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O e abour Scluing eguc:\'.ions,

Uow eaist be oble Yo schue L:«hQCM‘ eguckions \n one unknown,

L.e. eguokions thum thare s J‘us-L one voriable Cusanallyy colledh x)

ond thue will only be x's and M\:es) no x‘) x‘, etc.

€.q. |
X412 3 Sx+2

?s}c-n exo.mF\e of a linecr eawa-lion.,

]

How 'Lo SOL* ciz

Methed : @amﬁe the e.guw\u‘cn se W 08 wr the Lorm
¢ )
x = [ X ¥

whese  the wight hoad side is an expression with no X3

AX+12 = Sx+2

@ subdmel 5X on both gidas (%o aet no x on RHS)
-9X+l2 = 2
@ Subtrack 12 on both sidas (1o qed no consland Jerm on LHS)

-2X = =0
® duide both codas 55 -2

x= 5.




EXAnPLE
Selut 3x+8 = b~2{3+3x)

ax+5= (-2 (3+20)

® list vamovt breckel on RHS:

A +S = G‘G‘VX

@ colucl Xx's ond constants on bolh Sodas

ax+s = =4x
® «dd Yx o both sidus
| Ix+5 = O
®  sbloct 5 on both sidas
Ix =-5

®  dicide by F on both sides
x =5k




Que durekic egu.w\—mns

Bou sk olso be able Lo solue guao\mi-.\c egucu\-..ons u»%k oru.
vortodle (uimolly collad x).
a gua&o&.c egua)fﬁon contains a derm oxt whae a%0 is a

num\;e.r, <G ™oy olso contain terms uwokmnj x and consiani

terms, buk no xs'qu, x° elc.

EXAMPLE
=4
is a guadmiic eguakion.
TL hos the solukion x= V4 o x:-W)

thok is
X= 2 or X=-2

Recalk, for ony non-nagpkiu nawmber R, the Sgnas e e

a s Y
. 3 [ RS R
SO FELCE A O.nd
) ]

Vh = is tha POSITIVE number s such hot s=n.

Se N =2



k% Foct
0«\5 Qu&d-m&.ic equcu\;s'on Con be rew-rn—nsch Lo Lthe

foven 2
Gx“tbx+¢c =0

whut a,\b ond ¢ Gt ruumbers and a*o.

Solud ivr,

The guadom%-a‘t @gua#:‘oﬂ

oxt+bx+c =0
whart ab ond ¢ Ot numbess and O0*0
hos eithar 0,1 or 2 solukions:

A 16 b'-Yae <0 theve o he 39!»9:.;@@5.

@ e b-Yac =@ Lthere i3 cne seludion |

X2 2a N

( I? f’»%.g 0  thee o M solukions

©.4) ony



x*4+1 20 has no (=ol) solutions as

B-Yacz 0-4-)-12-Y <O,

EXBMPLE :

X +Yx4+490 has prcisely one solution

bt Vorme 42 Ve
2a = 27 ‘

-4 o
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EXOMPLE
Xx*-5%x4( =0 has Preu:‘sd.s dwo solutions

-b 2 Vi -Yac s+ Ns-41-¢
26 = 7 .
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S eﬁs ( m%hgd&r)

QA el i o collection of objec{:s such that we Ccon

tell uWhelher o given objecﬁ is in the set or not.

The objects e colled the elements oy members  of
the sel.

Exo’.mg\e'
° The se£ of ;n#esexs' (hel{d) Belmeen .~3 ond 3 s
Sz i-s,-z,-n) 0, 1,2, 3}

* Eoch nigmber n the set s an element of Llhe set .

For QXM\P,Q, 2 is on element of §. T, symbols
W Gt e
2€8S

Q. set has no order and repeated elements ore disregarded |
So for example

The sel 34,3 53 s egual to the sel {315}
The sei 4,33 5] is egual to the sel ii,3,$3.

Two sels w-é egual if 'u'\es howe exad—l:, the same

elements.

The number of distinct elements of o sel is called s cardinalily,

I¢ o set A conlains exqcuﬂ n different ;elémen_és$ ut wed e

1Al = :



Exam Ele

¢ The sets ia,b,P.’s and ip)b,a} are égue.l. since U\es

houe exactly the same eclements. Both have cardinalil_c, 3

*The sets A=fabbpl and B:§ab pl are egual.
We wrte A=D, ' ‘ ' |
ITn §a bbﬂd the element b appeo.rs ‘I'MCQ) buk we

| om\5 count once, So

lal=|Bl =3

o The sels §51 ond 1853} are noT egual.
The find set consists of the number 5 while
the second consists of the sei §5)
and these two Hhings are nol the same.

