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_GRAPH THEORY EXAMPLES
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Defining a graph

hérn '
A graph consists of a set of points, called vertices, and a set of
lines connecting these vertices, called edges. o

Rordee
I two or more edges are joining the same pair of vertices, this is
called a multiple edge.
madiizel heunk 3
An edge that connects a vertex to itself is-called a lodp.
A sﬁﬁf&lé’ gréph_ is a graph without loops or multiple edges.

Example 6.1 Ezample of o simple graph, a graph with
multiple edges, and a graph with o loop: |

Q)Z.

7o

Note: unless otherwise specified, when we refer to a graph, we
mean a simple graph.

=




Formal definition of a simple graph

A simple graph G = (V, E) consists of a non-empty set V of
points, called vertices and a set F of unordered pairs of vertices
called edges.

Example 6.2 For the following graph the vertex set
V = {1, v2,v3,v4, U5}
and the edge set is

E = {('017 '02)7 (Ub 'U3)> ('027 '03)7 ('U2> '05)7 ('U37 '04)7 (U‘h '05)}"

-

U1 (%]

>

U3 Vg

Note that the edges are unordered pairs of vertices, so for
ezample the edge (vy,v3) could also have been written as

(vs, v1).
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A sub§raph H of a graph G is a graph whose sets of vertices and
edges are subsets of the sets of vertices and edges respectively of

G.
Example 6.3 In the following, H s a subgraph of G

o7 87
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Directed graphs

«}».;:%.g ‘ '
A directed graph (or digrzph) 1s a graph in which every edge is
given a direction. These directed edges are called arcs.

i
meaie
S

Example 6.4 Ezample of a digraph:

Z :




valgns ol l}"‘”.i
The Degree of a Vertex

STV

Two vertices are said to be adjacent if there is an edge that
joins them. An edge e is said to be incident to a vertex v if e

-
~nghiile

joins v to some other vertex.
4

e f s,

Each vertex in a graph has a degree; this is the number of edges
that are incident to it. If a vertex v has degree r, we write

S(v)=r.

Example 6.5 Any number of vertices in a graph may have
the same degree. |

U1 V2 v
Us

U4

o(v) =2, 6(va) =3, 6&(vz)=5, 0(va) =2, &vs)=2

Note that this graph 1s not simple. The loop contributes 2
towards the degree of vs. This is because we think of the loop
as being an edge (vs, v3).




In a digraph each vertex has two types of dedl ee; indegree and
outdegree. The indegree is the number of ATeS coming into the
vertex while the outdegree is the number of arcs leaving the

vertex.

Graphs can be used to model a number of situations in the real
world.

Example 6.6 Graphs can be used to represent real world
relationships such as ‘is a’:

Rover
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The Degree Sequence

The degree sequence of a graph is the list of the degrees in
~ non-decreasing order.

Example 6.7 Degree sequences:

The degree sequence is: 1,2,2,83,/

®
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A regular graph is a graph in which every degree is the same.

| Example 6.8 A regular graph:

This graph is 3-7‘69’&[(1,7“ i.e. every verter has degree 3.

P e(@f AT

The cvgt)mplete graph K, is simply the (simple) graph on n vertices
where evely pair of distinct vertices are joined by an edge.

Example 6.9 The complete graph K is(n—1)— regular
Here 1s Kg:

This graph is 5-reqular.




Theorem (Hand Shaking Lemma) (57 .22 |
In any graph the sum of the d'egree sequence 1s
2 X the number of edges.

Thus a graph with degree sequence 1,1,2.2.3,3 must have 6 edges,
as the sum of the degree sequence is 12. -

Note that the degree sequence does not uniquely define the
graph. Two different graphs may have the same degree sequence,
as we shall see in the next example.

Example 6.10 Two different graphs that both have degree
sequence 1,1,2,2,8,8: )




Example 6.11 Prove that there cannot be a graph with
degree sequence 2,2,3,5,3.

Solution

The sum of the degrees is 2+2+8+8+8=18. This is odd but
the sum of the degree sequences of a graph is twice the
number of edges and so is even. Therefore this degree
sequence cannot represent a graph.

Example 6.12 Prove that there cannot be a graph with
degree sequence 0,2,2,3,4,5.

'

Solution

Only five of the vertices are connected by one or more edges
and thus each vertex can be connected to at most four other
vertices. This means that the degree of a vertex can be at
most four, but one vertex has degree five. This contradicts
this degree sequence coming from a graph.




