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A triple array is an r × c array on v symbols arranged so that no symbol
occurs more than once in any row or column, and satisfies the following four
conditions:

TA1. Each symbol occurs k times (equireplicate).
TA2. Any two distinct rows contain λrr common symbols.
TA3. Any two distinct columns contain λcc common symbols.
TA4. Any row and column contain λrc common symbols.

For a general triple array we use the notation TA(v, k, λrr, λcc, λrc : r × c).

Agrawal [1] suggested a method for constructing triple arrays from symmet-
ric 2-designs. However, there is one step in the construction that is not proved,
giving rise to what is called Agrawal’s conjecture.

Conjecture 1. If there is a symmetric 2-(v+ 1, r, λcc) design with r−λcc > 2,
then there is a TA(v, k, λrr, λcc, λrc : r × c) with v = r + c− 1.

The converse of Agrawal’s conjecture was proven in [3] and many examples
have been constructed. However, until now only one infinite family, called Paley
triple arrays, has been proved to exist. This has been done to different degrees
in [6], [2] and [5], and can be summarized as follows.

Theorem 1. Let q ≥ 5 be an odd prime power. Then there exists a q × (q + 1)
triple array.

In this talk we point out some problems around, and approaches to Agrawal’s
conjecture. We also introduce a new infinite family of triple arrays from our
present work [4].
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