):

$$151 = 10 \cdot 14 + 11;
14 = 1 \cdot 11 + 3;
11 = 3 \cdot 3 + 2;
3 = 1 \cdot 2 + 1;
2 = 2 \cdot 1 + 0.$$

Hence gcd(151, 14) = 1 because the last non-zero remainder is 1.

This means that the equation has precisely one solution in \mathbb{Z}_{151} and the reduced equation is the same as the original equation.

(ii) To find the multiplicative inverse of [14] in \mathbb{Z}_{151} , work backwards through Euclid's algorithm to find

$$1 = 3 - 2 = 3 - (11 - 3 \cdot 3) = 4 \cdot 3 - 11$$
$$= 4(14 - 11) - 11 = 4 \cdot 14 - 5 \cdot 11$$
$$= 4 \cdot 14 - 5(151 - 10 \cdot 14)$$
$$= 54 \cdot 14 + (-5)151$$

so the multiplicative inverse of [14] $\in \mathbb{Z}_{151}$ is [54]. Hence the equation has the solution

$$[x] = [54] \odot [4] = [216] = [65]$$
 in \mathbb{Z}_{151} .