Corollary 1

The sum of the degree sequence of a graph is an even number.

Corollary 2

In any graph the number of vertices of odd degree is even.

Example 6.13

If G is a regular graph of degree v on n wvertices, then G has
nr/2 edges.

The complete graph K, is (n — 1)—reqular and thus h;zs
n(n —1)/2 edges. |

S0 for example Kg has 15 edges.
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Blpartlte graphs :

A bipartite graph is a graph in which the vertices can be
partitioned into two sets such that each vertex in either part is
connected only to vertices in the other part.

Qa{\

Example 6.14 A bzpartzte graph:

o

An easy way to test if a given graph G is bipartite is to use the

-

following result:

- Theorem |
A graph G s bipartite if and only if

there 1is a 2-colouring of the vertices of the graph so that no
two adjacent vertices have the same colour.

A 2-colouring is just a colouring using 2 colours only.




Example 6.15 Are these graphs bipartite?

-&




A bipartite graph is a graph in which the vertices can be
partitioned into two sets V7 and V5 such that each vertex in either
part is connected only to vertices in the other part.

i ; v ELPY % & By B-,'X- f@

The bipartite graph is said to be a complete blpartife graph

if every vertex of V; is adjacent to every vertex of V5. If Vil =m
and |V3| = n we call the graph Kp, 5.

Example 6.16 Here are K9, Koo and Koj.

%)




The complement of a graph.
The complement G of a graph G = (V, E) is the graph
G = (V,E), where F is the set of all edges that are not in E.
That is
(1/1}!2)6 E N @lglg)g E.

Example 6.17 Find the complement of the following two

graphs.
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Adjacency ul\/Iatrices

It is possible to represent a graph with n vertices by an n x n
matrix that states which vertices are adjacent; this is called an
adjacency matrix.

If two vertices v; and v; are connected in the graph then there is
a 1 placed in the positions (%, ) and (4,1) in the adjacency
matrix, otherwise these locations contain a 0. The matrix is
therefore symmetric about the diagonal.

Example 6.18 For the graph G = (V, E) where
V= {vla V2, U3, V4, ’05} and
E = {(’Ul, U?)) (vh ’1)3), (7)27 ,03)7 (,U27 U5)7 (U37 U4)}-

4] (]
Z ;
Us Uy

the adjacency matriz is:

(01100
110101
111010
00100
01000




Adjacency Matrices for digraphs

"The concepts of an adjacency matrix QUM
graph can be generalised to include dlgraphs

Example 6.19 For the followz'ng digraph.:

U1 V2

P

U3 Uy

The adjacency matriz is:

O OO O OO O
cC oo o~ |
OO O b
cCo R, oo
O OO = O

For a digraph the adjacency matrix need not be symmetric about
the diagonal.




Result

The sum of the entries in the ith row (or column) of the
adjacency matriz of a simple graph G is the degree of the
vertez v; corresponding to that row (or column).

Example 6.20 For the graph G = (V, E) where
V = {?}1,’02,’1)3,?}4,7}5} and ' |
E= {(Ula UQ)) (’Ul) U3)7 <U27 rU3)7 (7)27 105)7 <’U3, U4)}° |

Uy )
Z ) V
V3 (37}

we found the adjacency matriz to be

(01100

O O
O = O
O = O
e B e B
O OO

Note that the sum of the entries in row/column 2 is 8 because

5(’02) = 3.

_J




The inc¢idence malx of a Sr&fh G uw<th n verices and
m eolses s on nxm-makrix whose rws are labe lled bb the

vertias of G and Whose columns axe lobollid l’b +he eclaes
of G. |

The enhy in ow colwnnJ' is | @ verlex ¢ s on edseJ')

and 0 oltheruise,

ExenpLE \

The ¢ el\m»:.ns sm‘ﬁ»

@ e, <

b &y

€,

has  incldence madrix

@ ] o o | ¢ o
) ¢ o o | | | o
¢ ! I o o o o |
d © o | | o o |
e © 1 ) 0o o © o

Note that n « aroph withoud loops each column hes precisely

Yoo Vs,

(Q Colrn Cmspo—nd»!ns o o loop has J‘us'l; one I.)




