Revision

- Read through the whole course once
- Make summary sheets of important definitions and results,

you can use the following pages as a start and fill in more yourself

- Do the assignments again
- Do the model examination paper
- If you have more time, do some more exercises: A number of old exam questions, some with solutions, will available in pdf-format via the course website, and you can also do more exercises from the book.

Section A - Sets and numbers

Main Topics in Section A

- Sets
 - Sets and subsets. The powerset of a set.
 - Using rules of inclusion (set builder notation) and Venn diagrams to represent sets.
 - Complement, union, intersection and difference of sets. Representation of these operations in Venn diagrams.
 - Laws of set operations. Associative laws, distributive laws, De Morgan's laws. Verifying these using Venn diagrams.
 - The sets \mathbb{Z}_+ , \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R}
 - Intervals
- Absolute Values
- Inequalities

- Equations
 - Polynomial equations
 - Linear equations
 - Drawing the graph of a linear polynomial function
 - Finding the linear polynomial function corresponding to a given line
 - Quadratic equations, the method of completing the square
 - Drawing the graph of a quadratic
 - Higher order polynomial equations
 - The Rational Root Test
 - The Factor Theorem
 - Equations with roots, exponential functions and logarithms
 - Checking for fake roots
 - Trigonometric equations
 - Trigonometric identities

Section B - Complex Numbers

Main Topics in Section B

- \bullet The set of complex numbers $\mathbb C$
 - \bullet Definition, arithmetic (sums, products, quotients) with complex numbers. Geometric interpretation of multiplication in $\mathbb C$
 - Argument, absolute value, complex conjugate of a complex number
 - The Cartesian (sv:rektangulär) form a + ib
 - The polar form $r\cos(\theta) + ir\sin(\theta)$
 - The exponential form $re^{i\theta}$
- The Fundamental Theorem of Algebra (without proof) and how to find the two complex roots of any complex quadratic equation.
- The Factor Theorem.
- In any polynomial equation with real coefficients, if a complex number z_0 is a root, so is its conjugate $\overline{z_0}$.
- Powers and roots of complex numbers, De Moivre's Theorem
 - In particular the n complex nth roots of unity

Section C - Functions

Main Topics in Section C

- Functions and their domains, range and graphs.
- Some elementary functions, their domains and ranges and their graphs:
 - Polynomial functions
 - Rational functions
 - Partial fractions (sv:partialbråksuppdelning)
 - Power functions
 - Exponential and logarithmic functions
 - In particular $\exp(x)$, $y = 2^x$, $\ln(x)$ and $\log_2(x)$
 - The laws of powers and logarithms
 - Trigonometric functions
 - The unit circle and how to find sin x and cos x on it. Degrees and radians.
- Algebra of functions
- Composing functions
- Invertible functions, how to show that a function is invertible by checking that it is one-to-one (sv:injektiv) and onto (sv:surektiv)
- Important Theorem: Strictly increasing and strictly decreasing functions are invertible

Section D - Sequences, Sums and $\Sigma\text{-notation}$

Main Topics in Section D

- Sequences
 - Definition by general term
 - Definition by initial term and recurrence relation
- Arithmetic and geometric sequences and sums
- Expressing and manipulating sums in Sigma notation
- Three useful sums:

$$\sum_{r=1}^{n} 1 = n, \qquad \sum_{r=1}^{n} r = \frac{n(n+1)}{2}$$
$$\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$$

• The binomial theorem (without proof):

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r$$
, where $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

- Some logic and proof
 - Why fake roots occur
 - Proof by induction (not on the tenta HT08)

Section E - Limits and Continuity

Main Topics in Section E

- The definition of limit, limit from the left and limit from the right
- An important theorem: The double-sided limit lim_{x→a} f(x) exists if and only if both limits lim_{x→a+} f(x) and lim_{x→a-} f(x) exist and they are equal.
- The definition of continuity
- An important theorem: f is continuous at x = a if and only if $\lim_{x \to a+} f(x) = \lim_{x \to a-} f(x) = f(a)$
- Rules for calculating finite and infinite limits to a, limits to $\pm \infty$
 - Remember NEVER to do arithmetic with $\pm \infty$. Writing any expression like " $\frac{\infty}{\infty}$ " or " $\frac{0}{\infty}$ " results in a zero mark for the exercise in which you wrote it
 - Sandwich Theorem
 - Limits of sums, products and quotients
 - Limits of rational functions:

$$\lim_{x \to \infty} \frac{p(x)}{q(x)} = \begin{cases} 0 & \text{if deg } p < \deg q \\ \pm \infty & \text{if deg } p > \deg q \\ \frac{(\text{lead coef p})}{(\text{lead coef q})} & \text{if deg } p = \deg q \end{cases}$$

• Some standard limits without proof, e.g.

- $\lim_{x \to 0} \frac{\exp x 1}{x} = 1$, • $\lim_{x \to 0} \frac{\sin x}{x} = 1$, • $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$, • $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = 1/2$.
- Hint for limit calculations: any quotient containing a denominator like $(\sqrt{x} + a)$ may become easier if prolonged by $(\sqrt{x} a)$ to obtain $(x a^2)$.
- Theorems concerning continuous functions, e.g. the Intermediate Value Theorem, Bolzano's Theorem (Sats 8.2, 8.3 in [RS])
- Limits of composite functions: Substitutionssatsen (Sats 8.1 p. 243 in [RS])
- Functions covered on this course are continuous nearly everywhere in their domains, there are only few points at which they are not defined or have 'jumps'.

Section F - Differentiation

Main Topics in Section F

- The definition (and geometric interpretation) of the derivative f'(x) in terms of limits.
- The definition of differentiability.
- An important theorem: Differentiable functions are continuous.
- The various notations for the derivative f'(x)
- Differentiation from first principles
- Differentiation of sums, products and quotients of functions
- Differentiation of composite functions: the Chain Rule
- An important derivative without proof:

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$