Howewar, both sets howa Co-d;no.l..-\»: l:
| £s31 = | 4533
BuT ssy + §is3]

i
|
!
]
i
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Venn d iagrums for sets

It is 'o“en useful lo be o.b\e.'Lo drouw o P:'Cl(u{ of a
sek. The nineleenth century  English mathematician John Venn

invented o, method for dc:n5 $0:

When we are Wworhing with sels thew usually all have
3 ) Y Y
ot elements from some underlying uwniversal set. TP
et | ng
for exomple all elements froem o set are integers (Bgliol),

the universal sel would be the seb of ol inkegers | Z.

In Swediskv'Uwe universal set is called o Srmnd»m&nsdj and
we shall  therefore coll our wniversal sel G

In o Vern dgasmn) we drow  the u.n;ver_sﬂl sel as a
big reclange and the sels e work with  are drun

as closed regions (Lsually cirles or ovals) inside the

recd O;hs\e .

EXBMPLE

Let G- iO,l,z,B,‘I,S, ¢3 and consider the fwo sels

Az 30,1, 2 1) | B=§3y s}

T’\& Ve"ﬂ d&ksf&m
fon this scenorie

'S het{: ;




Subsels ( del m&n&dﬁf)

O subsel T of o set 5) wrillen TES s o set, oJk of
whose clements ot frorn the set S.

X8 15

The set $4,3) is o subset of the sebt 'i4,3,53'-

§433 € 495}

o The Vgnn d&usm -Ew H\:s is

N

L

* Oy set is o Subset of i'l:sg\c) e.q. 435} € {435},

* Gry set hos the -empty set § i , 65 a subset eg i€ 14,35
The empty set is usualks dencted 2, 5o
3122 and 1gl=0

* O subser of o set 5 Which is NoT S self is calld a
Fr@{:@r éua)e"s%.% (Ed'&a d&lmc-r&c\) of S

* In the E*M?\Q. abone £1,3) is @ prper subsel of {l,'S,s"S) we umute

Cy ad o 8§, 4 =2



OPERATIiONS ON_SETS

ion

The uwnion of sels S and T, wri Hen SoT, s the set of oL
clements which owt in either of the sels S or 7 or in both.

EXAMPLE

I! S=iabsel and T=8becd el  then

SUT-'{Q‘\acdeS

) )




Inlersechion (snitbet)

The infersection of sels S ond T, | woiflen SOT s lhe set
of elements which oxt n both the sels S and T,

EXAMPLE
I¢ &= i“,‘a.c’s ond T= fb¢del then

SﬂTf ib.c’s

The Venn 'd.io.srm is




Set ditterence

The d:ffevence of the sels S and T, wrden SNT s He set

of eluments which are ‘' the sel S buk net tn T

EXAnPLE
TP S:={ab,ecl ond T=%b.e,d,el Yo
'eNT = fal

T‘u V@nﬂ éf’.c\ﬁm e.s

Note thet Semxollg) os fov ruumben (e.s. 9-9 *3-2) 2

SNT ¥ TN\S.

€.q ‘v the example a b ot

S\T - §ol
T\5-$d.e}



Sek camp\é ment

The Comp\emenl el e sel G consists of oll elements

waversol  sek G, whith Gre 29}__ w S.

Theat is: gs G\NS

EXQMPLE

s%@@%ﬁ that 6= §.0,s,z,3,9,s,4,'4,8,93
ond thok S=81,2,34,5),

Then 8= £0,¢,%8,91

Tﬂw 'V@nn MM loeks Iike %Mst

w the

oMy



Seme Lniversal sekg of Mbe‘s

The sel of S5INE nlesess g
4 u

Ly = 8,3, 03

NOTE ok O ¢ poT o FQS:‘%:‘%’:‘ %n%aeﬁéﬁ’.

"The set consithng  of pesitive inteqers and O s Lhe
sd-. of natiml M bers (n&f“wl{sa tal )

N = ia,l,z,a)_... 3

The Sek. @_Q 'm@%m#s‘ve ‘ ﬁ@%@g&’% Ls
2. = §-1,-2,-3, ..}

WeTE hak 0 s NOT & raqative inkeqer
The sel of ol INTEGERS is called Z,

7 = Z_ v golu Z,.



Desa\;:*ng sets

For many se‘cs) the easiest Wasy oe deso-:.kinj them s J'us-i o
list their elements as we howt done in +the ekarnFllSv

oot . For exo.mple) the set of even in-legers bed voean |

ond IS ore
22:({:6:8) lo, Iz, 193,

. 4
. . L
Bt semedirmes éb&.si:mg ol elements of 4 sel s foe emuch

| o | |
ard 1500 has 750 elements , and et cannot

@Mu— . X}}(i & @%W.gé mg'la“sﬂ-":*\ ?@% G2

§_2,‘{,6, 8lo,... )/5003)