PATHS and GQYCLES

ik
Q Fc:!:h w. G Smf‘h S on o.liemc}.ins Se_,uwnce o? Vev‘:n'ces and eo\ses
(V‘) e‘)vt) C;’ v‘;)QS) V.',e.') Vs) ...) eh‘l) Vl)

samch thal e;=(v;) Vin) S o ee\se of the srnfk for oll de s h-|

Example

(a, ©),b,8,¢, e, b, &,e)
is a Pw&s from verlex o do verley e . the gnph belews,

When the 5-@,?\; X3 S.i.mf\e ) we de no List 'H\g eclses wn the
pa:L\w) so for e_:«o.mfle the Ped:k Lo the -exoum’)k obove
woudd be Quen as

Cq|b'c} b,e)

Qa Simple Pc&‘n wn o grogh is a Pa’ck with no Rpec&ecl vertices.

Examgle; (ab,cde) is a simple Pa&k}a 1he amph beloaw,

The !ensgﬂ o‘- G (Simp\e) PAE\\ 1S 'L‘\Q ‘\Mm\u’ 02 %@5 u'\. 'L‘\Q Fﬁ.‘&k




Y
Q c‘_ss‘-!e w o groph iS G path (V.,VI).,..)V.,_) where V=V, .

which has ne RPeeroL edges and  whese hnjLB y 1,

E)(&mgle
(a'\a,d, e)b,c'c..)

is o cbc\e w the S‘“f“ below.

Q. SimP!e cac\e. wn e 3“’1’\" is & cbcle (v”v.,_’,..,vh)
with no ~epecked vertex excegt VvzV,.

Ekgg’g ’ (q\b,cl,a) s o simgl c:‘c\e w  the sm.P\'\ below




CONNECTED GRAPH

e nndhA,
Cor ey s T

AW goeh G s cor;hec!»eci if ther is a gg{\n be buseen
St Powr of vertices of G.

i T D e
AT

T

a S‘“‘?\” which is not connected. is Soid 1o be A;svcw echd )
Such o grogh con be postitioned

ko connecled su.\bsmfaks
colled Components.

e F wf\uﬂi a

EXOmE\o. ‘

Q duscennecled 5@9\\ wth Y Co—m';cnen":s:
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TSOMORPHISH OF GRAPHS

When owe dweo grauphs lhe ‘same’ 2
EXAHALE
T‘oe o 5@‘53
. i 2
1) 3
e G, G
d Y

con be considered 1o be ‘ithe same’ in the ec“olun‘ns oty !
IR we wdohedl the vekices of G, we qek G, such thal
the eo\ses w G, CorreSPoncl 1o the eo\se.s n G,.

b= G- C22 d-Yy

edge (ah) cowesponds to (1)3)
edge  (b¢) comaspords to (1,2)
edge (5,d) comesponds o (1,4
edqe (c,d) cms\bom\s b (4)

BQF:NW‘oM

Lei C, and G, be luwo simple mpks

G, ard G, owe soid Lo be .som‘aﬁ;ﬁ? 1 and onl:J if
there is o B\A&%«on Q@ belween +the vedices of G, ond
the vekices of G, such that |

if ey y) s an edqe o? G, lhan (?(x))q’(b)) IS an edqge of C’a“’




- Emegl_e | .
Which of the Qo“o«.—ms Po..u: of 5‘“‘?’“ e i$omor/>h£c?

¥

wes

YIS
B0y e v N"_.,f:'

> MO0 o o

: . Bo 'l g "x\cvél no{ Lo
| s

e cne.sb. de,.
e olee oneis

B 8 °"" ““A
as subqroch, the
othar E&S_ rot.




Ra suld

= N

I£ twe Sﬂ;.l‘g\'\s (r and G oxe, lSemorP}\a.c "H)En

. -l-.\u: hm the some number of verdices
o bhay houe the vso.me‘ b e of edges
. {-.\\..5 hoar the some &;3«. Se_;wmce'

Hub howse the S¢>m€ S%ucku{ so 1¥ one s
‘b;PoAn¥: So lS 4:he o-“u.r

¢ ¥ one ’ms a A"Su)a'smfh so has Jha othas

*
;' Nete  The above result s on&a useful  for Prouc_ns. Jhot ;wo

.|S ho‘!‘, so.:L.sP.eo(

c) iF one of e bubia pos L

-’—mu,b\e is +that 'tu.;o S‘“‘P"s scdus%anj 18 \auJLuL
poirds may s%:” be non-isemorphuc.

To  show ILJ‘\CJ: ‘H'\ms 9-:-__!_ nSc:rnOrP\uc u.u. nwus{ set
wp o bisec\-\'cm b&w yg-&fces magping e:_:l&es 4o Edses,

e ———

e —

| Two )gm-p\wﬁ ot i$0mo+?\\2.c <=
K This reswt is usebul it dhe Smphs})m& o lot of eA&es:

+heir Com'f;"&hﬂen{s ot fSomo,?‘\,{c 3

these owe iSomorphic as both

houst. comP\e,m ent / ®
‘ )

(s



Y o=

TREES

O {res is o connecled groph wdth no cacles.

EXANMPLES

tees
R oy

THEOREM
T"u. 'eo“o-\.u-?.ns Qurt. Qiuivden,::
O T is o connecled qrph with ne cades

® Tis o smple gaph with the properky that
thewe is o wnigua path belween Onsy pair

o vekices v and w.

T};;, Qﬁ ?,ﬁ%

i I ! 1., 1 -
Let T 22 o &rew om n verkizes, then T has n-f @"5




A rocted e is one in which we have spec;f.'eoL
vertices 1o be the roct,

EXAMPLE Some ‘I'erm:ncleﬁs for rooled frens:

one of the

1S is ok level O

34 owe ok lewel |

@z‘ae)u,!z owre ok level 2

The haiehk of Yhis hes is 3

I and 12 ore the childien o2 v
1% is E‘QM of lo

D s on ancaster of 2

D 5 NOT an oncaslor of &



DEFINI TiON
a '%%f;%@& :;“:.”‘a%;\%”%‘?.

Spanning tree of o 3\@9\\ G s o Subﬁraph of G hich
(i) contains oJ\ vedices of G ond

Lad)

€ is o dvee.
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S %
%
%
v
A
\“5

R
o

Nt

\
QL BEs

B s
&l e SRROT R
Y

et

d =




ALGORITHM FOR GROWING R DEPTH-FiRST-SEARCH SPANNING TREE T

Lek G be o connected sraf\s on vedices Vi) Vay V3 .-+, Va.

INITiAL STEP: Puk x:2V, and let T be a hee with
VM = ixnl and EM:=>g

RECURSIVE STEP:  Suppose V(T)= i, ., x;} for seme (21,

Lobhide there are shill verlices in V€6) - V(T
o;da‘o.cenQ; o some Xx;€ V(T

hoosa. o vukex ve V(G) -V oucse\cen');
to x; €V with | os big as possible

ond pub Xiad =V,

odd vertex Xy Gnd edge (x;‘h)ﬁ) o T,

EXAMPLE

_—
We construct a DFS sFann:ns dres w -“\e fo\\ms Smf\s)
rocted o VS




ALGORITHM FoR GROWING A BREADTH- F'RST- SEARCH SPANNING TREE 7

ﬁei G Be o CehheC*\»Qd. Smp\n on ve-il‘ces

v' )V;)Va) -u) Vn.

IMTIAL STEP: Pud X,:=v, and lel T be a tree wath

VIT) = ixy and E(TY = &

RECURSIVE STEP: Suppose VI(T)= &x,,x,,.. %} for some (2],
hde thire owe shill vetices wn V(G - V(D)
ada‘&(er& {o some "j e V(T y
choose o vedex ve V) =-V(IT) &d&'&cen{
to X; € VD u.-&.\\j os smoll as Poss:ble
ond P‘“" X2V,
odd vedtex Xy, ond edoe (X.i)"i.ﬁ) to T.

Yre, @mmf’g %@@?’h 3




FVLE S

WEIGHTED CRAPRS

ZLe}. G be (% srn.p\m u.n'.):\'s ver\:ex SQ‘: v and edse se'): E
Lf e hause dgf-‘rud. o funclion E*IR) so that wce)

is the bush% of the edse e ( The u.-u‘ah-l-. coadd be g
cost or o dislance for E)«:unple), Usen’

EXPMPLE

The dislonce behuesn 5 downs ABC,D and E in miks is

given by the dable

G is a Mﬁz’»éed §aph
/53.‘@‘@.61 @%‘”é’“§

A B c D E
é - 2o Y0 3 lo
) 20 - 50 95 21
C Yo 50 - 3 20
b Yo 4 3 - s
é lo LX) 20 S -

con be used to mode] ths informetion:

Q¢ low do we find Lhe shortest roude from A Yo G F




_D;:ihsirs-“s Shortest - Pabh Glgorithm

'?o-r ‘e\‘n&ins H\e s‘w\—\ts{ Pec\:\-\ ‘oe‘-«»—un w\:\) 'l-wo ve\—‘dc,es S and T
n o connecled | waighked gqruph i which ol weights

Ol ?osi{ive..