\ W

where the S’:SM\DOL Moo s tead “and so on e ‘We
tom Use the L.0- ‘-vﬁm\:GL whenever 1t is cleor  which

elemenls we mean.
/Aho“\e\" wc‘.b 02 desc.r{.\ains -“m Soume S’ez’: would Be:

£2n j ﬂ{iz/\ 1< n<1503
or txe 4 , X= 2 Az !)2)...)3501

T txe 2 I !ﬁ’xila‘:’»‘oo) X 18 even3 '



Mo-re “sek buildar " C<‘ [3*‘5'“”‘03”) examp’es

§-1,2,-3 -4 -5, ..} = t-x: xe 2]

$G'n | neNY =§0,-1,2,-3,9,-5 ¢,-%,... }

i ‘nGW}'iO,“i,!’;)%)%, 3 '
13,6,9,12,15,18,21, 24,23, .. 1= ¥3x: xe 2, 1

$oan+l : nelN\= § 1,3,5,% qn,.. !
Combine thase huo:

13,9,15,2,23, l=330ane) I nenw Y s itn23 ! nemVi.



Comgininc\ set operalions

Just s ordlinemy  omthmelical opew\‘;’on_s on nuwmbers | Lke e.g. +,
sc.’:{is';_\s verious louos | Uhe for exomple the associalive lows &or addibion
which stedes that _ . '
: (@th)+ ¢ = o+ (bee)

Bor ol kees ab ond ¢ ) we olse hewe 3-‘mi_lu rues  for Combining
- get opém!:;ons.
. -WeA sholl g0 ouer the most imporlant ones here | bud Yo can find

obhes n Hu book | " D

1

The _ossocialive laws for weion ond inlersecdion.

Let A8 and 4‘be Suﬁsets o a wveréo.L set U, Q;en

*(Aup)v G = Aulroug)

Aalenc)

4

*(pag)n ¢

k]
+

i

Such idenkities ce.n cosily be illustmled by drousing Venn dograms, e.q.

750

BN

TSN | » . A=
C =W\ Bo¢ =\ |
(Aov)n ¢ = | Aa(roc) = B




The Dishhulive Laavs

Lel A,B ond ¢ be subsels of the universol sel W, then

e An (Buc) (Ao@) v (AnC)

i

« Au (anc) = (gun) n (AvC)

Ao (gucy (hag) v (and).
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Let O ond B be subsels of the wniversakl seb U.){;ke,n'
CERY)
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Counting Thihgs

If we toss a coin five times how many sequences of heads and tails
can arise?

In order to find this we use the multiplication principle.

In this case we have five events recorded and for each there are
two possible outcomes. V

Each different sequence of results is counted separately; for ex-
ample (heads, heads, tails, tails, heads) and (heads, tails, heads,
heads, tails) are different outcomes.

The total number can thus be determined by looking at the num-
ber of options for each and multiplying these together. In this

case it is

2X2X2%x2%x2=32

The multiplication principle states that if we have a pfocedure
with n stages and each stage r has a, possible outcomes then the
total number of possible outcomes is -

ay X ay Xag X ... X ap




Example
On my shelf I have 12 different mathematics books and 6 different

computing books.

In how many Ways can [ select two books, one from each sub-
ject, to take on a weekend trip?

Example

In my local pizzeria they have 52 different pizzas on the menu, 8
kinds of drinks in their fridge and two kinds of sallad.

I how many ways can I choose a meal consisting of one pizza, one .

drink_ and one sallad?

Example

Suppose we roll two dice. One die is blue and one die is red.

How many possible rolls are there?

How many outcomes are possible where the red die shows 6?

How many outcomes are possible where the red die shows an even
number and the blue die shows an odd number?



Example

There are 2" n-bit binary strings.

Proof.
We can find any n-bit binary string in n stages:

Stage 1: Choose the 1’st bit in the string
Stage 2: Choose the 2'nd bit in the string

Stage i: Choose the ¢’th bit in the string

Stage n: Choose the n’th bit in the string.

- At each stage we have precisely 2 choices,:either the bit is 0 or

the bit is 1, and each choice is independent of the previous choices.

The multiplication principle with a; = ay = a3 = = ap = 2
thus gives us that there are 2” n-bit binary strings. B



Some More Sets

Let A and B be subsets of the universal set /4.
The Cartesian product of A and B, written 4 x AXB,
consmts of all ordered pairs (a,b) Where a€ AandbeB.

Example
Let A={1,2} and B = {q, b} then

A X B={(1,a),(1,b), (2,a),(2,0)}
Note that in general AX B#BxA. In our example
BxA={(e,1),(0,2),(a,2),(52)}.

Using the multiplication prinéiple we find the cardinality

1A% B|=|4||B.

More generally: .
Let Ay, Ay, A3, ..., A, be subsets of the universal set /.