M TInkidise the amph Bb assigning dhe lehel (O|S) o verlex S

ond.  tha label (ce) 9) 1o ol olther vertices, Moks Souwe ol
vertices oue wmonkad. .

REPERT, steps @®)
Ohoose on. tarvmastad vestex v whose lokel (d.(V) )M)

tach that d is as smoll os possible.

@ Mok vurey v (eq. wrla’d)

UAQA@&Q any  wnmmorhad wﬁbbm w of v
T8 3's label L8 (&(w‘g)m) | ds naw Jabel

1)
(dw + weght of edge (vyw) 4 v )

i don + it of edae (viw) € dwd
othemamise the lobel s una}smam\

UNTIL vertex T s  pmoshed

(® When T is motud and hes lakel (d(r), x)  the
shotest pakh fom S Lo T hes length d(T) and
N presdous Ludex he Pokh was X.
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EXAneLE

(10d)

, Se shortest Po&k has Ienﬁﬂv lo
o.nd the FQ‘H‘! is
(S ,b,4,T)

@



Examele

The distonces beduszsn § Fouwns BB CDandE wn mils is given as
msh{-.s on Bf\e edﬁes un, Hae gelﬂmu-‘.ns S@Ph.

Q k!ef}mne Company wanls 1o e ol of the lowns waitb
oS small a !easﬂa of wire as fmssib!e.

T‘w_} want o minimum weis}oi slmnm‘hj -h-ee ‘fo‘r 'H\& Sre.f%w

Tuwe @Lg@en&%sms exist for Sc@w&-nﬁ s Fmb!em:

Kruskol's akaoa-.\:\\m and.  Prim's olgou-&l:km




KRLSKAL'S ALGORITHM FOR F/NDING AN MST.

INiTiaL STEP: Choose Gn edge € of minimum weight w«n G and
let H, be the subgragh of G with E(h)={ed,

RECURSIVE STEP : Su.ppose we hove conshructed H; with
E(H) = ée,,ez,..., e:\ for seme (21,

Whike @< V(&)= choose an edge €, of &
Sach thok
adding €, to l creales no cuycle vn K
Suhjec’; to Z} w(ew) is as smal

oS Foss:‘o\e.
Gdd €, Yo Wi to form Hewr.

EXAMPLE

U.So‘ns Kruskel's aLsc-hA:‘\m) (T N ein& on MST e H’\Q
go!\MnS Sm.?\\:




PRIM'S ALGORITHM For FINO/ING AN MST

INITIBL STEP I choose any vertex y, of G and Lt T,
be Jhe hen wilh W‘r,)=§x.§ ond E(T) “@

RECURSIVE STEP: Suppose we have construcled 7: wath

V(T = Txykyy oy X for some iz

Whide <]V I=1 choose Qi eclﬁe Cxp,y V)
whare

X s w T and v is not jn T:
adding (x; v) to T creales no Gycles

@ Sub"\ed $o ®) ‘”("Jn") s as Small
oS Poss;\o\e..

Odd XV to T; and the dﬁe (XJ)X,;.N) Lo
gc\-m Tzﬁ.




Homilonton ond Eulerian grphs

G srow f\ws\\ nasds to clear o)l the m&&s \n on owa.
TL s ru-ecemb\e thal ne reed is drowelled a\m& men than
onta. Con dhis be domne?

Y

Exoumgle
kL solasmon wonks 1o visit customers . sevarol different

Yonons. He dots nol work o wvisit Oy Placé mownt +han ohce,

Con -u\xs be Ame!

%457




Suder _cyda

N cycle  which Con\o;ns@w.ﬁ edge of the Smf)\ (pv-euse.!ﬂ onca )
is callud @n &\Lur‘c%g:le ‘

I G has on €lur cdc\e G s calid @ Edurian %3:;?)1.

EXxAmPLE

Can the fo\\ows smf\\s he drosn  wathouk H.reqkr\s on
edse. or -):o)\.ns the pen off the poper

A o

~ THEOREM |

R connecled Sm.‘;\\ on h23 V‘eﬁ-{:i'ces has oan’ f»hrrsc‘e
1} .

v

& contans no verkices ol odd d%m.

G 5““?“ G is collad e&se ~breceoble if & containg a

Po&.\» wth no &-epeo\\-ed eo\ses) which contains evtay
edse ot G.

COROLLARY

Q& connecled sme\'\ 1S edse--\»mcem\a\e
) o

'k contains ok most two verkices
of cdd &n.sru. .



\c‘g Qe ',Tw-m uﬁm

Homi donian i:sil‘;

let G be a Smfh. If G conlains o So'mple 3cle §oing '“u-ea.ﬁ’)
Sutry  vertex of G) then € is a hamiltonian 8""9" and the
Cac\e is o hamilieniom cdde.

W simple path going -!-h@sh evey vertex of G is o hamiltonion
podh,




E Koan P_l_e,_

Is & homiltoncan ?

THEOREM
Let G be o hamiltenion areph.

Then for utry non-emply proper Subsel S of lhe verlex sel V(c),
H»seu-e O, c}. mes% Hs! Cﬁumen'LS Eﬂ. G“S.

gg‘ R QAR

} sl wvertices and Yo G et with J'us{ Isl comPohenis,

EXBMPLE

/

i3 H 30 i’ E
R o oy o 2 1 h o 2y o oy P N |
v o R Sy aenend =1 * ey e
\3. 1 3
. . Py B 32 e o 59, e W Py 5 g
Ao ey 5 4 e Y e Y Ut L o




MTroatllicm q _Salas man  Problem

G traudling s:alesmmn ‘wanks to uisit each of hy Cus)»omers
rhwming to his stout poirt ot the end. ‘

He wants 4o troual the shorbest Poss.ls)e dislarnce and  wisit
euug cstomer P'“*Sd'"_\ once,

N NOTES

We model dhis by a comf\de Smf\a oh n vetices where the n

o aastomers Lo ok the n vubices, We ujh{ the groph Lj ass; 5""’5

the u.-uakt d {o edoe (v.,v) il the d.o.slw-.ce Beh»un Cus-\o-mer Ve

- N\& cuonmer- . 1S d

o G visit 1o every M‘Q.\mer_ is a closed PG:H-; -’rhmn_g\ ok VQ$&§.’ -

@ We rguire o closed PQL% #kéo.%kah verkices of sft'hd..iasl &»usH:

® Since the salssman has ‘as exira condilion that ha W{SLO wisit

every  austomer Predsdﬂ once, he is ac#uo.lls“* danmol;rs o
HAMILTONIAN CYCLE of shordesl P°-‘-Si“e weidd.

The solasman is not doing himsel? Oy fovour in st'.v-\.ns -Hu;
for the shordest poss.Ue rod:.e in the gmoh for him is net nacessouily
o Homiltoniom eycha ¢

d ’ .
) Shcvies{ ouke : (Q)hc)b,n)o\)a)) l-ens{h 8t

~ shoitest uam:’lman % : (Og,b,c)d’o.) 5 )gna{}, '13
T

@



Resut

Suppose the 3\'9.9% s:::);.:sf.es the 't»umsle megun.l&s) 'Hud:
a,b and ¢ G, vu‘hces U\en &a(&\:) + w(b)c) 2w Cae).

15y whenever

Lﬂ“n o shoslest roude C\Md ol customers is a bomiltonion .%c’e

’ Fmol«.ns Hhe exact roule reguires ex\am.\slwe search | bk we can
bind o qood. aﬁ»roxumql.on

| Neo«-zﬁ Ne,; \x \oo-wr

'3"’*‘mo}.;on Lo o Solub'o'n of TSP:

let G be a wgahkol comfkle groph sd-.sszs
3

ing the -Ih.'o.nsvie ine;ug!.:i:‘,
@ Slok at ony vertex y,, 77.,.5‘38..

i

4
w

@ Buld o pah B, by adding the neosest maa\s\ow o' Y
- to P, o
® Repea&. @ Bu}. ’
~ Step whan ho varhces ore left. Tf lhe finaL pokh s,
n = (v, Yoz ¥n)y then the necuest haiehbotr approx imalion
to o So\ui-.\on is (.)z);) V,,;\/J,

EXAHPLE

’ stat ok a: P i) luss{k o
| Rl lendh 3
Rilgd) leagh s
Py ilogdh) length 4 |
aﬁm:mma solukion : (acdba), length 13

} slm.&a& X P(c) H P (<pl) R, (c,d,a) Byt (cd ;&,b)x
aﬂmmm e solukion (c,&,q,k;) lengdh /5

So the soldien 15 net naet $Sowt\ay QP\,mu.L.’