The product set
A1 X AQ X A3 X ... X An

consists of all n-tuples (a1,a,as, .. ., Gp),
where a; € 4; for1<:i<n. :

Using the multiplication principle we find the cardinality

A1 X Az X As X x An) = | 4y]| Ay o] ... 4]



2

How do we show thal two sets ore the same size

We hae twso s :

@ Count the ruumber of eluments n ecach sel cmo\
duck bhet hay are egual

Ini=3

se Ini=Inl

e @M M.? %%\@ e!em@h%s @ﬁ %}sé 4&% 5@%5

DHY



Example ,
The set of all subsets of 5 set X is called the powerset of X and

i1s denoted P(X}.

If | X|=n then [P(X)| =2~

We can prove this by pairing off the elements of P(X) with the
elements in the set of all n-bit binary strings, and since we know
that there are 27 n-bit binary strings, there will thus also be 27
elements of P(X). |

 Suppose that X = {z1,29,...2,}, and let S be any subset of X,
then we pair off $ with the following unique n-bit binary string:

BitlislifxleSandOifxl & S;
BitZislifxgé.S’andOif_xggS;

Bitiislifx,-ESandOifx,-ﬁS;

'BnnislﬁxnesamiOﬁxngs.

Let us do this for a small example.

Suppose that X = {a,b,c}, and let S be any subset of X, then

we use a 3-bit binary string to code S as follows:

BﬁlblﬁaéSmﬁOﬁagﬁ
BitQislibeSandOifbng;
Bit3islifc€SandOifc§{S.

The 1-1 correspbndence between subsets and codes is thus

subset | §  {q} {0} {c} {a,b} {a,c} {b,c} {a,b,c}
code [000 100 010 001 .110 101 011 111




Partitions

- A collection of non-empty sets A1, Az, As, ..., A, is a_partition
of the set. X if the following two conditions hold.

1. The union of all the sets is X, that is
X =A1UAUA3U...UA,.

2. The sets are pairwise disjoint, that is
ANA;j=0fori#jand1<i,7<n.

The n sets A;, Ag, As, ..., A, are known as the parts of the parti-
" tion, and since each element of X is in exactly one of the A;, we
- can conclude that '

X1 = 41|+ [ gl + s + .+ [,

'This result is known as the addition principle.

Example :
Suppose that in a bag of sweets there are 5 Dumle, and 7 mints

and 8 jelly beans. How many sweets are there in the bag?




Example

On my shelf I have 5 Maths books, 3 Computing books and 4
Physics books.

In how many ways can I choose a pair of books from dlfferent
subJects among the books on my shelf?

The solution to this is easily seen, when you note that I have -

exactly three possibilities for a pair of subjects, namely

A. Maths & Computing;
B. Maths & Physics;

-~ C. Computing and Physics.

‘Note also that the three categories A, B and C are disjoint.

Using the multzplzcatzon prznczple the selectlon in A can be done

in 5 X 3 ways.
Similarly there are 5 x 4 selections in B and 3 x 4 selections in C.

- Hence by the addition principle there are thus

O9X3 4+ 5x4 + 3x4 = 47

ways of choosing a pair of books from different subjects among
the books on my shelf. :



o

The Principle of Inclusion-Exclusion

Suppose we have two sets A and B and we know the sizes of
these sets. Do we know the size of the union of these sets?

Unfortunately, we cannot simply add the sizes of the individ-
ual sets, as if there are elements that lie in both sets they will
be counted twice but will only count as one in the union. Thus
for each element that is in both sets, and therefore is in the
Intersection of the sets, the sum of the sizes of the sets is one
too great. Therefore in order to find the size of the union of the
sets we have to sum the sizes of the individual sets and then
subtract the size of the intersection of the sets. This gives:

|AU B] =']Al +|B| - |AN B|




Example
It A={a,b,c,d} and B = {b, e, f} then:

AUB = {a,b,c,d,e, f}
ANB = {b}

and
|A] = 4, |B| = 3, [AUB] =6, lAﬂB[ = 1_
We can therefore see that in this case

[AUB[:]AH—IBI—[AHBI.

This result extends to three sets:

Proposition B1.3 Let A, B and C be three sets from the
same universal set I/, not necessarily disjoint. Then

|AUBUC| = ]AI+IBI+]C}—1AHB]—[AmC]—[BmCHjAmBmC]




Example
If in a town 50% of people use buses, 40% of people use trains, and
20% of people use both, how many people use at least one of these

forms of transport?
Let U = the set of people in the town.

Let A = the set of people who use buses. 4] = 25U

Let B = the set of people who use trains. |B| = =10,

AN B| = 20,

Then:

[AUB| = |4+ [B| = AN B = 2] + 22 117 = 20 17 = 10y
- 100 100 100 ' 100

Thus 70% of people use at least one of these forms of transport.

Example
How many integers in the set

{1,2,3,4,5,...,100}

are not divisible by 2, 3 or 57

2Hac





